rust-analyzer/crates/ra_hir_def/src/nameres.rs
2019-12-05 08:28:31 -05:00

433 lines
14 KiB
Rust

//! This module implements import-resolution/macro expansion algorithm.
//!
//! The result of this module is `CrateDefMap`: a data structure which contains:
//!
//! * a tree of modules for the crate
//! * for each module, a set of items visible in the module (directly declared
//! or imported)
//!
//! Note that `CrateDefMap` contains fully macro expanded code.
//!
//! Computing `CrateDefMap` can be partitioned into several logically
//! independent "phases". The phases are mutually recursive though, there's no
//! strict ordering.
//!
//! ## Collecting RawItems
//!
//! This happens in the `raw` module, which parses a single source file into a
//! set of top-level items. Nested imports are desugared to flat imports in this
//! phase. Macro calls are represented as a triple of (Path, Option<Name>,
//! TokenTree).
//!
//! ## Collecting Modules
//!
//! This happens in the `collector` module. In this phase, we recursively walk
//! tree of modules, collect raw items from submodules, populate module scopes
//! with defined items (so, we assign item ids in this phase) and record the set
//! of unresolved imports and macros.
//!
//! While we walk tree of modules, we also record macro_rules definitions and
//! expand calls to macro_rules defined macros.
//!
//! ## Resolving Imports
//!
//! We maintain a list of currently unresolved imports. On every iteration, we
//! try to resolve some imports from this list. If the import is resolved, we
//! record it, by adding an item to current module scope and, if necessary, by
//! recursively populating glob imports.
//!
//! ## Resolving Macros
//!
//! macro_rules from the same crate use a global mutable namespace. We expand
//! them immediately, when we collect modules.
//!
//! Macros from other crates (including proc-macros) can be used with
//! `foo::bar!` syntax. We handle them similarly to imports. There's a list of
//! unexpanded macros. On every iteration, we try to resolve each macro call
//! path and, upon success, we run macro expansion and "collect module" phase on
//! the result
pub(crate) mod raw;
mod collector;
mod mod_resolution;
mod path_resolution;
#[cfg(test)]
mod tests;
use std::sync::Arc;
use hir_expand::{
ast_id_map::FileAstId, diagnostics::DiagnosticSink, name::Name, InFile, MacroDefId,
};
use once_cell::sync::Lazy;
use ra_arena::Arena;
use ra_db::{CrateId, Edition, FileId, FilePosition};
use ra_prof::profile;
use ra_syntax::{
ast::{self, AstNode},
SyntaxNode,
};
use rustc_hash::FxHashMap;
use crate::{
builtin_type::BuiltinType,
db::DefDatabase,
nameres::{diagnostics::DefDiagnostic, path_resolution::ResolveMode},
path::Path,
per_ns::PerNs,
AstId, FunctionId, ImplId, LocalImportId, LocalModuleId, ModuleDefId, ModuleId, TraitId,
};
/// Contains all top-level defs from a macro-expanded crate
#[derive(Debug, PartialEq, Eq)]
pub struct CrateDefMap {
pub root: LocalModuleId,
pub modules: Arena<LocalModuleId, ModuleData>,
pub(crate) krate: CrateId,
/// The prelude module for this crate. This either comes from an import
/// marked with the `prelude_import` attribute, or (in the normal case) from
/// a dependency (`std` or `core`).
pub(crate) prelude: Option<ModuleId>,
pub(crate) extern_prelude: FxHashMap<Name, ModuleDefId>,
edition: Edition,
diagnostics: Vec<DefDiagnostic>,
}
impl std::ops::Index<LocalModuleId> for CrateDefMap {
type Output = ModuleData;
fn index(&self, id: LocalModuleId) -> &ModuleData {
&self.modules[id]
}
}
#[derive(Debug, PartialEq, Eq, Clone, Copy, Hash)]
pub enum ModuleOrigin {
/// It should not be `None` after collecting definitions.
Root(Option<FileId>),
/// Note that non-inline modules, by definition, live inside non-macro file.
File {
declaration: AstId<ast::Module>,
definition: FileId,
},
Inline {
definition: AstId<ast::Module>,
},
}
impl Default for ModuleOrigin {
fn default() -> Self {
ModuleOrigin::Root(None)
}
}
impl ModuleOrigin {
fn root(file_id: FileId) -> Self {
ModuleOrigin::Root(Some(file_id))
}
pub(crate) fn not_sure_file(file: Option<FileId>, declaration: AstId<ast::Module>) -> Self {
match file {
None => ModuleOrigin::Inline { definition: declaration },
Some(definition) => ModuleOrigin::File { declaration, definition },
}
}
fn declaration(&self) -> Option<AstId<ast::Module>> {
match self {
ModuleOrigin::File { declaration: module, .. }
| ModuleOrigin::Inline { definition: module, .. } => Some(*module),
ModuleOrigin::Root(_) => None,
}
}
pub(crate) fn file_id(&self) -> Option<FileId> {
match self {
ModuleOrigin::File { definition: file_id, .. } | ModuleOrigin::Root(Some(file_id)) => {
Some(*file_id)
}
_ => None,
}
}
/// Returns a node which defines this module.
/// That is, a file or a `mod foo {}` with items.
fn definition_source(&self, db: &impl DefDatabase) -> InFile<ModuleSource> {
match self {
ModuleOrigin::File { definition: file_id, .. } | ModuleOrigin::Root(Some(file_id)) => {
let file_id = *file_id;
let sf = db.parse(file_id).tree();
return InFile::new(file_id.into(), ModuleSource::SourceFile(sf));
}
ModuleOrigin::Root(None) => unreachable!(),
ModuleOrigin::Inline { definition } => {
InFile::new(definition.file_id, ModuleSource::Module(definition.to_node(db)))
}
}
}
}
#[derive(Default, Debug, PartialEq, Eq)]
pub struct ModuleData {
pub parent: Option<LocalModuleId>,
pub children: FxHashMap<Name, LocalModuleId>,
pub scope: ModuleScope,
/// Where does this module come from?
pub origin: ModuleOrigin,
pub impls: Vec<ImplId>,
}
#[derive(Default, Debug, PartialEq, Eq)]
pub(crate) struct Declarations {
fns: FxHashMap<FileAstId<ast::FnDef>, FunctionId>,
}
#[derive(Debug, Default, PartialEq, Eq)]
pub struct ModuleScope {
items: FxHashMap<Name, Resolution>,
/// Macros visable in current module in legacy textual scope
///
/// For macros invoked by an unquatified identifier like `bar!()`, `legacy_macros` will be searched in first.
/// If it yields no result, then it turns to module scoped `macros`.
/// It macros with name quatified with a path like `crate::foo::bar!()`, `legacy_macros` will be skipped,
/// and only normal scoped `macros` will be searched in.
///
/// Note that this automatically inherit macros defined textually before the definition of module itself.
///
/// Module scoped macros will be inserted into `items` instead of here.
// FIXME: Macro shadowing in one module is not properly handled. Non-item place macros will
// be all resolved to the last one defined if shadowing happens.
legacy_macros: FxHashMap<Name, MacroDefId>,
}
static BUILTIN_SCOPE: Lazy<FxHashMap<Name, Resolution>> = Lazy::new(|| {
BuiltinType::ALL
.iter()
.map(|(name, ty)| {
(name.clone(), Resolution { def: PerNs::types(ty.clone().into()), import: None })
})
.collect()
});
/// Shadow mode for builtin type which can be shadowed by module.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum BuiltinShadowMode {
// Prefer Module
Module,
// Prefer Other Types
Other,
}
/// Legacy macros can only be accessed through special methods like `get_legacy_macros`.
/// Other methods will only resolve values, types and module scoped macros only.
impl ModuleScope {
pub fn entries<'a>(&'a self) -> impl Iterator<Item = (&'a Name, &'a Resolution)> + 'a {
//FIXME: shadowing
self.items.iter().chain(BUILTIN_SCOPE.iter())
}
pub fn declarations(&self) -> impl Iterator<Item = ModuleDefId> + '_ {
self.entries()
.filter_map(|(_name, res)| if res.import.is_none() { Some(res.def) } else { None })
.flat_map(|per_ns| {
per_ns.take_types().into_iter().chain(per_ns.take_values().into_iter())
})
}
/// Iterate over all module scoped macros
pub fn macros<'a>(&'a self) -> impl Iterator<Item = (&'a Name, MacroDefId)> + 'a {
self.items
.iter()
.filter_map(|(name, res)| res.def.take_macros().map(|macro_| (name, macro_)))
}
/// Iterate over all legacy textual scoped macros visable at the end of the module
pub fn legacy_macros<'a>(&'a self) -> impl Iterator<Item = (&'a Name, MacroDefId)> + 'a {
self.legacy_macros.iter().map(|(name, def)| (name, *def))
}
/// Get a name from current module scope, legacy macros are not included
pub fn get(&self, name: &Name, shadow: BuiltinShadowMode) -> Option<&Resolution> {
match shadow {
BuiltinShadowMode::Module => self.items.get(name).or_else(|| BUILTIN_SCOPE.get(name)),
BuiltinShadowMode::Other => {
let item = self.items.get(name);
if let Some(res) = item {
if let Some(ModuleDefId::ModuleId(_)) = res.def.take_types() {
return BUILTIN_SCOPE.get(name).or(item);
}
}
item.or_else(|| BUILTIN_SCOPE.get(name))
}
}
}
pub fn traits<'a>(&'a self) -> impl Iterator<Item = TraitId> + 'a {
self.items.values().filter_map(|r| match r.def.take_types() {
Some(ModuleDefId::TraitId(t)) => Some(t),
_ => None,
})
}
fn get_legacy_macro(&self, name: &Name) -> Option<MacroDefId> {
self.legacy_macros.get(name).copied()
}
}
#[derive(Debug, Clone, PartialEq, Eq, Default)]
pub struct Resolution {
/// None for unresolved
pub def: PerNs,
/// ident by which this is imported into local scope.
pub import: Option<LocalImportId>,
}
impl CrateDefMap {
pub(crate) fn crate_def_map_query(
// Note that this doesn't have `+ AstDatabase`!
// This gurantess that `CrateDefMap` is stable across reparses.
db: &impl DefDatabase,
krate: CrateId,
) -> Arc<CrateDefMap> {
let _p = profile("crate_def_map_query");
let def_map = {
let crate_graph = db.crate_graph();
let edition = crate_graph.edition(krate);
let mut modules: Arena<LocalModuleId, ModuleData> = Arena::default();
let root = modules.alloc(ModuleData::default());
CrateDefMap {
krate,
edition,
extern_prelude: FxHashMap::default(),
prelude: None,
root,
modules,
diagnostics: Vec::new(),
}
};
let def_map = collector::collect_defs(db, def_map);
Arc::new(def_map)
}
pub fn add_diagnostics(
&self,
db: &impl DefDatabase,
module: LocalModuleId,
sink: &mut DiagnosticSink,
) {
self.diagnostics.iter().for_each(|it| it.add_to(db, module, sink))
}
pub fn modules_for_file(&self, file_id: FileId) -> impl Iterator<Item = LocalModuleId> + '_ {
self.modules
.iter()
.filter(move |(_id, data)| data.origin.file_id() == Some(file_id))
.map(|(id, _data)| id)
}
pub(crate) fn resolve_path(
&self,
db: &impl DefDatabase,
original_module: LocalModuleId,
path: &Path,
shadow: BuiltinShadowMode,
) -> (PerNs, Option<usize>) {
let res =
self.resolve_path_fp_with_macro(db, ResolveMode::Other, original_module, path, shadow);
(res.resolved_def, res.segment_index)
}
}
impl ModuleData {
/// Returns a node which defines this module. That is, a file or a `mod foo {}` with items.
pub fn definition_source(&self, db: &impl DefDatabase) -> InFile<ModuleSource> {
self.origin.definition_source(db)
}
/// Returns a node which declares this module, either a `mod foo;` or a `mod foo {}`.
/// `None` for the crate root or block.
pub fn declaration_source(&self, db: &impl DefDatabase) -> Option<InFile<ast::Module>> {
let decl = self.origin.declaration()?;
let value = decl.to_node(db);
Some(InFile { file_id: decl.file_id, value })
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ModuleSource {
SourceFile(ast::SourceFile),
Module(ast::Module),
}
impl ModuleSource {
// FIXME: this methods do not belong here
pub fn from_position(db: &impl DefDatabase, position: FilePosition) -> ModuleSource {
let parse = db.parse(position.file_id);
match &ra_syntax::algo::find_node_at_offset::<ast::Module>(
parse.tree().syntax(),
position.offset,
) {
Some(m) if !m.has_semi() => ModuleSource::Module(m.clone()),
_ => {
let source_file = parse.tree();
ModuleSource::SourceFile(source_file)
}
}
}
pub fn from_child_node(db: &impl DefDatabase, child: InFile<&SyntaxNode>) -> ModuleSource {
if let Some(m) =
child.value.ancestors().filter_map(ast::Module::cast).find(|it| !it.has_semi())
{
ModuleSource::Module(m)
} else {
let file_id = child.file_id.original_file(db);
let source_file = db.parse(file_id).tree();
ModuleSource::SourceFile(source_file)
}
}
}
mod diagnostics {
use hir_expand::diagnostics::DiagnosticSink;
use ra_db::RelativePathBuf;
use ra_syntax::{ast, AstPtr};
use crate::{db::DefDatabase, diagnostics::UnresolvedModule, nameres::LocalModuleId, AstId};
#[derive(Debug, PartialEq, Eq)]
pub(super) enum DefDiagnostic {
UnresolvedModule {
module: LocalModuleId,
declaration: AstId<ast::Module>,
candidate: RelativePathBuf,
},
}
impl DefDiagnostic {
pub(super) fn add_to(
&self,
db: &impl DefDatabase,
target_module: LocalModuleId,
sink: &mut DiagnosticSink,
) {
match self {
DefDiagnostic::UnresolvedModule { module, declaration, candidate } => {
if *module != target_module {
return;
}
let decl = declaration.to_node(db);
sink.push(UnresolvedModule {
file: declaration.file_id,
decl: AstPtr::new(&decl),
candidate: candidate.clone(),
})
}
}
}
}
}