mirror of
https://github.com/rust-lang/rust-analyzer
synced 2024-12-27 05:23:24 +00:00
2157 lines
62 KiB
Rust
2157 lines
62 KiB
Rust
//! This module implements match statement exhaustiveness checking and usefulness checking
|
|
//! for match arms.
|
|
//!
|
|
//! It is modeled on the rustc module `librustc_mir_build::hair::pattern::_match`, which
|
|
//! contains very detailed documentation about the algorithms used here. I've duplicated
|
|
//! most of that documentation below.
|
|
//!
|
|
//! This file includes the logic for exhaustiveness and usefulness checking for
|
|
//! pattern-matching. Specifically, given a list of patterns for a type, we can
|
|
//! tell whether:
|
|
//! - (a) the patterns cover every possible constructor for the type (exhaustiveness).
|
|
//! - (b) each pattern is necessary (usefulness).
|
|
//!
|
|
//! The algorithm implemented here is a modified version of the one described in
|
|
//! <http://moscova.inria.fr/~maranget/papers/warn/index.html>.
|
|
//! However, to save future implementors from reading the original paper, we
|
|
//! summarise the algorithm here to hopefully save time and be a little clearer
|
|
//! (without being so rigorous).
|
|
//!
|
|
//! The core of the algorithm revolves about a "usefulness" check. In particular, we
|
|
//! are trying to compute a predicate `U(P, p)` where `P` is a list of patterns (we refer to this as
|
|
//! a matrix). `U(P, p)` represents whether, given an existing list of patterns
|
|
//! `P_1 ..= P_m`, adding a new pattern `p` will be "useful" (that is, cover previously-
|
|
//! uncovered values of the type).
|
|
//!
|
|
//! If we have this predicate, then we can easily compute both exhaustiveness of an
|
|
//! entire set of patterns and the individual usefulness of each one.
|
|
//! (a) the set of patterns is exhaustive iff `U(P, _)` is false (i.e., adding a wildcard
|
|
//! match doesn't increase the number of values we're matching)
|
|
//! (b) a pattern `P_i` is not useful if `U(P[0..=(i-1), P_i)` is false (i.e., adding a
|
|
//! pattern to those that have come before it doesn't increase the number of values
|
|
//! we're matching).
|
|
//!
|
|
//! During the course of the algorithm, the rows of the matrix won't just be individual patterns,
|
|
//! but rather partially-deconstructed patterns in the form of a list of patterns. The paper
|
|
//! calls those pattern-vectors, and we will call them pattern-stacks. The same holds for the
|
|
//! new pattern `p`.
|
|
//!
|
|
//! For example, say we have the following:
|
|
//!
|
|
//! ```ignore
|
|
//! // x: (Option<bool>, Result<()>)
|
|
//! match x {
|
|
//! (Some(true), _) => {}
|
|
//! (None, Err(())) => {}
|
|
//! (None, Err(_)) => {}
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! Here, the matrix `P` starts as:
|
|
//!
|
|
//! ```text
|
|
//! [
|
|
//! [(Some(true), _)],
|
|
//! [(None, Err(()))],
|
|
//! [(None, Err(_))],
|
|
//! ]
|
|
//! ```
|
|
//!
|
|
//! We can tell it's not exhaustive, because `U(P, _)` is true (we're not covering
|
|
//! `[(Some(false), _)]`, for instance). In addition, row 3 is not useful, because
|
|
//! all the values it covers are already covered by row 2.
|
|
//!
|
|
//! A list of patterns can be thought of as a stack, because we are mainly interested in the top of
|
|
//! the stack at any given point, and we can pop or apply constructors to get new pattern-stacks.
|
|
//! To match the paper, the top of the stack is at the beginning / on the left.
|
|
//!
|
|
//! There are two important operations on pattern-stacks necessary to understand the algorithm:
|
|
//!
|
|
//! 1. We can pop a given constructor off the top of a stack. This operation is called
|
|
//! `specialize`, and is denoted `S(c, p)` where `c` is a constructor (like `Some` or
|
|
//! `None`) and `p` a pattern-stack.
|
|
//! If the pattern on top of the stack can cover `c`, this removes the constructor and
|
|
//! pushes its arguments onto the stack. It also expands OR-patterns into distinct patterns.
|
|
//! Otherwise the pattern-stack is discarded.
|
|
//! This essentially filters those pattern-stacks whose top covers the constructor `c` and
|
|
//! discards the others.
|
|
//!
|
|
//! For example, the first pattern above initially gives a stack `[(Some(true), _)]`. If we
|
|
//! pop the tuple constructor, we are left with `[Some(true), _]`, and if we then pop the
|
|
//! `Some` constructor we get `[true, _]`. If we had popped `None` instead, we would get
|
|
//! nothing back.
|
|
//!
|
|
//! This returns zero or more new pattern-stacks, as follows. We look at the pattern `p_1`
|
|
//! on top of the stack, and we have four cases:
|
|
//!
|
|
//! * 1.1. `p_1 = c(r_1, .., r_a)`, i.e. the top of the stack has constructor `c`. We push onto
|
|
//! the stack the arguments of this constructor, and return the result:
|
|
//!
|
|
//! r_1, .., r_a, p_2, .., p_n
|
|
//!
|
|
//! * 1.2. `p_1 = c'(r_1, .., r_a')` where `c ≠ c'`. We discard the current stack and return
|
|
//! nothing.
|
|
//! * 1.3. `p_1 = _`. We push onto the stack as many wildcards as the constructor `c` has
|
|
//! arguments (its arity), and return the resulting stack:
|
|
//!
|
|
//! _, .., _, p_2, .., p_n
|
|
//!
|
|
//! * 1.4. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting stack:
|
|
//!
|
|
//! S(c, (r_1, p_2, .., p_n))
|
|
//! S(c, (r_2, p_2, .., p_n))
|
|
//!
|
|
//! 2. We can pop a wildcard off the top of the stack. This is called `D(p)`, where `p` is
|
|
//! a pattern-stack.
|
|
//! This is used when we know there are missing constructor cases, but there might be
|
|
//! existing wildcard patterns, so to check the usefulness of the matrix, we have to check
|
|
//! all its *other* components.
|
|
//!
|
|
//! It is computed as follows. We look at the pattern `p_1` on top of the stack,
|
|
//! and we have three cases:
|
|
//! * 1.1. `p_1 = c(r_1, .., r_a)`. We discard the current stack and return nothing.
|
|
//! * 1.2. `p_1 = _`. We return the rest of the stack:
|
|
//!
|
|
//! p_2, .., p_n
|
|
//!
|
|
//! * 1.3. `p_1 = r_1 | r_2`. We expand the OR-pattern and then recurse on each resulting stack:
|
|
//!
|
|
//! D((r_1, p_2, .., p_n))
|
|
//! D((r_2, p_2, .., p_n))
|
|
//!
|
|
//! Note that the OR-patterns are not always used directly in Rust, but are used to derive the
|
|
//! exhaustive integer matching rules, so they're written here for posterity.
|
|
//!
|
|
//! Both those operations extend straightforwardly to a list or pattern-stacks, i.e. a matrix, by
|
|
//! working row-by-row. Popping a constructor ends up keeping only the matrix rows that start with
|
|
//! the given constructor, and popping a wildcard keeps those rows that start with a wildcard.
|
|
//!
|
|
//!
|
|
//! The algorithm for computing `U`
|
|
//! -------------------------------
|
|
//! The algorithm is inductive (on the number of columns: i.e., components of tuple patterns).
|
|
//! That means we're going to check the components from left-to-right, so the algorithm
|
|
//! operates principally on the first component of the matrix and new pattern-stack `p`.
|
|
//! This algorithm is realised in the `is_useful` function.
|
|
//!
|
|
//! Base case (`n = 0`, i.e., an empty tuple pattern):
|
|
//! - If `P` already contains an empty pattern (i.e., if the number of patterns `m > 0`), then
|
|
//! `U(P, p)` is false.
|
|
//! - Otherwise, `P` must be empty, so `U(P, p)` is true.
|
|
//!
|
|
//! Inductive step (`n > 0`, i.e., whether there's at least one column [which may then be expanded
|
|
//! into further columns later]). We're going to match on the top of the new pattern-stack, `p_1`:
|
|
//!
|
|
//! - If `p_1 == c(r_1, .., r_a)`, i.e. we have a constructor pattern.
|
|
//! Then, the usefulness of `p_1` can be reduced to whether it is useful when
|
|
//! we ignore all the patterns in the first column of `P` that involve other constructors.
|
|
//! This is where `S(c, P)` comes in:
|
|
//!
|
|
//! ```text
|
|
//! U(P, p) := U(S(c, P), S(c, p))
|
|
//! ```
|
|
//!
|
|
//! This special case is handled in `is_useful_specialized`.
|
|
//!
|
|
//! For example, if `P` is:
|
|
//!
|
|
//! ```text
|
|
//! [
|
|
//! [Some(true), _],
|
|
//! [None, 0],
|
|
//! ]
|
|
//! ```
|
|
//!
|
|
//! and `p` is `[Some(false), 0]`, then we don't care about row 2 since we know `p` only
|
|
//! matches values that row 2 doesn't. For row 1 however, we need to dig into the
|
|
//! arguments of `Some` to know whether some new value is covered. So we compute
|
|
//! `U([[true, _]], [false, 0])`.
|
|
//!
|
|
//! - If `p_1 == _`, then we look at the list of constructors that appear in the first component of
|
|
//! the rows of `P`:
|
|
//! - If there are some constructors that aren't present, then we might think that the
|
|
//! wildcard `_` is useful, since it covers those constructors that weren't covered
|
|
//! before.
|
|
//! That's almost correct, but only works if there were no wildcards in those first
|
|
//! components. So we need to check that `p` is useful with respect to the rows that
|
|
//! start with a wildcard, if there are any. This is where `D` comes in:
|
|
//! `U(P, p) := U(D(P), D(p))`
|
|
//!
|
|
//! For example, if `P` is:
|
|
//! ```text
|
|
//! [
|
|
//! [_, true, _],
|
|
//! [None, false, 1],
|
|
//! ]
|
|
//! ```
|
|
//! and `p` is `[_, false, _]`, the `Some` constructor doesn't appear in `P`. So if we
|
|
//! only had row 2, we'd know that `p` is useful. However row 1 starts with a
|
|
//! wildcard, so we need to check whether `U([[true, _]], [false, 1])`.
|
|
//!
|
|
//! - Otherwise, all possible constructors (for the relevant type) are present. In this
|
|
//! case we must check whether the wildcard pattern covers any unmatched value. For
|
|
//! that, we can think of the `_` pattern as a big OR-pattern that covers all
|
|
//! possible constructors. For `Option`, that would mean `_ = None | Some(_)` for
|
|
//! example. The wildcard pattern is useful in this case if it is useful when
|
|
//! specialized to one of the possible constructors. So we compute:
|
|
//! `U(P, p) := ∃(k ϵ constructors) U(S(k, P), S(k, p))`
|
|
//!
|
|
//! For example, if `P` is:
|
|
//! ```text
|
|
//! [
|
|
//! [Some(true), _],
|
|
//! [None, false],
|
|
//! ]
|
|
//! ```
|
|
//! and `p` is `[_, false]`, both `None` and `Some` constructors appear in the first
|
|
//! components of `P`. We will therefore try popping both constructors in turn: we
|
|
//! compute `U([[true, _]], [_, false])` for the `Some` constructor, and `U([[false]],
|
|
//! [false])` for the `None` constructor. The first case returns true, so we know that
|
|
//! `p` is useful for `P`. Indeed, it matches `[Some(false), _]` that wasn't matched
|
|
//! before.
|
|
//!
|
|
//! - If `p_1 == r_1 | r_2`, then the usefulness depends on each `r_i` separately:
|
|
//!
|
|
//! ```text
|
|
//! U(P, p) := U(P, (r_1, p_2, .., p_n))
|
|
//! || U(P, (r_2, p_2, .., p_n))
|
|
//! ```
|
|
use std::sync::Arc;
|
|
|
|
use smallvec::{smallvec, SmallVec};
|
|
|
|
use crate::{
|
|
db::HirDatabase,
|
|
expr::{Body, Expr, Literal, Pat, PatId},
|
|
ApplicationTy, InferenceResult, Ty, TypeCtor,
|
|
};
|
|
use hir_def::{adt::VariantData, AdtId, EnumVariantId, VariantId};
|
|
use ra_arena::Idx;
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
/// Either a pattern from the source code being analyzed, represented as
|
|
/// as `PatId`, or a `Wild` pattern which is created as an intermediate
|
|
/// step in the match checking algorithm and thus is not backed by a
|
|
/// real `PatId`.
|
|
///
|
|
/// Note that it is totally valid for the `PatId` variant to contain
|
|
/// a `PatId` which resolves to a `Wild` pattern, if that wild pattern
|
|
/// exists in the source code being analyzed.
|
|
enum PatIdOrWild {
|
|
PatId(PatId),
|
|
Wild,
|
|
}
|
|
|
|
impl PatIdOrWild {
|
|
fn as_pat(self, cx: &MatchCheckCtx) -> Pat {
|
|
match self {
|
|
PatIdOrWild::PatId(id) => cx.body.pats[id].clone(),
|
|
PatIdOrWild::Wild => Pat::Wild,
|
|
}
|
|
}
|
|
|
|
fn as_id(self) -> Option<PatId> {
|
|
match self {
|
|
PatIdOrWild::PatId(id) => Some(id),
|
|
PatIdOrWild::Wild => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl From<PatId> for PatIdOrWild {
|
|
fn from(pat_id: PatId) -> Self {
|
|
Self::PatId(pat_id)
|
|
}
|
|
}
|
|
|
|
impl From<&PatId> for PatIdOrWild {
|
|
fn from(pat_id: &PatId) -> Self {
|
|
Self::PatId(*pat_id)
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy, PartialEq)]
|
|
pub enum MatchCheckErr {
|
|
NotImplemented,
|
|
MalformedMatchArm,
|
|
/// Used when type inference cannot resolve the type of
|
|
/// a pattern or expression.
|
|
Unknown,
|
|
}
|
|
|
|
/// The return type of `is_useful` is either an indication of usefulness
|
|
/// of the match arm, or an error in the case the match statement
|
|
/// is made up of types for which exhaustiveness checking is currently
|
|
/// not completely implemented.
|
|
///
|
|
/// The `std::result::Result` type is used here rather than a custom enum
|
|
/// to allow the use of `?`.
|
|
pub type MatchCheckResult<T> = Result<T, MatchCheckErr>;
|
|
|
|
#[derive(Debug)]
|
|
/// A row in a Matrix.
|
|
///
|
|
/// This type is modeled from the struct of the same name in `rustc`.
|
|
pub(crate) struct PatStack(PatStackInner);
|
|
type PatStackInner = SmallVec<[PatIdOrWild; 2]>;
|
|
|
|
impl PatStack {
|
|
pub(crate) fn from_pattern(pat_id: PatId) -> PatStack {
|
|
Self(smallvec!(pat_id.into()))
|
|
}
|
|
|
|
pub(crate) fn from_wild() -> PatStack {
|
|
Self(smallvec!(PatIdOrWild::Wild))
|
|
}
|
|
|
|
fn from_slice(slice: &[PatIdOrWild]) -> PatStack {
|
|
Self(SmallVec::from_slice(slice))
|
|
}
|
|
|
|
fn from_vec(v: PatStackInner) -> PatStack {
|
|
Self(v)
|
|
}
|
|
|
|
fn get_head(&self) -> Option<PatIdOrWild> {
|
|
self.0.first().copied()
|
|
}
|
|
|
|
fn tail(&self) -> &[PatIdOrWild] {
|
|
self.0.get(1..).unwrap_or(&[])
|
|
}
|
|
|
|
fn to_tail(&self) -> PatStack {
|
|
Self::from_slice(self.tail())
|
|
}
|
|
|
|
fn replace_head_with<I, T>(&self, pats: I) -> PatStack
|
|
where
|
|
I: Iterator<Item = T>,
|
|
T: Into<PatIdOrWild>,
|
|
{
|
|
let mut patterns: PatStackInner = smallvec![];
|
|
for pat in pats {
|
|
patterns.push(pat.into());
|
|
}
|
|
for pat in &self.0[1..] {
|
|
patterns.push(*pat);
|
|
}
|
|
PatStack::from_vec(patterns)
|
|
}
|
|
|
|
/// Computes `D(self)`.
|
|
///
|
|
/// See the module docs and the associated documentation in rustc for details.
|
|
fn specialize_wildcard(&self, cx: &MatchCheckCtx) -> Option<PatStack> {
|
|
if matches!(self.get_head()?.as_pat(cx), Pat::Wild) {
|
|
Some(self.to_tail())
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// Computes `S(constructor, self)`.
|
|
///
|
|
/// See the module docs and the associated documentation in rustc for details.
|
|
fn specialize_constructor(
|
|
&self,
|
|
cx: &MatchCheckCtx,
|
|
constructor: &Constructor,
|
|
) -> MatchCheckResult<Option<PatStack>> {
|
|
let head = match self.get_head() {
|
|
Some(head) => head,
|
|
None => return Ok(None),
|
|
};
|
|
|
|
let head_pat = head.as_pat(cx);
|
|
let result = match (head_pat, constructor) {
|
|
(Pat::Tuple { args: ref pat_ids, ellipsis }, Constructor::Tuple { arity: _ }) => {
|
|
if ellipsis.is_some() {
|
|
// If there are ellipsis here, we should add the correct number of
|
|
// Pat::Wild patterns to `pat_ids`. We should be able to use the
|
|
// constructors arity for this, but at the time of writing we aren't
|
|
// correctly calculating this arity when ellipsis are present.
|
|
return Err(MatchCheckErr::NotImplemented);
|
|
}
|
|
|
|
Some(self.replace_head_with(pat_ids.iter()))
|
|
}
|
|
(Pat::Lit(lit_expr), Constructor::Bool(constructor_val)) => {
|
|
match cx.body.exprs[lit_expr] {
|
|
Expr::Literal(Literal::Bool(pat_val)) if *constructor_val == pat_val => {
|
|
Some(self.to_tail())
|
|
}
|
|
// it was a bool but the value doesn't match
|
|
Expr::Literal(Literal::Bool(_)) => None,
|
|
// perhaps this is actually unreachable given we have
|
|
// already checked that these match arms have the appropriate type?
|
|
_ => return Err(MatchCheckErr::NotImplemented),
|
|
}
|
|
}
|
|
(Pat::Wild, constructor) => Some(self.expand_wildcard(cx, constructor)?),
|
|
(Pat::Path(_), Constructor::Enum(constructor)) => {
|
|
// unit enum variants become `Pat::Path`
|
|
let pat_id = head.as_id().expect("we know this isn't a wild");
|
|
if !enum_variant_matches(cx, pat_id, *constructor) {
|
|
None
|
|
} else {
|
|
Some(self.to_tail())
|
|
}
|
|
}
|
|
(
|
|
Pat::TupleStruct { args: ref pat_ids, ellipsis, .. },
|
|
Constructor::Enum(enum_constructor),
|
|
) => {
|
|
let pat_id = head.as_id().expect("we know this isn't a wild");
|
|
if !enum_variant_matches(cx, pat_id, *enum_constructor) {
|
|
None
|
|
} else {
|
|
let constructor_arity = constructor.arity(cx)?;
|
|
if let Some(ellipsis_position) = ellipsis {
|
|
// If there are ellipsis in the pattern, the ellipsis must take the place
|
|
// of at least one sub-pattern, so `pat_ids` should be smaller than the
|
|
// constructor arity.
|
|
if pat_ids.len() < constructor_arity {
|
|
let mut new_patterns: Vec<PatIdOrWild> = vec![];
|
|
|
|
for pat_id in &pat_ids[0..ellipsis_position] {
|
|
new_patterns.push((*pat_id).into());
|
|
}
|
|
|
|
for _ in 0..(constructor_arity - pat_ids.len()) {
|
|
new_patterns.push(PatIdOrWild::Wild);
|
|
}
|
|
|
|
for pat_id in &pat_ids[ellipsis_position..pat_ids.len()] {
|
|
new_patterns.push((*pat_id).into());
|
|
}
|
|
|
|
Some(self.replace_head_with(new_patterns.into_iter()))
|
|
} else {
|
|
return Err(MatchCheckErr::MalformedMatchArm);
|
|
}
|
|
} else {
|
|
// If there is no ellipsis in the tuple pattern, the number
|
|
// of patterns must equal the constructor arity.
|
|
if pat_ids.len() == constructor_arity {
|
|
Some(self.replace_head_with(pat_ids.into_iter()))
|
|
} else {
|
|
return Err(MatchCheckErr::MalformedMatchArm);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
(Pat::Record { args: ref arg_patterns, .. }, Constructor::Enum(e)) => {
|
|
let pat_id = head.as_id().expect("we know this isn't a wild");
|
|
if !enum_variant_matches(cx, pat_id, *e) {
|
|
None
|
|
} else {
|
|
match cx.db.enum_data(e.parent).variants[e.local_id].variant_data.as_ref() {
|
|
VariantData::Record(struct_field_arena) => {
|
|
// Here we treat any missing fields in the record as the wild pattern, as
|
|
// if the record has ellipsis. We want to do this here even if the
|
|
// record does not contain ellipsis, because it allows us to continue
|
|
// enforcing exhaustiveness for the rest of the match statement.
|
|
//
|
|
// Creating the diagnostic for the missing field in the pattern
|
|
// should be done in a different diagnostic.
|
|
let patterns = struct_field_arena.iter().map(|(_, struct_field)| {
|
|
arg_patterns
|
|
.iter()
|
|
.find(|pat| pat.name == struct_field.name)
|
|
.map(|pat| PatIdOrWild::from(pat.pat))
|
|
.unwrap_or(PatIdOrWild::Wild)
|
|
});
|
|
|
|
Some(self.replace_head_with(patterns))
|
|
}
|
|
_ => return Err(MatchCheckErr::Unknown),
|
|
}
|
|
}
|
|
}
|
|
(Pat::Or(_), _) => return Err(MatchCheckErr::NotImplemented),
|
|
(_, _) => return Err(MatchCheckErr::NotImplemented),
|
|
};
|
|
|
|
Ok(result)
|
|
}
|
|
|
|
/// A special case of `specialize_constructor` where the head of the pattern stack
|
|
/// is a Wild pattern.
|
|
///
|
|
/// Replaces the Wild pattern at the head of the pattern stack with N Wild patterns
|
|
/// (N >= 0), where N is the arity of the given constructor.
|
|
fn expand_wildcard(
|
|
&self,
|
|
cx: &MatchCheckCtx,
|
|
constructor: &Constructor,
|
|
) -> MatchCheckResult<PatStack> {
|
|
assert_eq!(
|
|
Pat::Wild,
|
|
self.get_head().expect("expand_wildcard called on empty PatStack").as_pat(cx),
|
|
"expand_wildcard must only be called on PatStack with wild at head",
|
|
);
|
|
|
|
let mut patterns: PatStackInner = smallvec![];
|
|
|
|
for _ in 0..constructor.arity(cx)? {
|
|
patterns.push(PatIdOrWild::Wild);
|
|
}
|
|
|
|
for pat in &self.0[1..] {
|
|
patterns.push(*pat);
|
|
}
|
|
|
|
Ok(PatStack::from_vec(patterns))
|
|
}
|
|
}
|
|
|
|
/// A collection of PatStack.
|
|
///
|
|
/// This type is modeled from the struct of the same name in `rustc`.
|
|
pub(crate) struct Matrix(Vec<PatStack>);
|
|
|
|
impl Matrix {
|
|
pub(crate) fn empty() -> Self {
|
|
Self(vec![])
|
|
}
|
|
|
|
pub(crate) fn push(&mut self, cx: &MatchCheckCtx, row: PatStack) {
|
|
if let Some(Pat::Or(pat_ids)) = row.get_head().map(|pat_id| pat_id.as_pat(cx)) {
|
|
// Or patterns are expanded here
|
|
for pat_id in pat_ids {
|
|
self.0.push(PatStack::from_pattern(pat_id));
|
|
}
|
|
} else {
|
|
self.0.push(row);
|
|
}
|
|
}
|
|
|
|
fn is_empty(&self) -> bool {
|
|
self.0.is_empty()
|
|
}
|
|
|
|
fn heads(&self) -> Vec<PatIdOrWild> {
|
|
self.0.iter().flat_map(|p| p.get_head()).collect()
|
|
}
|
|
|
|
/// Computes `D(self)` for each contained PatStack.
|
|
///
|
|
/// See the module docs and the associated documentation in rustc for details.
|
|
fn specialize_wildcard(&self, cx: &MatchCheckCtx) -> Self {
|
|
Self::collect(cx, self.0.iter().filter_map(|r| r.specialize_wildcard(cx)))
|
|
}
|
|
|
|
/// Computes `S(constructor, self)` for each contained PatStack.
|
|
///
|
|
/// See the module docs and the associated documentation in rustc for details.
|
|
fn specialize_constructor(
|
|
&self,
|
|
cx: &MatchCheckCtx,
|
|
constructor: &Constructor,
|
|
) -> MatchCheckResult<Self> {
|
|
let mut new_matrix = Matrix::empty();
|
|
for pat in &self.0 {
|
|
if let Some(pat) = pat.specialize_constructor(cx, constructor)? {
|
|
new_matrix.push(cx, pat);
|
|
}
|
|
}
|
|
|
|
Ok(new_matrix)
|
|
}
|
|
|
|
fn collect<T: IntoIterator<Item = PatStack>>(cx: &MatchCheckCtx, iter: T) -> Self {
|
|
let mut matrix = Matrix::empty();
|
|
|
|
for pat in iter {
|
|
// using push ensures we expand or-patterns
|
|
matrix.push(cx, pat);
|
|
}
|
|
|
|
matrix
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq)]
|
|
/// An indication of the usefulness of a given match arm, where
|
|
/// usefulness is defined as matching some patterns which were
|
|
/// not matched by an prior match arms.
|
|
///
|
|
/// We may eventually need an `Unknown` variant here.
|
|
pub enum Usefulness {
|
|
Useful,
|
|
NotUseful,
|
|
}
|
|
|
|
pub struct MatchCheckCtx<'a> {
|
|
pub match_expr: Idx<Expr>,
|
|
pub body: Arc<Body>,
|
|
pub infer: Arc<InferenceResult>,
|
|
pub db: &'a dyn HirDatabase,
|
|
}
|
|
|
|
/// Given a set of patterns `matrix`, and pattern to consider `v`, determines
|
|
/// whether `v` is useful. A pattern is useful if it covers cases which were
|
|
/// not previously covered.
|
|
///
|
|
/// When calling this function externally (that is, not the recursive calls) it
|
|
/// expected that you have already type checked the match arms. All patterns in
|
|
/// matrix should be the same type as v, as well as they should all be the same
|
|
/// type as the match expression.
|
|
pub(crate) fn is_useful(
|
|
cx: &MatchCheckCtx,
|
|
matrix: &Matrix,
|
|
v: &PatStack,
|
|
) -> MatchCheckResult<Usefulness> {
|
|
// Handle two special cases:
|
|
// - enum with no variants
|
|
// - `!` type
|
|
// In those cases, no match arm is useful.
|
|
match cx.infer[cx.match_expr].strip_references() {
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::Adt(AdtId::EnumId(enum_id)), .. }) => {
|
|
if cx.db.enum_data(*enum_id).variants.is_empty() {
|
|
return Ok(Usefulness::NotUseful);
|
|
}
|
|
}
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::Never, .. }) => {
|
|
return Ok(Usefulness::NotUseful);
|
|
}
|
|
_ => (),
|
|
}
|
|
|
|
let head = match v.get_head() {
|
|
Some(head) => head,
|
|
None => {
|
|
let result = if matrix.is_empty() { Usefulness::Useful } else { Usefulness::NotUseful };
|
|
|
|
return Ok(result);
|
|
}
|
|
};
|
|
|
|
if let Pat::Or(pat_ids) = head.as_pat(cx) {
|
|
let mut found_unimplemented = false;
|
|
let any_useful = pat_ids.iter().any(|&pat_id| {
|
|
let v = PatStack::from_pattern(pat_id);
|
|
|
|
match is_useful(cx, matrix, &v) {
|
|
Ok(Usefulness::Useful) => true,
|
|
Ok(Usefulness::NotUseful) => false,
|
|
_ => {
|
|
found_unimplemented = true;
|
|
false
|
|
}
|
|
}
|
|
});
|
|
|
|
return if any_useful {
|
|
Ok(Usefulness::Useful)
|
|
} else if found_unimplemented {
|
|
Err(MatchCheckErr::NotImplemented)
|
|
} else {
|
|
Ok(Usefulness::NotUseful)
|
|
};
|
|
}
|
|
|
|
if let Some(constructor) = pat_constructor(cx, head)? {
|
|
let matrix = matrix.specialize_constructor(&cx, &constructor)?;
|
|
let v = v
|
|
.specialize_constructor(&cx, &constructor)?
|
|
.expect("we know this can't fail because we get the constructor from `v.head()` above");
|
|
|
|
is_useful(&cx, &matrix, &v)
|
|
} else {
|
|
// expanding wildcard
|
|
let mut used_constructors: Vec<Constructor> = vec![];
|
|
for pat in matrix.heads() {
|
|
if let Some(constructor) = pat_constructor(cx, pat)? {
|
|
used_constructors.push(constructor);
|
|
}
|
|
}
|
|
|
|
// We assume here that the first constructor is the "correct" type. Since we
|
|
// only care about the "type" of the constructor (i.e. if it is a bool we
|
|
// don't care about the value), this assumption should be valid as long as
|
|
// the match statement is well formed. We currently uphold this invariant by
|
|
// filtering match arms before calling `is_useful`, only passing in match arms
|
|
// whose type matches the type of the match expression.
|
|
match &used_constructors.first() {
|
|
Some(constructor) if all_constructors_covered(&cx, constructor, &used_constructors) => {
|
|
// If all constructors are covered, then we need to consider whether
|
|
// any values are covered by this wildcard.
|
|
//
|
|
// For example, with matrix '[[Some(true)], [None]]', all
|
|
// constructors are covered (`Some`/`None`), so we need
|
|
// to perform specialization to see that our wildcard will cover
|
|
// the `Some(false)` case.
|
|
//
|
|
// Here we create a constructor for each variant and then check
|
|
// usefulness after specializing for that constructor.
|
|
let mut found_unimplemented = false;
|
|
for constructor in constructor.all_constructors(cx) {
|
|
let matrix = matrix.specialize_constructor(&cx, &constructor)?;
|
|
let v = v.expand_wildcard(&cx, &constructor)?;
|
|
|
|
match is_useful(&cx, &matrix, &v) {
|
|
Ok(Usefulness::Useful) => return Ok(Usefulness::Useful),
|
|
Ok(Usefulness::NotUseful) => continue,
|
|
_ => found_unimplemented = true,
|
|
};
|
|
}
|
|
|
|
if found_unimplemented {
|
|
Err(MatchCheckErr::NotImplemented)
|
|
} else {
|
|
Ok(Usefulness::NotUseful)
|
|
}
|
|
}
|
|
_ => {
|
|
// Either not all constructors are covered, or the only other arms
|
|
// are wildcards. Either way, this pattern is useful if it is useful
|
|
// when compared to those arms with wildcards.
|
|
let matrix = matrix.specialize_wildcard(&cx);
|
|
let v = v.to_tail();
|
|
|
|
is_useful(&cx, &matrix, &v)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Clone, Copy)]
|
|
/// Similar to TypeCtor, but includes additional information about the specific
|
|
/// value being instantiated. For example, TypeCtor::Bool doesn't contain the
|
|
/// boolean value.
|
|
enum Constructor {
|
|
Bool(bool),
|
|
Tuple { arity: usize },
|
|
Enum(EnumVariantId),
|
|
}
|
|
|
|
impl Constructor {
|
|
fn arity(&self, cx: &MatchCheckCtx) -> MatchCheckResult<usize> {
|
|
let arity = match self {
|
|
Constructor::Bool(_) => 0,
|
|
Constructor::Tuple { arity } => *arity,
|
|
Constructor::Enum(e) => {
|
|
match cx.db.enum_data(e.parent).variants[e.local_id].variant_data.as_ref() {
|
|
VariantData::Tuple(struct_field_data) => struct_field_data.len(),
|
|
VariantData::Record(struct_field_data) => struct_field_data.len(),
|
|
VariantData::Unit => 0,
|
|
}
|
|
}
|
|
};
|
|
|
|
Ok(arity)
|
|
}
|
|
|
|
fn all_constructors(&self, cx: &MatchCheckCtx) -> Vec<Constructor> {
|
|
match self {
|
|
Constructor::Bool(_) => vec![Constructor::Bool(true), Constructor::Bool(false)],
|
|
Constructor::Tuple { .. } => vec![*self],
|
|
Constructor::Enum(e) => cx
|
|
.db
|
|
.enum_data(e.parent)
|
|
.variants
|
|
.iter()
|
|
.map(|(local_id, _)| {
|
|
Constructor::Enum(EnumVariantId { parent: e.parent, local_id })
|
|
})
|
|
.collect(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the constructor for the given pattern. Should only return None
|
|
/// in the case of a Wild pattern.
|
|
fn pat_constructor(cx: &MatchCheckCtx, pat: PatIdOrWild) -> MatchCheckResult<Option<Constructor>> {
|
|
let res = match pat.as_pat(cx) {
|
|
Pat::Wild => None,
|
|
// FIXME somehow create the Tuple constructor with the proper arity. If there are
|
|
// ellipsis, the arity is not equal to the number of patterns.
|
|
Pat::Tuple { args: pats, ellipsis } if ellipsis.is_none() => {
|
|
Some(Constructor::Tuple { arity: pats.len() })
|
|
}
|
|
Pat::Lit(lit_expr) => match cx.body.exprs[lit_expr] {
|
|
Expr::Literal(Literal::Bool(val)) => Some(Constructor::Bool(val)),
|
|
_ => return Err(MatchCheckErr::NotImplemented),
|
|
},
|
|
Pat::TupleStruct { .. } | Pat::Path(_) | Pat::Record { .. } => {
|
|
let pat_id = pat.as_id().expect("we already know this pattern is not a wild");
|
|
let variant_id =
|
|
cx.infer.variant_resolution_for_pat(pat_id).ok_or(MatchCheckErr::Unknown)?;
|
|
match variant_id {
|
|
VariantId::EnumVariantId(enum_variant_id) => {
|
|
Some(Constructor::Enum(enum_variant_id))
|
|
}
|
|
_ => return Err(MatchCheckErr::NotImplemented),
|
|
}
|
|
}
|
|
_ => return Err(MatchCheckErr::NotImplemented),
|
|
};
|
|
|
|
Ok(res)
|
|
}
|
|
|
|
fn all_constructors_covered(
|
|
cx: &MatchCheckCtx,
|
|
constructor: &Constructor,
|
|
used_constructors: &[Constructor],
|
|
) -> bool {
|
|
match constructor {
|
|
Constructor::Tuple { arity } => {
|
|
used_constructors.iter().any(|constructor| match constructor {
|
|
Constructor::Tuple { arity: used_arity } => arity == used_arity,
|
|
_ => false,
|
|
})
|
|
}
|
|
Constructor::Bool(_) => {
|
|
if used_constructors.is_empty() {
|
|
return false;
|
|
}
|
|
|
|
let covers_true =
|
|
used_constructors.iter().any(|c| matches!(c, Constructor::Bool(true)));
|
|
let covers_false =
|
|
used_constructors.iter().any(|c| matches!(c, Constructor::Bool(false)));
|
|
|
|
covers_true && covers_false
|
|
}
|
|
Constructor::Enum(e) => cx.db.enum_data(e.parent).variants.iter().all(|(id, _)| {
|
|
for constructor in used_constructors {
|
|
if let Constructor::Enum(e) = constructor {
|
|
if id == e.local_id {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
false
|
|
}),
|
|
}
|
|
}
|
|
|
|
fn enum_variant_matches(cx: &MatchCheckCtx, pat_id: PatId, enum_variant_id: EnumVariantId) -> bool {
|
|
Some(enum_variant_id.into()) == cx.infer.variant_resolution_for_pat(pat_id)
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
pub(super) use insta::assert_snapshot;
|
|
pub(super) use ra_db::fixture::WithFixture;
|
|
|
|
pub(super) use crate::{diagnostics::MissingMatchArms, test_db::TestDB};
|
|
|
|
pub(super) fn check_diagnostic_message(ra_fixture: &str) -> String {
|
|
TestDB::with_single_file(ra_fixture).0.diagnostic::<MissingMatchArms>().0
|
|
}
|
|
|
|
pub(super) fn check_diagnostic(ra_fixture: &str) {
|
|
let diagnostic_count =
|
|
TestDB::with_single_file(ra_fixture).0.diagnostic::<MissingMatchArms>().1;
|
|
|
|
assert_eq!(1, diagnostic_count, "no diagnostic reported");
|
|
}
|
|
|
|
pub(super) fn check_no_diagnostic(ra_fixture: &str) {
|
|
let (s, diagnostic_count) =
|
|
TestDB::with_single_file(ra_fixture).0.diagnostic::<MissingMatchArms>();
|
|
|
|
assert_eq!(0, diagnostic_count, "expected no diagnostic, found one: {}", s);
|
|
}
|
|
|
|
#[test]
|
|
fn empty_tuple_no_arms_diagnostic_message() {
|
|
assert_snapshot!(
|
|
check_diagnostic_message(r"
|
|
fn test_fn() {
|
|
match () {
|
|
}
|
|
}
|
|
"),
|
|
@"\"()\": Missing match arm\n"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn empty_tuple_no_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match () {
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn empty_tuple_wild() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match () {
|
|
_ => {}
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn empty_tuple_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match () {
|
|
() => {}
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_empty_tuple_no_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (()) {
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_empty_tuple_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (()) {
|
|
(()) => {}
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_two_empty_tuple_no_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match ((), ()) {
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_two_empty_tuple_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match ((), ()) {
|
|
((), ()) => {}
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn bool_no_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match false {
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn bool_missing_arm() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match false {
|
|
true => {}
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn bool_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match false {
|
|
true => {}
|
|
false => {}
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_no_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true) {
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_missing_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true) {
|
|
(true, true) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_missing_arm() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true) {
|
|
(false, true) => {},
|
|
(false, false) => {},
|
|
(true, false) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_with_wilds() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true) {
|
|
(false, _) => {},
|
|
(true, false) => {},
|
|
(_, true) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true) {
|
|
(true, true) => {},
|
|
(true, false) => {},
|
|
(false, true) => {},
|
|
(false, false) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_binding_missing_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true) {
|
|
(true, _x) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_binding_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true) {
|
|
(true, _x) => {},
|
|
(false, true) => {},
|
|
(false, false) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_with_ellipsis_at_end_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true, false) {
|
|
(false, ..) => {},
|
|
(true, ..) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_with_ellipsis_at_beginning_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true, false) {
|
|
(.., false) => {},
|
|
(.., true) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_with_ellipsis_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true, false) {
|
|
(..) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_tuple_and_bools_no_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, ((), false)) {
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_tuple_and_bools_missing_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, ((), false)) {
|
|
(true, ((), true)) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_tuple_and_bools_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, ((), false)) {
|
|
(true, ((), true)) => {},
|
|
(true, ((), false)) => {},
|
|
(false, ((), true)) => {},
|
|
(false, ((), false)) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_tuple_and_bools_wildcard_missing_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, ((), false)) {
|
|
(true, _) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_tuple_and_bools_wildcard_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, ((), false)) {
|
|
(true, ((), true)) => {},
|
|
(true, ((), false)) => {},
|
|
(false, _) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_no_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A,
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::A {
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_missing_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A,
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::A => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A,
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::A => {},
|
|
Either::B => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_ref_missing_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A,
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match &Either::B {
|
|
Either::A => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_ref_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A,
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match &Either::B {
|
|
Either::A => {},
|
|
Either::B => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_containing_bool_no_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool),
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_containing_bool_missing_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool),
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::A(true) => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_containing_bool_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool),
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::A(true) => (),
|
|
Either::A(false) => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_containing_bool_with_wild_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool),
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::B => (),
|
|
_ => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_containing_bool_with_wild_2_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool),
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::A(_) => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_different_sizes_missing_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool),
|
|
B(bool, bool),
|
|
}
|
|
fn test_fn() {
|
|
match Either::A(false) {
|
|
Either::A(_) => (),
|
|
Either::B(false, _) => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_different_sizes_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool),
|
|
B(bool, bool),
|
|
}
|
|
fn test_fn() {
|
|
match Either::A(false) {
|
|
Either::A(_) => (),
|
|
Either::B(true, _) => (),
|
|
Either::B(false, _) => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn or_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool),
|
|
B(bool, bool),
|
|
}
|
|
fn test_fn() {
|
|
match Either::A(false) {
|
|
Either::A(true) | Either::A(false) => (),
|
|
Either::B(true, _) => (),
|
|
Either::B(false, _) => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_enum_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool),
|
|
B(bool, bool),
|
|
}
|
|
enum Either2 {
|
|
C,
|
|
D,
|
|
}
|
|
fn test_fn() {
|
|
match (Either::A(false), Either2::C) {
|
|
(Either::A(true), _) | (Either::A(false), _) => (),
|
|
(Either::B(true, _), Either2::C) => (),
|
|
(Either::B(false, _), Either2::C) => (),
|
|
(Either::B(_, _), Either2::D) => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn mismatched_types() {
|
|
// Match statements with arms that don't match the
|
|
// expression pattern do not fire this diagnostic.
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A,
|
|
B,
|
|
}
|
|
enum Either2 {
|
|
C,
|
|
D,
|
|
}
|
|
fn test_fn() {
|
|
match Either::A {
|
|
Either2::C => (),
|
|
Either2::D => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn mismatched_types_with_different_arity() {
|
|
// Match statements with arms that don't match the
|
|
// expression pattern do not fire this diagnostic.
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (true, false) {
|
|
(true, false, true) => (),
|
|
(true) => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn malformed_match_arm_tuple_missing_pattern() {
|
|
// Match statements with arms that don't match the
|
|
// expression pattern do not fire this diagnostic.
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (0) {
|
|
() => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn malformed_match_arm_tuple_enum_missing_pattern() {
|
|
// We are testing to be sure we don't panic here when the match
|
|
// arm `Either::B` is missing its pattern.
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A,
|
|
B(u32),
|
|
}
|
|
fn test_fn() {
|
|
match Either::A {
|
|
Either::A => (),
|
|
Either::B() => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_not_in_scope() {
|
|
// The enum is not in scope so we don't perform exhaustiveness
|
|
// checking, but we want to be sure we don't panic here (and
|
|
// we don't create a diagnostic).
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match Foo::Bar {
|
|
Foo::Baz => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn expr_diverges() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A,
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match loop {} {
|
|
Either::A => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn expr_loop_with_break() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A,
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match loop { break Foo::A } {
|
|
Either::A => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn expr_partially_diverges() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either<T> {
|
|
A(T),
|
|
B,
|
|
}
|
|
fn foo() -> Either<!> {
|
|
Either::B
|
|
}
|
|
fn test_fn() -> u32 {
|
|
match foo() {
|
|
Either::A(val) => val,
|
|
Either::B => 0,
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_no_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
let a = Either::A { foo: true };
|
|
match a {
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_missing_arms() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
let a = Either::A { foo: true };
|
|
match a {
|
|
Either::A { foo: true } => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
let a = Either::A { foo: true };
|
|
match a {
|
|
Either::A { foo: true } => (),
|
|
Either::A { foo: false } => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_missing_field_no_diagnostic() {
|
|
// When `Either::A` is missing a struct member, we don't want
|
|
// to fire the missing match arm diagnostic. This should fire
|
|
// some other diagnostic.
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
let a = Either::B;
|
|
match a {
|
|
Either::A { } => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_missing_field_missing_match_arm() {
|
|
// Even though `Either::A` is missing fields, we still want to fire
|
|
// the missing arm diagnostic here, since we know `Either::B` is missing.
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
let a = Either::B;
|
|
match a {
|
|
Either::A { } => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_no_diagnostic_wild() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
let a = Either::A { foo: true };
|
|
match a {
|
|
Either::A { foo: _ } => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_fields_out_of_order_missing_arm() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool, bar: () },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
let a = Either::A { foo: true };
|
|
match a {
|
|
Either::A { bar: (), foo: false } => (),
|
|
Either::A { foo: true, bar: () } => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_fields_out_of_order_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool, bar: () },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
let a = Either::A { foo: true };
|
|
match a {
|
|
Either::A { bar: (), foo: false } => (),
|
|
Either::A { foo: true, bar: () } => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_ellipsis_missing_arm() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool, bar: bool },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::A { foo: true, .. } => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_ellipsis_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool, bar: bool },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
let a = Either::A { foo: true };
|
|
match a {
|
|
Either::A { foo: true, .. } => (),
|
|
Either::A { foo: false, .. } => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_ellipsis_all_fields_missing_arm() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool, bar: bool },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
let a = Either::B;
|
|
match a {
|
|
Either::A { .. } => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_record_ellipsis_all_fields_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A { foo: bool, bar: bool },
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
let a = Either::B;
|
|
match a {
|
|
Either::A { .. } => (),
|
|
Either::B => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_tuple_partial_ellipsis_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool, bool, bool, bool),
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::A(true, .., true) => {},
|
|
Either::A(true, .., false) => {},
|
|
Either::A(false, .., true) => {},
|
|
Either::A(false, .., false) => {},
|
|
Either::B => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_tuple_partial_ellipsis_2_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool, bool, bool, bool),
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::A(true, .., true) => {},
|
|
Either::A(true, .., false) => {},
|
|
Either::A(.., true) => {},
|
|
Either::A(.., false) => {},
|
|
Either::B => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_tuple_partial_ellipsis_missing_arm() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool, bool, bool, bool),
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::A(true, .., true) => {},
|
|
Either::A(true, .., false) => {},
|
|
Either::A(false, .., false) => {},
|
|
Either::B => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_tuple_partial_ellipsis_2_missing_arm() {
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool, bool, bool, bool),
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::A(true, .., true) => {},
|
|
Either::A(true, .., false) => {},
|
|
Either::A(.., true) => {},
|
|
Either::B => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_tuple_ellipsis_no_diagnostic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A(bool, bool, bool, bool),
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match Either::B {
|
|
Either::A(..) => {},
|
|
Either::B => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_never() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Never {}
|
|
|
|
fn test_fn(never: Never) {
|
|
match never {}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn type_never() {
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn(never: !) {
|
|
match never {}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn enum_never_ref() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Never {}
|
|
|
|
fn test_fn(never: &Never) {
|
|
match never {}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn expr_diverges_missing_arm() {
|
|
check_no_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A,
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match loop {} {
|
|
Either::A => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn or_pattern_panic() {
|
|
check_no_diagnostic(
|
|
r"
|
|
pub enum Category {
|
|
Infinity,
|
|
Zero,
|
|
}
|
|
|
|
fn panic(a: Category, b: Category) {
|
|
match (a, b) {
|
|
(Category::Zero | Category::Infinity, _) => {}
|
|
(_, Category::Zero | Category::Infinity) => {}
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn or_pattern_panic_2() {
|
|
// FIXME: This is a false positive, but the code used to cause a panic in the match checker,
|
|
// so this acts as a regression test for that.
|
|
check_diagnostic(
|
|
r"
|
|
pub enum Category {
|
|
Infinity,
|
|
Zero,
|
|
}
|
|
|
|
fn panic(a: Category, b: Category) {
|
|
match (a, b) {
|
|
(Category::Infinity, Category::Infinity) | (Category::Zero, Category::Zero) => {}
|
|
|
|
(Category::Infinity | Category::Zero, _) => {}
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod false_negatives {
|
|
//! The implementation of match checking here is a work in progress. As we roll this out, we
|
|
//! prefer false negatives to false positives (ideally there would be no false positives). This
|
|
//! test module should document known false negatives. Eventually we will have a complete
|
|
//! implementation of match checking and this module will be empty.
|
|
//!
|
|
//! The reasons for documenting known false negatives:
|
|
//!
|
|
//! 1. It acts as a backlog of work that can be done to improve the behavior of the system.
|
|
//! 2. It ensures the code doesn't panic when handling these cases.
|
|
|
|
use super::tests::*;
|
|
|
|
#[test]
|
|
fn integers() {
|
|
// This is a false negative.
|
|
// We don't currently check integer exhaustiveness.
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match 5 {
|
|
10 => (),
|
|
11..20 => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn internal_or() {
|
|
// This is a false negative.
|
|
// We do not currently handle patterns with internal `or`s.
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
enum Either {
|
|
A(bool),
|
|
B,
|
|
}
|
|
match Either::B {
|
|
Either::A(true | false) => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn expr_loop_missing_arm() {
|
|
// This is a false negative.
|
|
// We currently infer the type of `loop { break Foo::A }` to `!`, which
|
|
// causes us to skip the diagnostic since `Either::A` doesn't type check
|
|
// with `!`.
|
|
check_diagnostic(
|
|
r"
|
|
enum Either {
|
|
A,
|
|
B,
|
|
}
|
|
fn test_fn() {
|
|
match loop { break Foo::A } {
|
|
Either::A => (),
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_with_ellipsis_at_end_missing_arm() {
|
|
// This is a false negative.
|
|
// We don't currently handle tuple patterns with ellipsis.
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true, false) {
|
|
(false, ..) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn tuple_of_bools_with_ellipsis_at_beginning_missing_arm() {
|
|
// This is a false negative.
|
|
// We don't currently handle tuple patterns with ellipsis.
|
|
check_no_diagnostic(
|
|
r"
|
|
fn test_fn() {
|
|
match (false, true, false) {
|
|
(.., false) => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn struct_missing_arm() {
|
|
// This is a false negative.
|
|
// We don't currently handle structs.
|
|
check_no_diagnostic(
|
|
r"
|
|
struct Foo {
|
|
a: bool,
|
|
}
|
|
fn test_fn(f: Foo) {
|
|
match f {
|
|
Foo { a: true } => {},
|
|
}
|
|
}
|
|
",
|
|
);
|
|
}
|
|
}
|