rust-analyzer/crates/completion/src/patterns.rs

249 lines
8.2 KiB
Rust

//! Patterns telling us certain facts about current syntax element, they are used in completion context
use syntax::{
algo::non_trivia_sibling,
ast::{self, LoopBodyOwner},
match_ast, AstNode, Direction, NodeOrToken, SyntaxElement,
SyntaxKind::*,
SyntaxNode, SyntaxToken, T,
};
#[cfg(test)]
use crate::test_utils::{check_pattern_is_applicable, check_pattern_is_not_applicable};
pub(crate) fn has_trait_parent(element: SyntaxElement) -> bool {
not_same_range_ancestor(element)
.filter(|it| it.kind() == ASSOC_ITEM_LIST)
.and_then(|it| it.parent())
.filter(|it| it.kind() == TRAIT)
.is_some()
}
#[test]
fn test_has_trait_parent() {
check_pattern_is_applicable(r"trait A { f$0 }", has_trait_parent);
}
pub(crate) fn has_impl_parent(element: SyntaxElement) -> bool {
not_same_range_ancestor(element)
.filter(|it| it.kind() == ASSOC_ITEM_LIST)
.and_then(|it| it.parent())
.filter(|it| it.kind() == IMPL)
.is_some()
}
#[test]
fn test_has_impl_parent() {
check_pattern_is_applicable(r"impl A { f$0 }", has_impl_parent);
}
pub(crate) fn inside_impl_trait_block(element: SyntaxElement) -> bool {
// Here we search `impl` keyword up through the all ancestors, unlike in `has_impl_parent`,
// where we only check the first parent with different text range.
element
.ancestors()
.find(|it| it.kind() == IMPL)
.map(|it| ast::Impl::cast(it).unwrap())
.map(|it| it.trait_().is_some())
.unwrap_or(false)
}
#[test]
fn test_inside_impl_trait_block() {
check_pattern_is_applicable(r"impl Foo for Bar { f$0 }", inside_impl_trait_block);
check_pattern_is_applicable(r"impl Foo for Bar { fn f$0 }", inside_impl_trait_block);
check_pattern_is_not_applicable(r"impl A { f$0 }", inside_impl_trait_block);
check_pattern_is_not_applicable(r"impl A { fn f$0 }", inside_impl_trait_block);
}
pub(crate) fn has_field_list_parent(element: SyntaxElement) -> bool {
not_same_range_ancestor(element).filter(|it| it.kind() == RECORD_FIELD_LIST).is_some()
}
#[test]
fn test_has_field_list_parent() {
check_pattern_is_applicable(r"struct Foo { f$0 }", has_field_list_parent);
check_pattern_is_applicable(r"struct Foo { f$0 pub f: i32}", has_field_list_parent);
}
pub(crate) fn has_block_expr_parent(element: SyntaxElement) -> bool {
not_same_range_ancestor(element).filter(|it| it.kind() == BLOCK_EXPR).is_some()
}
#[test]
fn test_has_block_expr_parent() {
check_pattern_is_applicable(r"fn my_fn() { let a = 2; f$0 }", has_block_expr_parent);
}
pub(crate) fn has_bind_pat_parent(element: SyntaxElement) -> bool {
element.ancestors().find(|it| it.kind() == IDENT_PAT).is_some()
}
#[test]
fn test_has_bind_pat_parent() {
check_pattern_is_applicable(r"fn my_fn(m$0) {}", has_bind_pat_parent);
check_pattern_is_applicable(r"fn my_fn() { let m$0 }", has_bind_pat_parent);
}
pub(crate) fn has_ref_parent(element: SyntaxElement) -> bool {
not_same_range_ancestor(element)
.filter(|it| it.kind() == REF_PAT || it.kind() == REF_EXPR)
.is_some()
}
#[test]
fn test_has_ref_parent() {
check_pattern_is_applicable(r"fn my_fn(&m$0) {}", has_ref_parent);
check_pattern_is_applicable(r"fn my() { let &m$0 }", has_ref_parent);
}
pub(crate) fn has_item_list_or_source_file_parent(element: SyntaxElement) -> bool {
let ancestor = not_same_range_ancestor(element);
if !ancestor.is_some() {
return true;
}
ancestor.filter(|it| it.kind() == SOURCE_FILE || it.kind() == ITEM_LIST).is_some()
}
#[test]
fn test_has_item_list_or_source_file_parent() {
check_pattern_is_applicable(r"i$0", has_item_list_or_source_file_parent);
check_pattern_is_applicable(r"mod foo { f$0 }", has_item_list_or_source_file_parent);
}
pub(crate) fn is_match_arm(element: SyntaxElement) -> bool {
not_same_range_ancestor(element.clone()).filter(|it| it.kind() == MATCH_ARM).is_some()
&& previous_sibling_or_ancestor_sibling(element)
.and_then(|it| it.into_token())
.filter(|it| it.kind() == FAT_ARROW)
.is_some()
}
#[test]
fn test_is_match_arm() {
check_pattern_is_applicable(r"fn my_fn() { match () { () => m$0 } }", is_match_arm);
}
pub(crate) fn unsafe_is_prev(element: SyntaxElement) -> bool {
element
.into_token()
.and_then(|it| previous_non_trivia_token(it))
.filter(|it| it.kind() == T![unsafe])
.is_some()
}
#[test]
fn test_unsafe_is_prev() {
check_pattern_is_applicable(r"unsafe i$0", unsafe_is_prev);
}
pub(crate) fn if_is_prev(element: SyntaxElement) -> bool {
element
.into_token()
.and_then(|it| previous_non_trivia_token(it))
.filter(|it| it.kind() == T![if])
.is_some()
}
pub(crate) fn fn_is_prev(element: SyntaxElement) -> bool {
element
.into_token()
.and_then(|it| previous_non_trivia_token(it))
.filter(|it| it.kind() == T![fn])
.is_some()
}
#[test]
fn test_fn_is_prev() {
check_pattern_is_applicable(r"fn l$0", fn_is_prev);
}
/// Check if the token previous to the previous one is `for`.
/// For example, `for _ i$0` => true.
pub(crate) fn for_is_prev2(element: SyntaxElement) -> bool {
element
.into_token()
.and_then(|it| previous_non_trivia_token(it))
.and_then(|it| previous_non_trivia_token(it))
.filter(|it| it.kind() == T![for])
.is_some()
}
#[test]
fn test_for_is_prev2() {
check_pattern_is_applicable(r"for i i$0", for_is_prev2);
}
#[test]
fn test_if_is_prev() {
check_pattern_is_applicable(r"if l$0", if_is_prev);
}
pub(crate) fn has_trait_as_prev_sibling(element: SyntaxElement) -> bool {
previous_sibling_or_ancestor_sibling(element).filter(|it| it.kind() == TRAIT).is_some()
}
#[test]
fn test_has_trait_as_prev_sibling() {
check_pattern_is_applicable(r"trait A w$0 {}", has_trait_as_prev_sibling);
}
pub(crate) fn has_impl_as_prev_sibling(element: SyntaxElement) -> bool {
previous_sibling_or_ancestor_sibling(element).filter(|it| it.kind() == IMPL).is_some()
}
#[test]
fn test_has_impl_as_prev_sibling() {
check_pattern_is_applicable(r"impl A w$0 {}", has_impl_as_prev_sibling);
}
pub(crate) fn is_in_loop_body(element: SyntaxElement) -> bool {
let leaf = match element {
NodeOrToken::Node(node) => node,
NodeOrToken::Token(token) => token.parent(),
};
for node in leaf.ancestors() {
if node.kind() == FN || node.kind() == CLOSURE_EXPR {
break;
}
let loop_body = match_ast! {
match node {
ast::ForExpr(it) => it.loop_body(),
ast::WhileExpr(it) => it.loop_body(),
ast::LoopExpr(it) => it.loop_body(),
_ => None,
}
};
if let Some(body) = loop_body {
if body.syntax().text_range().contains_range(leaf.text_range()) {
return true;
}
}
}
false
}
fn not_same_range_ancestor(element: SyntaxElement) -> Option<SyntaxNode> {
element
.ancestors()
.take_while(|it| it.text_range() == element.text_range())
.last()
.and_then(|it| it.parent())
}
fn previous_non_trivia_token(token: SyntaxToken) -> Option<SyntaxToken> {
let mut token = token.prev_token();
while let Some(inner) = token.clone() {
if !inner.kind().is_trivia() {
return Some(inner);
} else {
token = inner.prev_token();
}
}
None
}
fn previous_sibling_or_ancestor_sibling(element: SyntaxElement) -> Option<SyntaxElement> {
let token_sibling = non_trivia_sibling(element.clone(), Direction::Prev);
if let Some(sibling) = token_sibling {
Some(sibling)
} else {
// if not trying to find first ancestor which has such a sibling
let node = match element {
NodeOrToken::Node(node) => node,
NodeOrToken::Token(token) => token.parent(),
};
let range = node.text_range();
let top_node = node.ancestors().take_while(|it| it.text_range() == range).last()?;
let prev_sibling_node = top_node.ancestors().find(|it| {
non_trivia_sibling(NodeOrToken::Node(it.to_owned()), Direction::Prev).is_some()
})?;
non_trivia_sibling(NodeOrToken::Node(prev_sibling_node), Direction::Prev)
}
}