rust-analyzer/crates/hir-expand/src/builtin_derive_macro.rs

825 lines
29 KiB
Rust

//! Builtin derives.
use itertools::izip;
use rustc_hash::FxHashSet;
use span::{MacroCallId, Span};
use stdx::never;
use tracing::debug;
use crate::{
hygiene::span_with_def_site_ctxt,
name::{AsName, Name},
quote::dollar_crate,
span_map::SpanMapRef,
tt,
};
use syntax::ast::{self, AstNode, FieldList, HasAttrs, HasGenericParams, HasName, HasTypeBounds};
use crate::{db::ExpandDatabase, name, quote, ExpandError, ExpandResult};
macro_rules! register_builtin {
( $($trait:ident => $expand:ident),* ) => {
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum BuiltinDeriveExpander {
$($trait),*
}
impl BuiltinDeriveExpander {
pub fn expand(
&self,
db: &dyn ExpandDatabase,
id: MacroCallId,
tt: &ast::Adt,
token_map: SpanMapRef<'_>,
) -> ExpandResult<tt::Subtree> {
let expander = match *self {
$( BuiltinDeriveExpander::$trait => $expand, )*
};
let span = db.lookup_intern_macro_call(id).call_site;
let span = span_with_def_site_ctxt(db, span, id);
expander(span, tt, token_map)
}
fn find_by_name(name: &name::Name) -> Option<Self> {
match name {
$( id if id == &name::name![$trait] => Some(BuiltinDeriveExpander::$trait), )*
_ => None,
}
}
}
};
}
register_builtin! {
Copy => copy_expand,
Clone => clone_expand,
Default => default_expand,
Debug => debug_expand,
Hash => hash_expand,
Ord => ord_expand,
PartialOrd => partial_ord_expand,
Eq => eq_expand,
PartialEq => partial_eq_expand
}
pub fn find_builtin_derive(ident: &name::Name) -> Option<BuiltinDeriveExpander> {
BuiltinDeriveExpander::find_by_name(ident)
}
enum VariantShape {
Struct(Vec<tt::Ident>),
Tuple(usize),
Unit,
}
fn tuple_field_iterator(span: Span, n: usize) -> impl Iterator<Item = tt::Ident> {
(0..n).map(move |it| tt::Ident::new(format!("f{it}"), span))
}
impl VariantShape {
fn as_pattern(&self, path: tt::Subtree, span: Span) -> tt::Subtree {
self.as_pattern_map(path, span, |it| quote!(span => #it))
}
fn field_names(&self, span: Span) -> Vec<tt::Ident> {
match self {
VariantShape::Struct(s) => s.clone(),
VariantShape::Tuple(n) => tuple_field_iterator(span, *n).collect(),
VariantShape::Unit => vec![],
}
}
fn as_pattern_map(
&self,
path: tt::Subtree,
span: Span,
field_map: impl Fn(&tt::Ident) -> tt::Subtree,
) -> tt::Subtree {
match self {
VariantShape::Struct(fields) => {
let fields = fields.iter().map(|it| {
let mapped = field_map(it);
quote! {span => #it : #mapped , }
});
quote! {span =>
#path { ##fields }
}
}
&VariantShape::Tuple(n) => {
let fields = tuple_field_iterator(span, n).map(|it| {
let mapped = field_map(&it);
quote! {span =>
#mapped ,
}
});
quote! {span =>
#path ( ##fields )
}
}
VariantShape::Unit => path,
}
}
fn from(tm: SpanMapRef<'_>, value: Option<FieldList>) -> Result<Self, ExpandError> {
let r = match value {
None => VariantShape::Unit,
Some(FieldList::RecordFieldList(it)) => VariantShape::Struct(
it.fields()
.map(|it| it.name())
.map(|it| name_to_token(tm, it))
.collect::<Result<_, _>>()?,
),
Some(FieldList::TupleFieldList(it)) => VariantShape::Tuple(it.fields().count()),
};
Ok(r)
}
}
enum AdtShape {
Struct(VariantShape),
Enum { variants: Vec<(tt::Ident, VariantShape)>, default_variant: Option<usize> },
Union,
}
impl AdtShape {
fn as_pattern(&self, span: Span, name: &tt::Ident) -> Vec<tt::Subtree> {
self.as_pattern_map(name, |it| quote!(span =>#it), span)
}
fn field_names(&self, span: Span) -> Vec<Vec<tt::Ident>> {
match self {
AdtShape::Struct(s) => {
vec![s.field_names(span)]
}
AdtShape::Enum { variants, .. } => {
variants.iter().map(|(_, fields)| fields.field_names(span)).collect()
}
AdtShape::Union => {
never!("using fields of union in derive is always wrong");
vec![]
}
}
}
fn as_pattern_map(
&self,
name: &tt::Ident,
field_map: impl Fn(&tt::Ident) -> tt::Subtree,
span: Span,
) -> Vec<tt::Subtree> {
match self {
AdtShape::Struct(s) => {
vec![s.as_pattern_map(quote! {span => #name }, span, field_map)]
}
AdtShape::Enum { variants, .. } => variants
.iter()
.map(|(v, fields)| {
fields.as_pattern_map(quote! {span => #name :: #v }, span, &field_map)
})
.collect(),
AdtShape::Union => {
never!("pattern matching on union is always wrong");
vec![quote! {span => un }]
}
}
}
}
struct BasicAdtInfo {
name: tt::Ident,
shape: AdtShape,
/// first field is the name, and
/// second field is `Some(ty)` if it's a const param of type `ty`, `None` if it's a type param.
/// third fields is where bounds, if any
param_types: Vec<(tt::Subtree, Option<tt::Subtree>, Option<tt::Subtree>)>,
where_clause: Vec<tt::Subtree>,
associated_types: Vec<tt::Subtree>,
}
fn parse_adt(
tm: SpanMapRef<'_>,
adt: &ast::Adt,
call_site: Span,
) -> Result<BasicAdtInfo, ExpandError> {
let (name, generic_param_list, where_clause, shape) = match adt {
ast::Adt::Struct(it) => (
it.name(),
it.generic_param_list(),
it.where_clause(),
AdtShape::Struct(VariantShape::from(tm, it.field_list())?),
),
ast::Adt::Enum(it) => {
let default_variant = it
.variant_list()
.into_iter()
.flat_map(|it| it.variants())
.position(|it| it.attrs().any(|it| it.simple_name() == Some("default".into())));
(
it.name(),
it.generic_param_list(),
it.where_clause(),
AdtShape::Enum {
default_variant,
variants: it
.variant_list()
.into_iter()
.flat_map(|it| it.variants())
.map(|it| {
Ok((
name_to_token(tm, it.name())?,
VariantShape::from(tm, it.field_list())?,
))
})
.collect::<Result<_, ExpandError>>()?,
},
)
}
ast::Adt::Union(it) => {
(it.name(), it.generic_param_list(), it.where_clause(), AdtShape::Union)
}
};
let mut param_type_set: FxHashSet<Name> = FxHashSet::default();
let param_types = generic_param_list
.into_iter()
.flat_map(|param_list| param_list.type_or_const_params())
.map(|param| {
let name = {
let this = param.name();
match this {
Some(it) => {
param_type_set.insert(it.as_name());
mbe::syntax_node_to_token_tree(it.syntax(), tm, call_site)
}
None => {
tt::Subtree::empty(::tt::DelimSpan { open: call_site, close: call_site })
}
}
};
let bounds = match &param {
ast::TypeOrConstParam::Type(it) => it
.type_bound_list()
.map(|it| mbe::syntax_node_to_token_tree(it.syntax(), tm, call_site)),
ast::TypeOrConstParam::Const(_) => None,
};
let ty = if let ast::TypeOrConstParam::Const(param) = param {
let ty = param
.ty()
.map(|ty| mbe::syntax_node_to_token_tree(ty.syntax(), tm, call_site))
.unwrap_or_else(|| {
tt::Subtree::empty(::tt::DelimSpan { open: call_site, close: call_site })
});
Some(ty)
} else {
None
};
(name, ty, bounds)
})
.collect();
let where_clause = if let Some(w) = where_clause {
w.predicates()
.map(|it| mbe::syntax_node_to_token_tree(it.syntax(), tm, call_site))
.collect()
} else {
vec![]
};
// For a generic parameter `T`, when shorthand associated type `T::Assoc` appears in field
// types (of any variant for enums), we generate trait bound for it. It sounds reasonable to
// also generate trait bound for qualified associated type `<T as Trait>::Assoc`, but rustc
// does not do that for some unknown reason.
//
// See the analogous function in rustc [find_type_parameters()] and rust-lang/rust#50730.
// [find_type_parameters()]: https://github.com/rust-lang/rust/blob/1.70.0/compiler/rustc_builtin_macros/src/deriving/generic/mod.rs#L378
// It's cumbersome to deal with the distinct structures of ADTs, so let's just get untyped
// `SyntaxNode` that contains fields and look for descendant `ast::PathType`s. Of note is that
// we should not inspect `ast::PathType`s in parameter bounds and where clauses.
let field_list = match adt {
ast::Adt::Enum(it) => it.variant_list().map(|list| list.syntax().clone()),
ast::Adt::Struct(it) => it.field_list().map(|list| list.syntax().clone()),
ast::Adt::Union(it) => it.record_field_list().map(|list| list.syntax().clone()),
};
let associated_types = field_list
.into_iter()
.flat_map(|it| it.descendants())
.filter_map(ast::PathType::cast)
.filter_map(|p| {
let name = p.path()?.qualifier()?.as_single_name_ref()?.as_name();
param_type_set.contains(&name).then_some(p)
})
.map(|it| mbe::syntax_node_to_token_tree(it.syntax(), tm, call_site))
.collect();
let name_token = name_to_token(tm, name)?;
Ok(BasicAdtInfo { name: name_token, shape, param_types, where_clause, associated_types })
}
fn name_to_token(
token_map: SpanMapRef<'_>,
name: Option<ast::Name>,
) -> Result<tt::Ident, ExpandError> {
let name = name.ok_or_else(|| {
debug!("parsed item has no name");
ExpandError::other("missing name")
})?;
let span = token_map.span_for_range(name.syntax().text_range());
let name_token = tt::Ident { span, text: name.text().into() };
Ok(name_token)
}
/// Given that we are deriving a trait `DerivedTrait` for a type like:
///
/// ```ignore (only-for-syntax-highlight)
/// struct Struct<'a, ..., 'z, A, B: DeclaredTrait, C, ..., Z> where C: WhereTrait {
/// a: A,
/// b: B::Item,
/// b1: <B as DeclaredTrait>::Item,
/// c1: <C as WhereTrait>::Item,
/// c2: Option<<C as WhereTrait>::Item>,
/// ...
/// }
/// ```
///
/// create an impl like:
///
/// ```ignore (only-for-syntax-highlight)
/// impl<'a, ..., 'z, A, B: DeclaredTrait, C, ... Z> where
/// C: WhereTrait,
/// A: DerivedTrait + B1 + ... + BN,
/// B: DerivedTrait + B1 + ... + BN,
/// C: DerivedTrait + B1 + ... + BN,
/// B::Item: DerivedTrait + B1 + ... + BN,
/// <C as WhereTrait>::Item: DerivedTrait + B1 + ... + BN,
/// ...
/// {
/// ...
/// }
/// ```
///
/// where B1, ..., BN are the bounds given by `bounds_paths`. Z is a phantom type, and
/// therefore does not get bound by the derived trait.
fn expand_simple_derive(
// FIXME: use
invoc_span: Span,
tt: &ast::Adt,
tm: SpanMapRef<'_>,
trait_path: tt::Subtree,
make_trait_body: impl FnOnce(&BasicAdtInfo) -> tt::Subtree,
) -> ExpandResult<tt::Subtree> {
let info = match parse_adt(tm, tt, invoc_span) {
Ok(info) => info,
Err(e) => {
return ExpandResult::new(
tt::Subtree::empty(tt::DelimSpan { open: invoc_span, close: invoc_span }),
e,
)
}
};
let trait_body = make_trait_body(&info);
let mut where_block: Vec<_> =
info.where_clause.into_iter().map(|w| quote! {invoc_span => #w , }).collect();
let (params, args): (Vec<_>, Vec<_>) = info
.param_types
.into_iter()
.map(|(ident, param_ty, bound)| {
let ident_ = ident.clone();
if let Some(b) = bound {
let ident = ident.clone();
where_block.push(quote! {invoc_span => #ident : #b , });
}
if let Some(ty) = param_ty {
(quote! {invoc_span => const #ident : #ty , }, quote! {invoc_span => #ident_ , })
} else {
let bound = trait_path.clone();
(quote! {invoc_span => #ident : #bound , }, quote! {invoc_span => #ident_ , })
}
})
.unzip();
where_block.extend(info.associated_types.iter().map(|it| {
let it = it.clone();
let bound = trait_path.clone();
quote! {invoc_span => #it : #bound , }
}));
let name = info.name;
let expanded = quote! {invoc_span =>
impl < ##params > #trait_path for #name < ##args > where ##where_block { #trait_body }
};
ExpandResult::ok(expanded)
}
fn copy_expand(span: Span, tt: &ast::Adt, tm: SpanMapRef<'_>) -> ExpandResult<tt::Subtree> {
let krate = dollar_crate(span);
expand_simple_derive(span, tt, tm, quote! {span => #krate::marker::Copy }, |_| quote! {span =>})
}
fn clone_expand(span: Span, tt: &ast::Adt, tm: SpanMapRef<'_>) -> ExpandResult<tt::Subtree> {
let krate = dollar_crate(span);
expand_simple_derive(span, tt, tm, quote! {span => #krate::clone::Clone }, |adt| {
if matches!(adt.shape, AdtShape::Union) {
let star = tt::Punct { char: '*', spacing: ::tt::Spacing::Alone, span };
return quote! {span =>
fn clone(&self) -> Self {
#star self
}
};
}
if matches!(&adt.shape, AdtShape::Enum { variants, .. } if variants.is_empty()) {
let star = tt::Punct { char: '*', spacing: ::tt::Spacing::Alone, span };
return quote! {span =>
fn clone(&self) -> Self {
match #star self {}
}
};
}
let name = &adt.name;
let patterns = adt.shape.as_pattern(span, name);
let exprs = adt.shape.as_pattern_map(name, |it| quote! {span => #it .clone() }, span);
let arms = patterns.into_iter().zip(exprs).map(|(pat, expr)| {
let fat_arrow = fat_arrow(span);
quote! {span =>
#pat #fat_arrow #expr,
}
});
quote! {span =>
fn clone(&self) -> Self {
match self {
##arms
}
}
}
})
}
/// This function exists since `quote! {span => => }` doesn't work.
fn fat_arrow(span: Span) -> tt::Subtree {
let eq = tt::Punct { char: '=', spacing: ::tt::Spacing::Joint, span };
quote! {span => #eq> }
}
/// This function exists since `quote! {span => && }` doesn't work.
fn and_and(span: Span) -> tt::Subtree {
let and = tt::Punct { char: '&', spacing: ::tt::Spacing::Joint, span };
quote! {span => #and& }
}
fn default_expand(span: Span, tt: &ast::Adt, tm: SpanMapRef<'_>) -> ExpandResult<tt::Subtree> {
let krate = &dollar_crate(span);
expand_simple_derive(span, tt, tm, quote! {span => #krate::default::Default }, |adt| {
let body = match &adt.shape {
AdtShape::Struct(fields) => {
let name = &adt.name;
fields.as_pattern_map(
quote!(span =>#name),
span,
|_| quote!(span =>#krate::default::Default::default()),
)
}
AdtShape::Enum { default_variant, variants } => {
if let Some(d) = default_variant {
let (name, fields) = &variants[*d];
let adt_name = &adt.name;
fields.as_pattern_map(
quote!(span =>#adt_name :: #name),
span,
|_| quote!(span =>#krate::default::Default::default()),
)
} else {
// FIXME: Return expand error here
quote!(span =>)
}
}
AdtShape::Union => {
// FIXME: Return expand error here
quote!(span =>)
}
};
quote! {span =>
fn default() -> Self {
#body
}
}
})
}
fn debug_expand(span: Span, tt: &ast::Adt, tm: SpanMapRef<'_>) -> ExpandResult<tt::Subtree> {
let krate = &dollar_crate(span);
expand_simple_derive(span, tt, tm, quote! {span => #krate::fmt::Debug }, |adt| {
let for_variant = |name: String, v: &VariantShape| match v {
VariantShape::Struct(fields) => {
let for_fields = fields.iter().map(|it| {
let x_string = it.to_string();
quote! {span =>
.field(#x_string, & #it)
}
});
quote! {span =>
f.debug_struct(#name) ##for_fields .finish()
}
}
VariantShape::Tuple(n) => {
let for_fields = tuple_field_iterator(span, *n).map(|it| {
quote! {span =>
.field( & #it)
}
});
quote! {span =>
f.debug_tuple(#name) ##for_fields .finish()
}
}
VariantShape::Unit => quote! {span =>
f.write_str(#name)
},
};
if matches!(&adt.shape, AdtShape::Enum { variants, .. } if variants.is_empty()) {
let star = tt::Punct { char: '*', spacing: ::tt::Spacing::Alone, span };
return quote! {span =>
fn fmt(&self, f: &mut #krate::fmt::Formatter) -> #krate::fmt::Result {
match #star self {}
}
};
}
let arms = match &adt.shape {
AdtShape::Struct(fields) => {
let fat_arrow = fat_arrow(span);
let name = &adt.name;
let pat = fields.as_pattern(quote!(span =>#name), span);
let expr = for_variant(name.to_string(), fields);
vec![quote! {span => #pat #fat_arrow #expr }]
}
AdtShape::Enum { variants, .. } => variants
.iter()
.map(|(name, v)| {
let fat_arrow = fat_arrow(span);
let adt_name = &adt.name;
let pat = v.as_pattern(quote!(span =>#adt_name :: #name), span);
let expr = for_variant(name.to_string(), v);
quote! {span =>
#pat #fat_arrow #expr ,
}
})
.collect(),
AdtShape::Union => {
// FIXME: Return expand error here
vec![]
}
};
quote! {span =>
fn fmt(&self, f: &mut #krate::fmt::Formatter) -> #krate::fmt::Result {
match self {
##arms
}
}
}
})
}
fn hash_expand(span: Span, tt: &ast::Adt, tm: SpanMapRef<'_>) -> ExpandResult<tt::Subtree> {
let krate = &dollar_crate(span);
expand_simple_derive(span, tt, tm, quote! {span => #krate::hash::Hash }, |adt| {
if matches!(adt.shape, AdtShape::Union) {
// FIXME: Return expand error here
return quote! {span =>};
}
if matches!(&adt.shape, AdtShape::Enum { variants, .. } if variants.is_empty()) {
let star = tt::Punct { char: '*', spacing: ::tt::Spacing::Alone, span };
return quote! {span =>
fn hash<H: #krate::hash::Hasher>(&self, ra_expand_state: &mut H) {
match #star self {}
}
};
}
let arms =
adt.shape.as_pattern(span, &adt.name).into_iter().zip(adt.shape.field_names(span)).map(
|(pat, names)| {
let expr = {
let it =
names.iter().map(|it| quote! {span => #it . hash(ra_expand_state); });
quote! {span => {
##it
} }
};
let fat_arrow = fat_arrow(span);
quote! {span =>
#pat #fat_arrow #expr ,
}
},
);
let check_discriminant = if matches!(&adt.shape, AdtShape::Enum { .. }) {
quote! {span => #krate::mem::discriminant(self).hash(ra_expand_state); }
} else {
quote! {span =>}
};
quote! {span =>
fn hash<H: #krate::hash::Hasher>(&self, ra_expand_state: &mut H) {
#check_discriminant
match self {
##arms
}
}
}
})
}
fn eq_expand(span: Span, tt: &ast::Adt, tm: SpanMapRef<'_>) -> ExpandResult<tt::Subtree> {
let krate = dollar_crate(span);
expand_simple_derive(span, tt, tm, quote! {span => #krate::cmp::Eq }, |_| quote! {span =>})
}
fn partial_eq_expand(span: Span, tt: &ast::Adt, tm: SpanMapRef<'_>) -> ExpandResult<tt::Subtree> {
let krate = dollar_crate(span);
expand_simple_derive(span, tt, tm, quote! {span => #krate::cmp::PartialEq }, |adt| {
if matches!(adt.shape, AdtShape::Union) {
// FIXME: Return expand error here
return quote! {span =>};
}
let name = &adt.name;
let (self_patterns, other_patterns) = self_and_other_patterns(adt, name, span);
let arms = izip!(self_patterns, other_patterns, adt.shape.field_names(span)).map(
|(pat1, pat2, names)| {
let fat_arrow = fat_arrow(span);
let body = match &*names {
[] => {
quote!(span =>true)
}
[first, rest @ ..] => {
let rest = rest.iter().map(|it| {
let t1 = tt::Ident::new(format!("{}_self", it.text), it.span);
let t2 = tt::Ident::new(format!("{}_other", it.text), it.span);
let and_and = and_and(span);
quote!(span =>#and_and #t1 .eq( #t2 ))
});
let first = {
let t1 = tt::Ident::new(format!("{}_self", first.text), first.span);
let t2 = tt::Ident::new(format!("{}_other", first.text), first.span);
quote!(span =>#t1 .eq( #t2 ))
};
quote!(span =>#first ##rest)
}
};
quote! {span => ( #pat1 , #pat2 ) #fat_arrow #body , }
},
);
let fat_arrow = fat_arrow(span);
quote! {span =>
fn eq(&self, other: &Self) -> bool {
match (self, other) {
##arms
_unused #fat_arrow false
}
}
}
})
}
fn self_and_other_patterns(
adt: &BasicAdtInfo,
name: &tt::Ident,
span: Span,
) -> (Vec<tt::Subtree>, Vec<tt::Subtree>) {
let self_patterns = adt.shape.as_pattern_map(
name,
|it| {
let t = tt::Ident::new(format!("{}_self", it.text), it.span);
quote!(span =>#t)
},
span,
);
let other_patterns = adt.shape.as_pattern_map(
name,
|it| {
let t = tt::Ident::new(format!("{}_other", it.text), it.span);
quote!(span =>#t)
},
span,
);
(self_patterns, other_patterns)
}
fn ord_expand(span: Span, tt: &ast::Adt, tm: SpanMapRef<'_>) -> ExpandResult<tt::Subtree> {
let krate = &dollar_crate(span);
expand_simple_derive(span, tt, tm, quote! {span => #krate::cmp::Ord }, |adt| {
fn compare(
krate: &tt::Ident,
left: tt::Subtree,
right: tt::Subtree,
rest: tt::Subtree,
span: Span,
) -> tt::Subtree {
let fat_arrow1 = fat_arrow(span);
let fat_arrow2 = fat_arrow(span);
quote! {span =>
match #left.cmp(&#right) {
#krate::cmp::Ordering::Equal #fat_arrow1 {
#rest
}
c #fat_arrow2 return c,
}
}
}
if matches!(adt.shape, AdtShape::Union) {
// FIXME: Return expand error here
return quote!(span =>);
}
let (self_patterns, other_patterns) = self_and_other_patterns(adt, &adt.name, span);
let arms = izip!(self_patterns, other_patterns, adt.shape.field_names(span)).map(
|(pat1, pat2, fields)| {
let mut body = quote!(span =>#krate::cmp::Ordering::Equal);
for f in fields.into_iter().rev() {
let t1 = tt::Ident::new(format!("{}_self", f.text), f.span);
let t2 = tt::Ident::new(format!("{}_other", f.text), f.span);
body = compare(krate, quote!(span =>#t1), quote!(span =>#t2), body, span);
}
let fat_arrow = fat_arrow(span);
quote! {span => ( #pat1 , #pat2 ) #fat_arrow #body , }
},
);
let fat_arrow = fat_arrow(span);
let mut body = quote! {span =>
match (self, other) {
##arms
_unused #fat_arrow #krate::cmp::Ordering::Equal
}
};
if matches!(&adt.shape, AdtShape::Enum { .. }) {
let left = quote!(span =>#krate::intrinsics::discriminant_value(self));
let right = quote!(span =>#krate::intrinsics::discriminant_value(other));
body = compare(krate, left, right, body, span);
}
quote! {span =>
fn cmp(&self, other: &Self) -> #krate::cmp::Ordering {
#body
}
}
})
}
fn partial_ord_expand(span: Span, tt: &ast::Adt, tm: SpanMapRef<'_>) -> ExpandResult<tt::Subtree> {
let krate = &dollar_crate(span);
expand_simple_derive(span, tt, tm, quote! {span => #krate::cmp::PartialOrd }, |adt| {
fn compare(
krate: &tt::Ident,
left: tt::Subtree,
right: tt::Subtree,
rest: tt::Subtree,
span: Span,
) -> tt::Subtree {
let fat_arrow1 = fat_arrow(span);
let fat_arrow2 = fat_arrow(span);
quote! {span =>
match #left.partial_cmp(&#right) {
#krate::option::Option::Some(#krate::cmp::Ordering::Equal) #fat_arrow1 {
#rest
}
c #fat_arrow2 return c,
}
}
}
if matches!(adt.shape, AdtShape::Union) {
// FIXME: Return expand error here
return quote!(span =>);
}
let left = quote!(span =>#krate::intrinsics::discriminant_value(self));
let right = quote!(span =>#krate::intrinsics::discriminant_value(other));
let (self_patterns, other_patterns) = self_and_other_patterns(adt, &adt.name, span);
let arms = izip!(self_patterns, other_patterns, adt.shape.field_names(span)).map(
|(pat1, pat2, fields)| {
let mut body =
quote!(span =>#krate::option::Option::Some(#krate::cmp::Ordering::Equal));
for f in fields.into_iter().rev() {
let t1 = tt::Ident::new(format!("{}_self", f.text), f.span);
let t2 = tt::Ident::new(format!("{}_other", f.text), f.span);
body = compare(krate, quote!(span =>#t1), quote!(span =>#t2), body, span);
}
let fat_arrow = fat_arrow(span);
quote! {span => ( #pat1 , #pat2 ) #fat_arrow #body , }
},
);
let fat_arrow = fat_arrow(span);
let body = compare(
krate,
left,
right,
quote! {span =>
match (self, other) {
##arms
_unused #fat_arrow #krate::option::Option::Some(#krate::cmp::Ordering::Equal)
}
},
span,
);
quote! {span =>
fn partial_cmp(&self, other: &Self) -> #krate::option::Option::Option<#krate::cmp::Ordering> {
#body
}
}
})
}