rust-analyzer/crates/hir-ty/src/autoderef.rs

212 lines
6.5 KiB
Rust

//! In certain situations, rust automatically inserts derefs as necessary: for
//! example, field accesses `foo.bar` still work when `foo` is actually a
//! reference to a type with the field `bar`. This is an approximation of the
//! logic in rustc (which lives in rustc_hir_analysis/check/autoderef.rs).
use std::mem;
use chalk_ir::cast::Cast;
use hir_def::lang_item::LangItem;
use hir_expand::name::Name;
use intern::sym;
use limit::Limit;
use triomphe::Arc;
use crate::{
db::HirDatabase, infer::unify::InferenceTable, Canonical, Goal, Interner, ProjectionTyExt,
TraitEnvironment, Ty, TyBuilder, TyKind,
};
static AUTODEREF_RECURSION_LIMIT: Limit = Limit::new(10);
#[derive(Debug)]
pub(crate) enum AutoderefKind {
Builtin,
Overloaded,
}
/// Returns types that `ty` transitively dereferences to. This function is only meant to be used
/// outside `hir-ty`.
///
/// It is guaranteed that:
/// - the yielded types don't contain inference variables (but may contain `TyKind::Error`).
/// - a type won't be yielded more than once; in other words, the returned iterator will stop if it
/// detects a cycle in the deref chain.
pub fn autoderef(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
ty: Canonical<Ty>,
) -> impl Iterator<Item = Ty> {
let mut table = InferenceTable::new(db, env);
let ty = table.instantiate_canonical(ty);
let mut autoderef = Autoderef::new_no_tracking(&mut table, ty, false);
let mut v = Vec::new();
while let Some((ty, _steps)) = autoderef.next() {
// `ty` may contain unresolved inference variables. Since there's no chance they would be
// resolved, just replace with fallback type.
let resolved = autoderef.table.resolve_completely(ty);
// If the deref chain contains a cycle (e.g. `A` derefs to `B` and `B` derefs to `A`), we
// would revisit some already visited types. Stop here to avoid duplication.
//
// XXX: The recursion limit for `Autoderef` is currently 10, so `Vec::contains()` shouldn't
// be too expensive. Replace this duplicate check with `FxHashSet` if it proves to be more
// performant.
if v.contains(&resolved) {
break;
}
v.push(resolved);
}
v.into_iter()
}
trait TrackAutoderefSteps {
fn len(&self) -> usize;
fn push(&mut self, kind: AutoderefKind, ty: &Ty);
}
impl TrackAutoderefSteps for usize {
fn len(&self) -> usize {
*self
}
fn push(&mut self, _: AutoderefKind, _: &Ty) {
*self += 1;
}
}
impl TrackAutoderefSteps for Vec<(AutoderefKind, Ty)> {
fn len(&self) -> usize {
self.len()
}
fn push(&mut self, kind: AutoderefKind, ty: &Ty) {
self.push((kind, ty.clone()));
}
}
#[derive(Debug)]
pub(crate) struct Autoderef<'table, 'db, T = Vec<(AutoderefKind, Ty)>> {
pub(crate) table: &'table mut InferenceTable<'db>,
ty: Ty,
at_start: bool,
steps: T,
explicit: bool,
}
impl<'table, 'db> Autoderef<'table, 'db> {
pub(crate) fn new(table: &'table mut InferenceTable<'db>, ty: Ty, explicit: bool) -> Self {
let ty = table.resolve_ty_shallow(&ty);
Autoderef { table, ty, at_start: true, steps: Vec::new(), explicit }
}
pub(crate) fn steps(&self) -> &[(AutoderefKind, Ty)] {
&self.steps
}
}
impl<'table, 'db> Autoderef<'table, 'db, usize> {
pub(crate) fn new_no_tracking(
table: &'table mut InferenceTable<'db>,
ty: Ty,
explicit: bool,
) -> Self {
let ty = table.resolve_ty_shallow(&ty);
Autoderef { table, ty, at_start: true, steps: 0, explicit }
}
}
#[allow(private_bounds)]
impl<'table, 'db, T: TrackAutoderefSteps> Autoderef<'table, 'db, T> {
pub(crate) fn step_count(&self) -> usize {
self.steps.len()
}
pub(crate) fn final_ty(&self) -> Ty {
self.ty.clone()
}
}
impl<T: TrackAutoderefSteps> Iterator for Autoderef<'_, '_, T> {
type Item = (Ty, usize);
#[tracing::instrument(skip_all)]
fn next(&mut self) -> Option<Self::Item> {
if mem::take(&mut self.at_start) {
return Some((self.ty.clone(), 0));
}
if AUTODEREF_RECURSION_LIMIT.check(self.steps.len() + 1).is_err() {
return None;
}
let (kind, new_ty) = autoderef_step(self.table, self.ty.clone(), self.explicit)?;
self.steps.push(kind, &self.ty);
self.ty = new_ty;
Some((self.ty.clone(), self.step_count()))
}
}
pub(crate) fn autoderef_step(
table: &mut InferenceTable<'_>,
ty: Ty,
explicit: bool,
) -> Option<(AutoderefKind, Ty)> {
if let Some(derefed) = builtin_deref(table.db, &ty, explicit) {
Some((AutoderefKind::Builtin, table.resolve_ty_shallow(derefed)))
} else {
Some((AutoderefKind::Overloaded, deref_by_trait(table, ty)?))
}
}
pub(crate) fn builtin_deref<'ty>(
db: &dyn HirDatabase,
ty: &'ty Ty,
explicit: bool,
) -> Option<&'ty Ty> {
match ty.kind(Interner) {
TyKind::Ref(.., ty) => Some(ty),
TyKind::Raw(.., ty) if explicit => Some(ty),
&TyKind::Adt(chalk_ir::AdtId(adt), ref substs) if crate::lang_items::is_box(db, adt) => {
substs.at(Interner, 0).ty(Interner)
}
_ => None,
}
}
pub(crate) fn deref_by_trait(
table @ &mut InferenceTable { db, .. }: &mut InferenceTable<'_>,
ty: Ty,
) -> Option<Ty> {
let _p = tracing::info_span!("deref_by_trait").entered();
if table.resolve_ty_shallow(&ty).inference_var(Interner).is_some() {
// don't try to deref unknown variables
return None;
}
let deref_trait =
db.lang_item(table.trait_env.krate, LangItem::Deref).and_then(|l| l.as_trait())?;
let target = db
.trait_data(deref_trait)
.associated_type_by_name(&Name::new_symbol_root(sym::Target.clone()))?;
let projection = {
let b = TyBuilder::subst_for_def(db, deref_trait, None);
if b.remaining() != 1 {
// the Target type + Deref trait should only have one generic parameter,
// namely Deref's Self type
return None;
}
let deref_subst = b.push(ty).build();
TyBuilder::assoc_type_projection(db, target, Some(deref_subst)).build()
};
// Check that the type implements Deref at all
let trait_ref = projection.trait_ref(db);
let implements_goal: Goal = trait_ref.cast(Interner);
table.try_obligation(implements_goal.clone())?;
table.register_obligation(implements_goal);
let result = table.normalize_projection_ty(projection);
Some(table.resolve_ty_shallow(&result))
}