652565f8f1
Return values larger than 2 registers using a return area pointer LLVM and Cranelift disagree about how to return values that don't fit in the registers designated for return values. LLVM will force the entire return value to be passed by return area pointer, while Cranelift will look at each IR level return value independently and decide to pass it in a register or not, which would result in the return value being passed partially in registers and partially through a return area pointer. While Cranelift may need to be fixed as the LLVM behavior is generally more correct with respect to the surface language, forcing this behavior in rustc itself makes it easier for other backends to conform to the Rust ABI and for the C ABI rustc already handles this behavior anyway. In addition LLVM's decision to pass the return value in registers or using a return area pointer depends on how exactly the return type is lowered to an LLVM IR type. For example `Option<u128>` can be lowered as `{ i128, i128 }` in which case the x86_64 backend would use a return area pointer, or it could be passed as `{ i32, i128 }` in which case the x86_64 backend would pass it in registers by taking advantage of an LLVM ABI extension that allows using 3 registers for the x86_64 sysv call conv rather than the officially specified 2 registers. This adjustment is only necessary for the Rust ABI as for other ABI's the calling convention implementations in rustc_target already ensure any return value which doesn't fit in the available amount of return registers is passed in the right way for the current target. Helps with https://github.com/rust-lang/rustc_codegen_cranelift/issues/1525 cc https://github.com/bytecodealliance/wasmtime/issues/9250 |
||
---|---|---|
.cargo | ||
.github | ||
.vscode | ||
assets | ||
bench_data | ||
crates | ||
docs | ||
editors/code | ||
lib | ||
xtask | ||
.editorconfig | ||
.git-blame-ignore-revs | ||
.gitattributes | ||
.gitignore | ||
.typos.toml | ||
Cargo.lock | ||
Cargo.toml | ||
clippy.toml | ||
CONTRIBUTING.md | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
PRIVACY.md | ||
README.md | ||
rust-bors.toml | ||
rust-version | ||
rustfmt.toml | ||
triagebot.toml |
rust-analyzer is a modular compiler frontend for the Rust language. It is a part of a larger rls-2.0 effort to create excellent IDE support for Rust.
Quick Start
https://rust-analyzer.github.io/manual.html#installation
Documentation
If you want to contribute to rust-analyzer check out the CONTRIBUTING.md or if you are just curious about how things work under the hood, check the ./docs/dev folder.
If you want to use rust-analyzer's language server with your editor of choice, check the manual folder. It also contains some tips & tricks to help you be more productive when using rust-analyzer.
Security and Privacy
See the corresponding sections of the manual.
Communication
For usage and troubleshooting requests, please use "IDEs and Editors" category of the Rust forum:
https://users.rust-lang.org/c/ide/14
For questions about development and implementation, join rust-analyzer working group on Zulip:
https://rust-lang.zulipchat.com/#narrow/stream/185405-t-compiler.2Frust-analyzer
Quick Links
- Website: https://rust-analyzer.github.io/
- Metrics: https://rust-analyzer.github.io/metrics/
- API docs: https://rust-lang.github.io/rust-analyzer/ide/
- Changelog: https://rust-analyzer.github.io/thisweek
License
rust-analyzer is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0).
See LICENSE-APACHE and LICENSE-MIT for details.