rust-analyzer/crates/hir_ty/src/infer.rs
bors[bot] 5a8ddb4b2d
Merge #9260
9260: tree-wide: make rustdoc links spiky so they are clickable r=matklad a=lf-

Rustdoc was complaining about these while I was running with --document-private-items and I figure they should be fixed.

Co-authored-by: Jade <software@lfcode.ca>
2021-06-14 07:16:48 +00:00

834 lines
30 KiB
Rust

//! Type inference, i.e. the process of walking through the code and determining
//! the type of each expression and pattern.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
//! which represent currently unknown types; as we walk through the expressions,
//! we might determine that certain variables need to be equal to each other, or
//! to certain types. To record this, we use the union-find implementation from
//! the `ena` crate, which is extracted from rustc.
use std::ops::Index;
use std::sync::Arc;
use chalk_ir::{cast::Cast, DebruijnIndex, Mutability};
use hir_def::{
body::Body,
data::{ConstData, FunctionData, StaticData},
expr::{ArithOp, BinaryOp, BindingAnnotation, ExprId, PatId},
lang_item::LangItemTarget,
path::{path, Path},
resolver::{HasResolver, Resolver, TypeNs},
type_ref::TypeRef,
AdtId, AssocItemId, DefWithBodyId, EnumVariantId, FieldId, FunctionId, HasModule, Lookup,
TraitId, TypeAliasId, VariantId,
};
use hir_expand::name::name;
use la_arena::ArenaMap;
use rustc_hash::FxHashMap;
use stdx::impl_from;
use syntax::SmolStr;
use super::{DomainGoal, InEnvironment, ProjectionTy, TraitEnvironment, TraitRef, Ty};
use crate::{
db::HirDatabase, fold_tys, lower::ImplTraitLoweringMode, to_assoc_type_id, AliasEq, AliasTy,
Goal, Interner, Substitution, TyBuilder, TyExt, TyKind,
};
// This lint has a false positive here. See the link below for details.
//
// https://github.com/rust-lang/rust/issues/57411
#[allow(unreachable_pub)]
pub use unify::could_unify;
pub(crate) use unify::unify;
mod unify;
mod path;
mod expr;
mod pat;
mod coerce;
/// The entry point of type inference.
pub(crate) fn infer_query(db: &dyn HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult> {
let _p = profile::span("infer_query");
let resolver = def.resolver(db.upcast());
let mut ctx = InferenceContext::new(db, def, resolver);
match def {
DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)),
DefWithBodyId::FunctionId(f) => ctx.collect_fn(&db.function_data(f)),
DefWithBodyId::StaticId(s) => ctx.collect_static(&db.static_data(s)),
}
ctx.infer_body();
Arc::new(ctx.resolve_all())
}
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
enum ExprOrPatId {
ExprId(ExprId),
PatId(PatId),
}
impl_from!(ExprId, PatId for ExprOrPatId);
/// Binding modes inferred for patterns.
/// <https://doc.rust-lang.org/reference/patterns.html#binding-modes>
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum BindingMode {
Move,
Ref(Mutability),
}
impl BindingMode {
fn convert(annotation: BindingAnnotation) -> BindingMode {
match annotation {
BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
BindingAnnotation::Ref => BindingMode::Ref(Mutability::Not),
BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
}
}
}
impl Default for BindingMode {
fn default() -> Self {
BindingMode::Move
}
}
#[derive(Debug)]
pub(crate) struct InferOk {
goals: Vec<InEnvironment<Goal>>,
}
#[derive(Debug)]
pub(crate) struct TypeError;
pub(crate) type InferResult = Result<InferOk, TypeError>;
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum InferenceDiagnostic {
NoSuchField { expr: ExprId },
BreakOutsideOfLoop { expr: ExprId },
}
/// A mismatch between an expected and an inferred type.
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
pub struct TypeMismatch {
pub expected: Ty,
pub actual: Ty,
}
#[derive(Clone, PartialEq, Eq, Debug)]
struct InternedStandardTypes {
unknown: Ty,
}
impl Default for InternedStandardTypes {
fn default() -> Self {
InternedStandardTypes { unknown: TyKind::Error.intern(&Interner) }
}
}
/// The result of type inference: A mapping from expressions and patterns to types.
#[derive(Clone, PartialEq, Eq, Debug, Default)]
pub struct InferenceResult {
/// For each method call expr, records the function it resolves to.
method_resolutions: FxHashMap<ExprId, (FunctionId, Substitution)>,
/// For each field access expr, records the field it resolves to.
field_resolutions: FxHashMap<ExprId, FieldId>,
/// For each struct literal or pattern, records the variant it resolves to.
variant_resolutions: FxHashMap<ExprOrPatId, VariantId>,
/// For each associated item record what it resolves to
assoc_resolutions: FxHashMap<ExprOrPatId, AssocItemId>,
pub diagnostics: Vec<InferenceDiagnostic>,
pub type_of_expr: ArenaMap<ExprId, Ty>,
/// For each pattern record the type it resolves to.
///
/// **Note**: When a pattern type is resolved it may still contain
/// unresolved or missing subpatterns or subpatterns of mismatched types.
pub type_of_pat: ArenaMap<PatId, Ty>,
type_mismatches: FxHashMap<ExprOrPatId, TypeMismatch>,
/// Interned Unknown to return references to.
standard_types: InternedStandardTypes,
/// Stores the types which were implicitly dereferenced in pattern binding modes.
pub pat_adjustments: FxHashMap<PatId, Vec<Ty>>,
}
impl InferenceResult {
pub fn method_resolution(&self, expr: ExprId) -> Option<(FunctionId, Substitution)> {
self.method_resolutions.get(&expr).cloned()
}
pub fn field_resolution(&self, expr: ExprId) -> Option<FieldId> {
self.field_resolutions.get(&expr).copied()
}
pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> {
self.variant_resolutions.get(&id.into()).copied()
}
pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> {
self.variant_resolutions.get(&id.into()).copied()
}
pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<AssocItemId> {
self.assoc_resolutions.get(&id.into()).copied()
}
pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<AssocItemId> {
self.assoc_resolutions.get(&id.into()).copied()
}
pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
self.type_mismatches.get(&expr.into())
}
pub fn type_mismatch_for_pat(&self, pat: PatId) -> Option<&TypeMismatch> {
self.type_mismatches.get(&pat.into())
}
pub fn expr_type_mismatches(&self) -> impl Iterator<Item = (ExprId, &TypeMismatch)> {
self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat {
ExprOrPatId::ExprId(expr) => Some((expr, mismatch)),
_ => None,
})
}
pub fn pat_type_mismatches(&self) -> impl Iterator<Item = (PatId, &TypeMismatch)> {
self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat {
ExprOrPatId::PatId(pat) => Some((pat, mismatch)),
_ => None,
})
}
}
impl Index<ExprId> for InferenceResult {
type Output = Ty;
fn index(&self, expr: ExprId) -> &Ty {
self.type_of_expr.get(expr).unwrap_or(&self.standard_types.unknown)
}
}
impl Index<PatId> for InferenceResult {
type Output = Ty;
fn index(&self, pat: PatId) -> &Ty {
self.type_of_pat.get(pat).unwrap_or(&self.standard_types.unknown)
}
}
/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
struct InferenceContext<'a> {
db: &'a dyn HirDatabase,
owner: DefWithBodyId,
body: Arc<Body>,
resolver: Resolver,
table: unify::InferenceTable<'a>,
trait_env: Arc<TraitEnvironment>,
result: InferenceResult,
/// The return type of the function being inferred, or the closure if we're
/// currently within one.
///
/// We might consider using a nested inference context for checking
/// closures, but currently this is the only field that will change there,
/// so it doesn't make sense.
return_ty: Ty,
diverges: Diverges,
breakables: Vec<BreakableContext>,
}
#[derive(Clone, Debug)]
struct BreakableContext {
may_break: bool,
break_ty: Ty,
label: Option<name::Name>,
}
fn find_breakable<'c>(
ctxs: &'c mut [BreakableContext],
label: Option<&name::Name>,
) -> Option<&'c mut BreakableContext> {
match label {
Some(_) => ctxs.iter_mut().rev().find(|ctx| ctx.label.as_ref() == label),
None => ctxs.last_mut(),
}
}
impl<'a> InferenceContext<'a> {
fn new(db: &'a dyn HirDatabase, owner: DefWithBodyId, resolver: Resolver) -> Self {
let krate = owner.module(db.upcast()).krate();
let trait_env = owner
.as_generic_def_id()
.map_or_else(|| Arc::new(TraitEnvironment::empty(krate)), |d| db.trait_environment(d));
InferenceContext {
result: InferenceResult::default(),
table: unify::InferenceTable::new(db, trait_env.clone()),
trait_env,
return_ty: TyKind::Error.intern(&Interner), // set in collect_fn_signature
db,
owner,
body: db.body(owner),
resolver,
diverges: Diverges::Maybe,
breakables: Vec::new(),
}
}
fn err_ty(&self) -> Ty {
self.result.standard_types.unknown.clone()
}
fn resolve_all(mut self) -> InferenceResult {
// FIXME resolve obligations as well (use Guidance if necessary)
self.table.resolve_obligations_as_possible();
// make sure diverging type variables are marked as such
self.table.propagate_diverging_flag();
let mut result = std::mem::take(&mut self.result);
for ty in result.type_of_expr.values_mut() {
*ty = self.table.resolve_completely(ty.clone());
}
for ty in result.type_of_pat.values_mut() {
*ty = self.table.resolve_completely(ty.clone());
}
for mismatch in result.type_mismatches.values_mut() {
mismatch.expected = self.table.resolve_completely(mismatch.expected.clone());
mismatch.actual = self.table.resolve_completely(mismatch.actual.clone());
}
for (_, subst) in result.method_resolutions.values_mut() {
*subst = self.table.resolve_completely(subst.clone());
}
result
}
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
self.result.type_of_expr.insert(expr, ty);
}
fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId, subst: Substitution) {
self.result.method_resolutions.insert(expr, (func, subst));
}
fn write_field_resolution(&mut self, expr: ExprId, field: FieldId) {
self.result.field_resolutions.insert(expr, field);
}
fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) {
self.result.variant_resolutions.insert(id, variant);
}
fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId) {
self.result.assoc_resolutions.insert(id, item);
}
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
self.result.type_of_pat.insert(pat, ty);
}
fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
self.result.diagnostics.push(diagnostic);
}
fn make_ty_with_mode(
&mut self,
type_ref: &TypeRef,
impl_trait_mode: ImplTraitLoweringMode,
) -> Ty {
// FIXME use right resolver for block
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver)
.with_impl_trait_mode(impl_trait_mode);
let ty = ctx.lower_ty(type_ref);
let ty = self.insert_type_vars(ty);
self.normalize_associated_types_in(ty)
}
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
self.make_ty_with_mode(type_ref, ImplTraitLoweringMode::Disallowed)
}
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty.kind(&Interner) {
TyKind::Error => self.table.new_type_var(),
TyKind::InferenceVar(..) => {
let ty_resolved = self.resolve_ty_shallow(&ty);
if ty_resolved.is_unknown() {
self.table.new_type_var()
} else {
ty
}
}
_ => ty,
}
}
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
fold_tys(ty, |ty, _| self.insert_type_vars_shallow(ty), DebruijnIndex::INNERMOST)
}
fn resolve_obligations_as_possible(&mut self) {
self.table.resolve_obligations_as_possible();
}
fn push_obligation(&mut self, o: DomainGoal) {
self.table.register_obligation(o.cast(&Interner));
}
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
self.table.unify(ty1, ty2)
}
fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
self.resolve_obligations_as_possible();
self.table.resolve_ty_shallow(ty)
}
fn resolve_associated_type(&mut self, inner_ty: Ty, assoc_ty: Option<TypeAliasId>) -> Ty {
self.resolve_associated_type_with_params(inner_ty, assoc_ty, &[])
}
fn resolve_associated_type_with_params(
&mut self,
inner_ty: Ty,
assoc_ty: Option<TypeAliasId>,
params: &[Ty],
) -> Ty {
match assoc_ty {
Some(res_assoc_ty) => {
let trait_ = match res_assoc_ty.lookup(self.db.upcast()).container {
hir_def::AssocContainerId::TraitId(trait_) => trait_,
_ => panic!("resolve_associated_type called with non-associated type"),
};
let ty = self.table.new_type_var();
let trait_ref = TyBuilder::trait_ref(self.db, trait_)
.push(inner_ty)
.fill(params.iter().cloned())
.build();
let alias_eq = AliasEq {
alias: AliasTy::Projection(ProjectionTy {
associated_ty_id: to_assoc_type_id(res_assoc_ty),
substitution: trait_ref.substitution.clone(),
}),
ty: ty.clone(),
};
self.push_obligation(trait_ref.cast(&Interner));
self.push_obligation(alias_eq.cast(&Interner));
ty
}
None => self.err_ty(),
}
}
/// Recurses through the given type, normalizing associated types mentioned
/// in it by replacing them by type variables and registering obligations to
/// resolve later. This should be done once for every type we get from some
/// type annotation (e.g. from a let type annotation, field type or function
/// call). `make_ty` handles this already, but e.g. for field types we need
/// to do it as well.
fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
self.table.normalize_associated_types_in(ty)
}
fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantId>) {
let path = match path {
Some(path) => path,
None => return (self.err_ty(), None),
};
let resolver = &self.resolver;
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver);
// FIXME: this should resolve assoc items as well, see this example:
// https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
let (resolution, unresolved) =
match resolver.resolve_path_in_type_ns(self.db.upcast(), path.mod_path()) {
Some(it) => it,
None => return (self.err_ty(), None),
};
return match resolution {
TypeNs::AdtId(AdtId::StructId(strukt)) => {
let substs = ctx.substs_from_path(path, strukt.into(), true);
let ty = self.db.ty(strukt.into());
let ty = self.insert_type_vars(ty.substitute(&Interner, &substs));
forbid_unresolved_segments((ty, Some(strukt.into())), unresolved)
}
TypeNs::AdtId(AdtId::UnionId(u)) => {
let substs = ctx.substs_from_path(path, u.into(), true);
let ty = self.db.ty(u.into());
let ty = self.insert_type_vars(ty.substitute(&Interner, &substs));
forbid_unresolved_segments((ty, Some(u.into())), unresolved)
}
TypeNs::EnumVariantId(var) => {
let substs = ctx.substs_from_path(path, var.into(), true);
let ty = self.db.ty(var.parent.into());
let ty = self.insert_type_vars(ty.substitute(&Interner, &substs));
forbid_unresolved_segments((ty, Some(var.into())), unresolved)
}
TypeNs::SelfType(impl_id) => {
let generics = crate::utils::generics(self.db.upcast(), impl_id.into());
let substs = generics.type_params_subst(self.db);
let ty = self.db.impl_self_ty(impl_id).substitute(&Interner, &substs);
self.resolve_variant_on_alias(ty, unresolved, path)
}
TypeNs::TypeAliasId(it) => {
let ty = TyBuilder::def_ty(self.db, it.into())
.fill(std::iter::repeat_with(|| self.table.new_type_var()))
.build();
self.resolve_variant_on_alias(ty, unresolved, path)
}
TypeNs::AdtSelfType(_) => {
// FIXME this could happen in array size expressions, once we're checking them
(self.err_ty(), None)
}
TypeNs::GenericParam(_) => {
// FIXME potentially resolve assoc type
(self.err_ty(), None)
}
TypeNs::AdtId(AdtId::EnumId(_)) | TypeNs::BuiltinType(_) | TypeNs::TraitId(_) => {
// FIXME diagnostic
(self.err_ty(), None)
}
};
fn forbid_unresolved_segments(
result: (Ty, Option<VariantId>),
unresolved: Option<usize>,
) -> (Ty, Option<VariantId>) {
if unresolved.is_none() {
result
} else {
// FIXME diagnostic
(TyKind::Error.intern(&Interner), None)
}
}
}
fn resolve_variant_on_alias(
&mut self,
ty: Ty,
unresolved: Option<usize>,
path: &Path,
) -> (Ty, Option<VariantId>) {
match unresolved {
None => {
let variant = ty.as_adt().and_then(|(adt_id, _)| match adt_id {
AdtId::StructId(s) => Some(VariantId::StructId(s)),
AdtId::UnionId(u) => Some(VariantId::UnionId(u)),
AdtId::EnumId(_) => {
// FIXME Error E0071, expected struct, variant or union type, found enum `Foo`
None
}
});
(ty, variant)
}
Some(1) => {
let segment = path.mod_path().segments().last().unwrap();
// this could be an enum variant or associated type
if let Some((AdtId::EnumId(enum_id), _)) = ty.as_adt() {
let enum_data = self.db.enum_data(enum_id);
if let Some(local_id) = enum_data.variant(segment) {
let variant = EnumVariantId { parent: enum_id, local_id };
return (ty, Some(variant.into()));
}
}
// FIXME potentially resolve assoc type
(self.err_ty(), None)
}
Some(_) => {
// FIXME diagnostic
(self.err_ty(), None)
}
}
}
fn collect_const(&mut self, data: &ConstData) {
self.return_ty = self.make_ty(&data.type_ref);
}
fn collect_static(&mut self, data: &StaticData) {
self.return_ty = self.make_ty(&data.type_ref);
}
fn collect_fn(&mut self, data: &FunctionData) {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver)
.with_impl_trait_mode(ImplTraitLoweringMode::Param);
let param_tys =
data.params.iter().map(|type_ref| ctx.lower_ty(type_ref)).collect::<Vec<_>>();
for (ty, pat) in param_tys.into_iter().zip(body.params.iter()) {
let ty = self.insert_type_vars(ty);
let ty = self.normalize_associated_types_in(ty);
self.infer_pat(*pat, &ty, BindingMode::default());
}
let error_ty = &TypeRef::Error;
let return_ty = if data.is_async() {
data.async_ret_type.as_deref().unwrap_or(error_ty)
} else {
&*data.ret_type
};
let return_ty = self.make_ty_with_mode(return_ty, ImplTraitLoweringMode::Disallowed); // FIXME implement RPIT
self.return_ty = return_ty;
}
fn infer_body(&mut self) {
self.infer_expr_coerce(self.body.body_expr, &Expectation::has_type(self.return_ty.clone()));
}
fn resolve_lang_item(&self, name: &str) -> Option<LangItemTarget> {
let krate = self.resolver.krate()?;
let name = SmolStr::new_inline(name);
self.db.lang_item(krate, name)
}
fn resolve_into_iter_item(&self) -> Option<TypeAliasId> {
let path = path![core::iter::IntoIterator];
let trait_ = self.resolver.resolve_known_trait(self.db.upcast(), &path)?;
self.db.trait_data(trait_).associated_type_by_name(&name![Item])
}
fn resolve_ops_try_ok(&self) -> Option<TypeAliasId> {
// FIXME resolve via lang_item once try v2 is stable
let path = path![core::ops::Try];
let trait_ = self.resolver.resolve_known_trait(self.db.upcast(), &path)?;
let trait_data = self.db.trait_data(trait_);
trait_data
// FIXME remove once try v2 is stable
.associated_type_by_name(&name![Ok])
.or_else(|| trait_data.associated_type_by_name(&name![Output]))
}
fn resolve_ops_neg_output(&self) -> Option<TypeAliasId> {
let trait_ = self.resolve_lang_item("neg")?.as_trait()?;
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
}
fn resolve_ops_not_output(&self) -> Option<TypeAliasId> {
let trait_ = self.resolve_lang_item("not")?.as_trait()?;
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
}
fn resolve_future_future_output(&self) -> Option<TypeAliasId> {
let trait_ = self.resolve_lang_item("future_trait")?.as_trait()?;
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
}
fn resolve_binary_op_output(&self, bop: &BinaryOp) -> Option<TypeAliasId> {
let lang_item = match bop {
BinaryOp::ArithOp(aop) => match aop {
ArithOp::Add => "add",
ArithOp::Sub => "sub",
ArithOp::Mul => "mul",
ArithOp::Div => "div",
ArithOp::Shl => "shl",
ArithOp::Shr => "shr",
ArithOp::Rem => "rem",
ArithOp::BitXor => "bitxor",
ArithOp::BitOr => "bitor",
ArithOp::BitAnd => "bitand",
},
_ => return None,
};
let trait_ = self.resolve_lang_item(lang_item)?.as_trait();
self.db.trait_data(trait_?).associated_type_by_name(&name![Output])
}
fn resolve_boxed_box(&self) -> Option<AdtId> {
let struct_ = self.resolve_lang_item("owned_box")?.as_struct()?;
Some(struct_.into())
}
fn resolve_range_full(&self) -> Option<AdtId> {
let path = path![core::ops::RangeFull];
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
Some(struct_.into())
}
fn resolve_range(&self) -> Option<AdtId> {
let path = path![core::ops::Range];
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
Some(struct_.into())
}
fn resolve_range_inclusive(&self) -> Option<AdtId> {
let path = path![core::ops::RangeInclusive];
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
Some(struct_.into())
}
fn resolve_range_from(&self) -> Option<AdtId> {
let path = path![core::ops::RangeFrom];
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
Some(struct_.into())
}
fn resolve_range_to(&self) -> Option<AdtId> {
let path = path![core::ops::RangeTo];
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
Some(struct_.into())
}
fn resolve_range_to_inclusive(&self) -> Option<AdtId> {
let path = path![core::ops::RangeToInclusive];
let struct_ = self.resolver.resolve_known_struct(self.db.upcast(), &path)?;
Some(struct_.into())
}
fn resolve_ops_index(&self) -> Option<TraitId> {
self.resolve_lang_item("index")?.as_trait()
}
fn resolve_ops_index_output(&self) -> Option<TypeAliasId> {
let trait_ = self.resolve_ops_index()?;
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
}
}
/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
enum Expectation {
None,
HasType(Ty),
// Castable(Ty), // rustc has this, we currently just don't propagate an expectation for casts
RValueLikeUnsized(Ty),
}
impl Expectation {
/// The expectation that the type of the expression needs to equal the given
/// type.
fn has_type(ty: Ty) -> Self {
if ty.is_unknown() {
// FIXME: get rid of this?
Expectation::None
} else {
Expectation::HasType(ty)
}
}
/// The following explanation is copied straight from rustc:
/// Provides an expectation for an rvalue expression given an *optional*
/// hint, which is not required for type safety (the resulting type might
/// be checked higher up, as is the case with `&expr` and `box expr`), but
/// is useful in determining the concrete type.
///
/// The primary use case is where the expected type is a fat pointer,
/// like `&[isize]`. For example, consider the following statement:
///
/// let x: &[isize] = &[1, 2, 3];
///
/// In this case, the expected type for the `&[1, 2, 3]` expression is
/// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
/// expectation `ExpectHasType([isize])`, that would be too strong --
/// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
/// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
/// to the type `&[isize]`. Therefore, we propagate this more limited hint,
/// which still is useful, because it informs integer literals and the like.
/// See the test case `test/ui/coerce-expect-unsized.rs` and #20169
/// for examples of where this comes up,.
fn rvalue_hint(ty: Ty) -> Self {
match ty.strip_references().kind(&Interner) {
TyKind::Slice(_) | TyKind::Str | TyKind::Dyn(_) => Expectation::RValueLikeUnsized(ty),
_ => Expectation::has_type(ty),
}
}
/// This expresses no expectation on the type.
fn none() -> Self {
Expectation::None
}
fn resolve(&self, table: &mut unify::InferenceTable) -> Expectation {
match self {
Expectation::None => Expectation::None,
Expectation::HasType(t) => Expectation::HasType(table.resolve_ty_shallow(t)),
Expectation::RValueLikeUnsized(t) => {
Expectation::RValueLikeUnsized(table.resolve_ty_shallow(t))
}
}
}
fn to_option(&self, table: &mut unify::InferenceTable) -> Option<Ty> {
match self.resolve(table) {
Expectation::None => None,
Expectation::HasType(t) |
// Expectation::Castable(t) |
Expectation::RValueLikeUnsized(t) => Some(t),
}
}
fn only_has_type(&self, table: &mut unify::InferenceTable) -> Option<Ty> {
match self {
Expectation::HasType(t) => Some(table.resolve_ty_shallow(t)),
// Expectation::Castable(_) |
Expectation::RValueLikeUnsized(_) | Expectation::None => None,
}
}
/// Comment copied from rustc:
/// Disregard "castable to" expectations because they
/// can lead us astray. Consider for example `if cond
/// {22} else {c} as u8` -- if we propagate the
/// "castable to u8" constraint to 22, it will pick the
/// type 22u8, which is overly constrained (c might not
/// be a u8). In effect, the problem is that the
/// "castable to" expectation is not the tightest thing
/// we can say, so we want to drop it in this case.
/// The tightest thing we can say is "must unify with
/// else branch". Note that in the case of a "has type"
/// constraint, this limitation does not hold.
///
/// If the expected type is just a type variable, then don't use
/// an expected type. Otherwise, we might write parts of the type
/// when checking the 'then' block which are incompatible with the
/// 'else' branch.
fn adjust_for_branches(&self, table: &mut unify::InferenceTable) -> Expectation {
match self {
Expectation::HasType(ety) => {
let ety = table.resolve_ty_shallow(ety);
if !ety.is_ty_var() {
Expectation::HasType(ety)
} else {
Expectation::None
}
}
Expectation::RValueLikeUnsized(ety) => Expectation::RValueLikeUnsized(ety.clone()),
_ => Expectation::None,
}
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
enum Diverges {
Maybe,
Always,
}
impl Diverges {
fn is_always(self) -> bool {
self == Diverges::Always
}
}
impl std::ops::BitAnd for Diverges {
type Output = Self;
fn bitand(self, other: Self) -> Self {
std::cmp::min(self, other)
}
}
impl std::ops::BitOr for Diverges {
type Output = Self;
fn bitor(self, other: Self) -> Self {
std::cmp::max(self, other)
}
}
impl std::ops::BitAndAssign for Diverges {
fn bitand_assign(&mut self, other: Self) {
*self = *self & other;
}
}
impl std::ops::BitOrAssign for Diverges {
fn bitor_assign(&mut self, other: Self) {
*self = *self | other;
}
}