mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-16 15:14:02 +00:00
2d20ab7eaf
Doesn't fix the bug I was trying to fix, but now that I did it anyway it seems fine to keep.
287 lines
10 KiB
Rust
287 lines
10 KiB
Rust
//! Helper functions for working with def, which don't need to be a separate
|
|
//! query, but can't be computed directly from `*Data` (ie, which need a `db`).
|
|
|
|
use std::iter;
|
|
|
|
use chalk_ir::{fold::Shift, BoundVar, DebruijnIndex};
|
|
use hir_def::{
|
|
db::DefDatabase,
|
|
generics::{
|
|
GenericParams, TypeParamData, TypeParamProvenance, WherePredicate, WherePredicateTypeTarget,
|
|
},
|
|
intern::Interned,
|
|
path::Path,
|
|
resolver::{HasResolver, TypeNs},
|
|
type_ref::TypeRef,
|
|
AssocContainerId, GenericDefId, Lookup, TraitId, TypeAliasId, TypeParamId,
|
|
};
|
|
use hir_expand::name::{name, Name};
|
|
use rustc_hash::FxHashSet;
|
|
|
|
use crate::{
|
|
db::HirDatabase, ChalkTraitId, Interner, Substitution, TraitRef, TraitRefExt, TyKind,
|
|
WhereClause,
|
|
};
|
|
|
|
fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> {
|
|
let resolver = trait_.resolver(db);
|
|
// returning the iterator directly doesn't easily work because of
|
|
// lifetime problems, but since there usually shouldn't be more than a
|
|
// few direct traits this should be fine (we could even use some kind of
|
|
// SmallVec if performance is a concern)
|
|
let generic_params = db.generic_params(trait_.into());
|
|
let trait_self = generic_params.find_trait_self_param();
|
|
generic_params
|
|
.where_predicates
|
|
.iter()
|
|
.filter_map(|pred| match pred {
|
|
WherePredicate::ForLifetime { target, bound, .. }
|
|
| WherePredicate::TypeBound { target, bound } => match target {
|
|
WherePredicateTypeTarget::TypeRef(type_ref) => match &**type_ref {
|
|
TypeRef::Path(p) if p == &Path::from(name![Self]) => bound.as_path(),
|
|
_ => None,
|
|
},
|
|
WherePredicateTypeTarget::TypeParam(local_id) if Some(*local_id) == trait_self => {
|
|
bound.as_path()
|
|
}
|
|
_ => None,
|
|
},
|
|
WherePredicate::Lifetime { .. } => None,
|
|
})
|
|
.filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path.mod_path()) {
|
|
Some(TypeNs::TraitId(t)) => Some(t),
|
|
_ => None,
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef) -> Vec<TraitRef> {
|
|
// returning the iterator directly doesn't easily work because of
|
|
// lifetime problems, but since there usually shouldn't be more than a
|
|
// few direct traits this should be fine (we could even use some kind of
|
|
// SmallVec if performance is a concern)
|
|
let generic_params = db.generic_params(trait_ref.hir_trait_id().into());
|
|
let trait_self = match generic_params.find_trait_self_param() {
|
|
Some(p) => TypeParamId { parent: trait_ref.hir_trait_id().into(), local_id: p },
|
|
None => return Vec::new(),
|
|
};
|
|
db.generic_predicates_for_param(trait_self)
|
|
.iter()
|
|
.filter_map(|pred| {
|
|
pred.as_ref().filter_map(|pred| match pred.skip_binders() {
|
|
// FIXME: how to correctly handle higher-ranked bounds here?
|
|
WhereClause::Implemented(tr) => Some(
|
|
tr.clone()
|
|
.shifted_out_to(&Interner, DebruijnIndex::ONE)
|
|
.expect("FIXME unexpected higher-ranked trait bound"),
|
|
),
|
|
_ => None,
|
|
})
|
|
})
|
|
.map(|pred| pred.substitute(&Interner, &trait_ref.substitution))
|
|
.collect()
|
|
}
|
|
|
|
/// Returns an iterator over the whole super trait hierarchy (including the
|
|
/// trait itself).
|
|
pub fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> Vec<TraitId> {
|
|
// we need to take care a bit here to avoid infinite loops in case of cycles
|
|
// (i.e. if we have `trait A: B; trait B: A;`)
|
|
let mut result = vec![trait_];
|
|
let mut i = 0;
|
|
while i < result.len() {
|
|
let t = result[i];
|
|
// yeah this is quadratic, but trait hierarchies should be flat
|
|
// enough that this doesn't matter
|
|
for tt in direct_super_traits(db, t) {
|
|
if !result.contains(&tt) {
|
|
result.push(tt);
|
|
}
|
|
}
|
|
i += 1;
|
|
}
|
|
result
|
|
}
|
|
|
|
/// Given a trait ref (`Self: Trait`), builds all the implied trait refs for
|
|
/// super traits. The original trait ref will be included. So the difference to
|
|
/// `all_super_traits` is that we keep track of type parameters; for example if
|
|
/// we have `Self: Trait<u32, i32>` and `Trait<T, U>: OtherTrait<U>` we'll get
|
|
/// `Self: OtherTrait<i32>`.
|
|
pub(super) fn all_super_trait_refs(db: &dyn HirDatabase, trait_ref: TraitRef) -> SuperTraits {
|
|
SuperTraits { db, seen: iter::once(trait_ref.trait_id).collect(), stack: vec![trait_ref] }
|
|
}
|
|
|
|
pub(super) struct SuperTraits<'a> {
|
|
db: &'a dyn HirDatabase,
|
|
stack: Vec<TraitRef>,
|
|
seen: FxHashSet<ChalkTraitId>,
|
|
}
|
|
|
|
impl<'a> SuperTraits<'a> {
|
|
fn elaborate(&mut self, trait_ref: &TraitRef) {
|
|
let mut trait_refs = direct_super_trait_refs(self.db, trait_ref);
|
|
trait_refs.retain(|tr| !self.seen.contains(&tr.trait_id));
|
|
self.stack.extend(trait_refs);
|
|
}
|
|
}
|
|
|
|
impl<'a> Iterator for SuperTraits<'a> {
|
|
type Item = TraitRef;
|
|
|
|
fn next(&mut self) -> Option<Self::Item> {
|
|
if let Some(next) = self.stack.pop() {
|
|
self.elaborate(&next);
|
|
Some(next)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
pub(super) fn associated_type_by_name_including_super_traits(
|
|
db: &dyn HirDatabase,
|
|
trait_ref: TraitRef,
|
|
name: &Name,
|
|
) -> Option<(TraitRef, TypeAliasId)> {
|
|
all_super_trait_refs(db, trait_ref).find_map(|t| {
|
|
let assoc_type = db.trait_data(t.hir_trait_id()).associated_type_by_name(name)?;
|
|
Some((t, assoc_type))
|
|
})
|
|
}
|
|
|
|
pub(crate) fn generics(db: &dyn DefDatabase, def: GenericDefId) -> Generics {
|
|
let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def)));
|
|
Generics { def, params: db.generic_params(def), parent_generics }
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) struct Generics {
|
|
def: GenericDefId,
|
|
pub(crate) params: Interned<GenericParams>,
|
|
parent_generics: Option<Box<Generics>>,
|
|
}
|
|
|
|
impl Generics {
|
|
pub(crate) fn iter<'a>(
|
|
&'a self,
|
|
) -> impl Iterator<Item = (TypeParamId, &'a TypeParamData)> + 'a {
|
|
self.parent_generics
|
|
.as_ref()
|
|
.into_iter()
|
|
.flat_map(|it| {
|
|
it.params
|
|
.types
|
|
.iter()
|
|
.map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p))
|
|
})
|
|
.chain(
|
|
self.params
|
|
.types
|
|
.iter()
|
|
.map(move |(local_id, p)| (TypeParamId { parent: self.def, local_id }, p)),
|
|
)
|
|
}
|
|
|
|
pub(crate) fn iter_parent<'a>(
|
|
&'a self,
|
|
) -> impl Iterator<Item = (TypeParamId, &'a TypeParamData)> + 'a {
|
|
self.parent_generics.as_ref().into_iter().flat_map(|it| {
|
|
it.params
|
|
.types
|
|
.iter()
|
|
.map(move |(local_id, p)| (TypeParamId { parent: it.def, local_id }, p))
|
|
})
|
|
}
|
|
|
|
pub(crate) fn len(&self) -> usize {
|
|
self.len_split().0
|
|
}
|
|
|
|
/// (total, parents, child)
|
|
pub(crate) fn len_split(&self) -> (usize, usize, usize) {
|
|
let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
|
|
let child = self.params.types.len();
|
|
(parent + child, parent, child)
|
|
}
|
|
|
|
/// (parent total, self param, type param list, impl trait)
|
|
pub(crate) fn provenance_split(&self) -> (usize, usize, usize, usize) {
|
|
let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
|
|
let self_params = self
|
|
.params
|
|
.types
|
|
.iter()
|
|
.filter(|(_, p)| p.provenance == TypeParamProvenance::TraitSelf)
|
|
.count();
|
|
let list_params = self
|
|
.params
|
|
.types
|
|
.iter()
|
|
.filter(|(_, p)| p.provenance == TypeParamProvenance::TypeParamList)
|
|
.count();
|
|
let impl_trait_params = self
|
|
.params
|
|
.types
|
|
.iter()
|
|
.filter(|(_, p)| p.provenance == TypeParamProvenance::ArgumentImplTrait)
|
|
.count();
|
|
(parent, self_params, list_params, impl_trait_params)
|
|
}
|
|
|
|
pub(crate) fn param_idx(&self, param: TypeParamId) -> Option<usize> {
|
|
Some(self.find_param(param)?.0)
|
|
}
|
|
|
|
fn find_param(&self, param: TypeParamId) -> Option<(usize, &TypeParamData)> {
|
|
if param.parent == self.def {
|
|
let (idx, (_local_id, data)) = self
|
|
.params
|
|
.types
|
|
.iter()
|
|
.enumerate()
|
|
.find(|(_, (idx, _))| *idx == param.local_id)
|
|
.unwrap();
|
|
let (_total, parent_len, _child) = self.len_split();
|
|
Some((parent_len + idx, data))
|
|
} else {
|
|
self.parent_generics.as_ref().and_then(|g| g.find_param(param))
|
|
}
|
|
}
|
|
|
|
/// Returns a Substitution that replaces each parameter by a bound variable.
|
|
pub(crate) fn bound_vars_subst(&self, debruijn: DebruijnIndex) -> Substitution {
|
|
Substitution::from_iter(
|
|
&Interner,
|
|
self.iter()
|
|
.enumerate()
|
|
.map(|(idx, _)| TyKind::BoundVar(BoundVar::new(debruijn, idx)).intern(&Interner)),
|
|
)
|
|
}
|
|
|
|
/// Returns a Substitution that replaces each parameter by itself (i.e. `Ty::Param`).
|
|
pub(crate) fn type_params_subst(&self, db: &dyn HirDatabase) -> Substitution {
|
|
Substitution::from_iter(
|
|
&Interner,
|
|
self.iter().map(|(id, _)| {
|
|
TyKind::Placeholder(crate::to_placeholder_idx(db, id)).intern(&Interner)
|
|
}),
|
|
)
|
|
}
|
|
}
|
|
|
|
fn parent_generic_def(db: &dyn DefDatabase, def: GenericDefId) -> Option<GenericDefId> {
|
|
let container = match def {
|
|
GenericDefId::FunctionId(it) => it.lookup(db).container,
|
|
GenericDefId::TypeAliasId(it) => it.lookup(db).container,
|
|
GenericDefId::ConstId(it) => it.lookup(db).container,
|
|
GenericDefId::EnumVariantId(it) => return Some(it.parent.into()),
|
|
GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) => return None,
|
|
};
|
|
|
|
match container {
|
|
AssocContainerId::ImplId(it) => Some(it.into()),
|
|
AssocContainerId::TraitId(it) => Some(it.into()),
|
|
AssocContainerId::ModuleId(_) => None,
|
|
}
|
|
}
|