rust-analyzer/crates/ra_hir/src/ty/infer.rs
2019-05-23 20:18:47 +03:00

1438 lines
56 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Type inference, i.e. the process of walking through the code and determining
//! the type of each expression and pattern.
//!
//! For type inference, compare the implementations in rustc (the various
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
//! inference here is the `infer` function, which infers the types of all
//! expressions in a given function.
//!
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
//! which represent currently unknown types; as we walk through the expressions,
//! we might determine that certain variables need to be equal to each other, or
//! to certain types. To record this, we use the union-find implementation from
//! the `ena` crate, which is extracted from rustc.
use std::borrow::Cow;
use std::iter::repeat;
use std::ops::Index;
use std::sync::Arc;
use std::mem;
use ena::unify::{InPlaceUnificationTable, UnifyKey, UnifyValue, NoError};
use rustc_hash::FxHashMap;
use ra_arena::map::ArenaMap;
use ra_prof::profile;
use test_utils::tested_by;
use crate::{
Function, StructField, Path, Name, FnSignature, AdtDef, ConstSignature, HirDatabase,
DefWithBody, ImplItem,
type_ref::{TypeRef, Mutability},
expr::{
Body, Expr, BindingAnnotation, Literal, ExprId, Pat, PatId, UnaryOp, BinaryOp, Statement,
FieldPat, Array, self,
},
generics::{GenericParams, HasGenericParams},
path::{GenericArgs, GenericArg},
ModuleDef,
adt::VariantDef,
resolve::{Resolver, Resolution},
nameres::Namespace,
ty::infer::diagnostics::InferenceDiagnostic,
diagnostics::DiagnosticSink,
};
use super::{
Ty, TypableDef, Substs, primitive, op, ApplicationTy, TypeCtor, CallableDef, TraitRef,
traits::{Solution, Obligation, Guidance},
method_resolution,
};
mod unify;
/// The entry point of type inference.
pub fn infer_query(db: &impl HirDatabase, def: DefWithBody) -> Arc<InferenceResult> {
let _p = profile("infer_query");
db.check_canceled();
let body = def.body(db);
let resolver = def.resolver(db);
let mut ctx = InferenceContext::new(db, body, resolver);
match def {
DefWithBody::Const(ref c) => ctx.collect_const_signature(&c.signature(db)),
DefWithBody::Function(ref f) => ctx.collect_fn_signature(&f.signature(db)),
DefWithBody::Static(ref s) => ctx.collect_const_signature(&s.signature(db)),
}
ctx.infer_body();
Arc::new(ctx.resolve_all())
}
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
enum ExprOrPatId {
ExprId(ExprId),
PatId(PatId),
}
impl_froms!(ExprOrPatId: ExprId, PatId);
/// Binding modes inferred for patterns.
/// https://doc.rust-lang.org/reference/patterns.html#binding-modes
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum BindingMode {
Move,
Ref(Mutability),
}
impl BindingMode {
pub fn convert(annotation: &BindingAnnotation) -> BindingMode {
match annotation {
BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared),
BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
}
}
}
impl Default for BindingMode {
fn default() -> Self {
BindingMode::Move
}
}
/// The result of type inference: A mapping from expressions and patterns to types.
#[derive(Clone, PartialEq, Eq, Debug)]
pub struct InferenceResult {
/// For each method call expr, records the function it resolves to.
method_resolutions: FxHashMap<ExprId, Function>,
/// For each field access expr, records the field it resolves to.
field_resolutions: FxHashMap<ExprId, StructField>,
/// For each associated item record what it resolves to
assoc_resolutions: FxHashMap<ExprOrPatId, ImplItem>,
diagnostics: Vec<InferenceDiagnostic>,
pub(super) type_of_expr: ArenaMap<ExprId, Ty>,
pub(super) type_of_pat: ArenaMap<PatId, Ty>,
}
impl InferenceResult {
pub fn method_resolution(&self, expr: ExprId) -> Option<Function> {
self.method_resolutions.get(&expr).map(|it| *it)
}
pub fn field_resolution(&self, expr: ExprId) -> Option<StructField> {
self.field_resolutions.get(&expr).map(|it| *it)
}
pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<ImplItem> {
self.assoc_resolutions.get(&id.into()).map(|it| *it)
}
pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<ImplItem> {
self.assoc_resolutions.get(&id.into()).map(|it| *it)
}
pub(crate) fn add_diagnostics(
&self,
db: &impl HirDatabase,
owner: Function,
sink: &mut DiagnosticSink,
) {
self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink))
}
}
impl Index<ExprId> for InferenceResult {
type Output = Ty;
fn index(&self, expr: ExprId) -> &Ty {
self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
}
}
impl Index<PatId> for InferenceResult {
type Output = Ty;
fn index(&self, pat: PatId) -> &Ty {
self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
}
}
/// The inference context contains all information needed during type inference.
#[derive(Clone, Debug)]
struct InferenceContext<'a, D: HirDatabase> {
db: &'a D,
body: Arc<Body>,
resolver: Resolver,
var_unification_table: InPlaceUnificationTable<TypeVarId>,
obligations: Vec<Obligation>,
method_resolutions: FxHashMap<ExprId, Function>,
field_resolutions: FxHashMap<ExprId, StructField>,
assoc_resolutions: FxHashMap<ExprOrPatId, ImplItem>,
type_of_expr: ArenaMap<ExprId, Ty>,
type_of_pat: ArenaMap<PatId, Ty>,
diagnostics: Vec<InferenceDiagnostic>,
/// The return type of the function being inferred.
return_ty: Ty,
}
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
fn new(db: &'a D, body: Arc<Body>, resolver: Resolver) -> Self {
InferenceContext {
method_resolutions: FxHashMap::default(),
field_resolutions: FxHashMap::default(),
assoc_resolutions: FxHashMap::default(),
type_of_expr: ArenaMap::default(),
type_of_pat: ArenaMap::default(),
diagnostics: Vec::default(),
var_unification_table: InPlaceUnificationTable::new(),
obligations: Vec::default(),
return_ty: Ty::Unknown, // set in collect_fn_signature
db,
body,
resolver,
}
}
fn resolve_all(mut self) -> InferenceResult {
// FIXME resolve obligations as well (use Guidance if necessary)
let mut tv_stack = Vec::new();
let mut expr_types = mem::replace(&mut self.type_of_expr, ArenaMap::default());
for ty in expr_types.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
let mut pat_types = mem::replace(&mut self.type_of_pat, ArenaMap::default());
for ty in pat_types.values_mut() {
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
*ty = resolved;
}
InferenceResult {
method_resolutions: self.method_resolutions,
field_resolutions: self.field_resolutions,
assoc_resolutions: self.assoc_resolutions,
type_of_expr: expr_types,
type_of_pat: pat_types,
diagnostics: self.diagnostics,
}
}
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
self.type_of_expr.insert(expr, ty);
}
fn write_method_resolution(&mut self, expr: ExprId, func: Function) {
self.method_resolutions.insert(expr, func);
}
fn write_field_resolution(&mut self, expr: ExprId, field: StructField) {
self.field_resolutions.insert(expr, field);
}
fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: ImplItem) {
self.assoc_resolutions.insert(id, item);
}
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
self.type_of_pat.insert(pat, ty);
}
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
let ty = Ty::from_hir(
self.db,
// FIXME use right resolver for block
&self.resolver,
type_ref,
);
let ty = self.insert_type_vars(ty);
ty
}
fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
}
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
self.unify_inner(ty1, ty2, 0)
}
fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
if depth > 1000 {
// prevent stackoverflows
panic!("infinite recursion in unification");
}
if ty1 == ty2 {
return true;
}
// try to resolve type vars first
let ty1 = self.resolve_ty_shallow(ty1);
let ty2 = self.resolve_ty_shallow(ty2);
match (&*ty1, &*ty2) {
(Ty::Unknown, ..) => true,
(.., Ty::Unknown) => true,
(Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
}
(Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
| (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2))) => {
// both type vars are unknown since we tried to resolve them
self.var_unification_table.union(*tv1, *tv2);
true
}
(Ty::Infer(InferTy::TypeVar(tv)), other)
| (other, Ty::Infer(InferTy::TypeVar(tv)))
| (Ty::Infer(InferTy::IntVar(tv)), other)
| (other, Ty::Infer(InferTy::IntVar(tv)))
| (Ty::Infer(InferTy::FloatVar(tv)), other)
| (other, Ty::Infer(InferTy::FloatVar(tv))) => {
// the type var is unknown since we tried to resolve it
self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
true
}
_ => false,
}
}
fn new_type_var(&mut self) -> Ty {
Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_integer_var(&mut self) -> Ty {
Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
fn new_float_var(&mut self) -> Ty {
Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
}
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
match ty {
Ty::Unknown => self.new_type_var(),
Ty::Apply(ApplicationTy {
ctor: TypeCtor::Int(primitive::UncertainIntTy::Unknown),
..
}) => self.new_integer_var(),
Ty::Apply(ApplicationTy {
ctor: TypeCtor::Float(primitive::UncertainFloatTy::Unknown),
..
}) => self.new_float_var(),
_ => ty,
}
}
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
}
fn resolve_obligations_as_possible(&mut self) {
let obligations = mem::replace(&mut self.obligations, Vec::new());
for obligation in obligations {
let (solution, canonicalized) = match &obligation {
Obligation::Trait(tr) => {
let canonicalized = self.canonicalizer().canonicalize_trait_ref(tr.clone());
(
self.db.implements(
self.resolver.krate().unwrap(),
canonicalized.value.clone(),
),
canonicalized,
)
}
};
match solution {
Some(Solution::Unique(substs)) => {
canonicalized.apply_solution(self, substs.0);
}
Some(Solution::Ambig(Guidance::Definite(substs))) => {
canonicalized.apply_solution(self, substs.0);
self.obligations.push(obligation);
}
Some(_) => {
// FIXME use this when trying to resolve everything at the end
self.obligations.push(obligation);
}
None => {
// FIXME obligation cannot be fulfilled => diagnostic
}
}
}
}
/// Resolves the type as far as currently possible, replacing type variables
/// by their known types. All types returned by the infer_* functions should
/// be resolved as far as possible, i.e. contain no type variables with
/// known type.
fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
self.resolve_obligations_as_possible();
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_as_possible);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
ty
}
}
_ => ty,
})
}
/// If `ty` is a type variable with known type, returns that type;
/// otherwise, return ty.
fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
let mut ty = Cow::Borrowed(ty);
// The type variable could resolve to a int/float variable. Hence try
// resolving up to three times; each type of variable shouldn't occur
// more than once
for i in 0..3 {
if i > 0 {
tested_by!(type_var_resolves_to_int_var);
}
match &*ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
match self.var_unification_table.probe_value(inner).known() {
Some(known_ty) => {
// The known_ty can't be a type var itself
ty = Cow::Owned(known_ty.clone());
}
_ => return ty,
}
}
_ => return ty,
}
}
log::error!("Inference variable still not resolved: {:?}", ty);
ty
}
/// Resolves the type completely; type variables without known type are
/// replaced by Ty::Unknown.
fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
ty.fold(&mut |ty| match ty {
Ty::Infer(tv) => {
let inner = tv.to_inner();
if tv_stack.contains(&inner) {
tested_by!(type_var_cycles_resolve_completely);
// recursive type
return tv.fallback_value();
}
if let Some(known_ty) = self.var_unification_table.probe_value(inner).known() {
// known_ty may contain other variables that are known by now
tv_stack.push(inner);
let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
tv_stack.pop();
result
} else {
tv.fallback_value()
}
}
_ => ty,
})
}
fn infer_path_expr(&mut self, resolver: &Resolver, path: &Path, id: ExprOrPatId) -> Option<Ty> {
let resolved = resolver.resolve_path_segments(self.db, &path);
let (def, remaining_index) = resolved.into_inner();
log::debug!(
"path {:?} resolved to {:?} with remaining index {:?}",
path,
def,
remaining_index
);
// if the remaining_index is None, we expect the path
// to be fully resolved, in this case we continue with
// the default by attempting to `take_values´ from the resolution.
// Otherwise the path was partially resolved, which means
// we might have resolved into a type for which
// we may find some associated item starting at the
// path.segment pointed to by `remaining_index´
let mut resolved =
if remaining_index.is_none() { def.take_values()? } else { def.take_types()? };
let remaining_index = remaining_index.unwrap_or(path.segments.len());
let mut actual_def_ty: Option<Ty> = None;
let krate = resolver.krate()?;
// resolve intermediate segments
for (i, segment) in path.segments[remaining_index..].iter().enumerate() {
let ty = match resolved {
Resolution::Def(def) => {
// FIXME resolve associated items from traits as well
let typable: Option<TypableDef> = def.into();
let typable = typable?;
let ty = self.db.type_for_def(typable, Namespace::Types);
// For example, this substs will take `Gen::*<u32>*::make`
assert!(remaining_index > 0);
let substs = Ty::substs_from_path_segment(
self.db,
&self.resolver,
&path.segments[remaining_index + i - 1],
typable,
);
ty.subst(&substs)
}
Resolution::LocalBinding(_) => {
// can't have a local binding in an associated item path
return None;
}
Resolution::GenericParam(..) => {
// FIXME associated item of generic param
return None;
}
Resolution::SelfType(_) => {
// FIXME associated item of self type
return None;
}
};
// Attempt to find an impl_item for the type which has a name matching
// the current segment
log::debug!("looking for path segment: {:?}", segment);
actual_def_ty = Some(ty.clone());
let item: crate::ModuleDef = ty.iterate_impl_items(self.db, krate, |item| {
let matching_def: Option<crate::ModuleDef> = match item {
crate::ImplItem::Method(func) => {
let sig = func.signature(self.db);
if segment.name == *sig.name() {
Some(func.into())
} else {
None
}
}
crate::ImplItem::Const(konst) => {
let sig = konst.signature(self.db);
if segment.name == *sig.name() {
Some(konst.into())
} else {
None
}
}
// FIXME: Resolve associated types
crate::ImplItem::TypeAlias(_) => None,
};
match matching_def {
Some(_) => {
self.write_assoc_resolution(id, item);
return matching_def;
}
None => None,
}
})?;
resolved = Resolution::Def(item.into());
}
match resolved {
Resolution::Def(def) => {
let typable: Option<TypableDef> = def.into();
let typable = typable?;
let mut ty = self.db.type_for_def(typable, Namespace::Values);
if let Some(sts) = self.find_self_types(&def, actual_def_ty) {
ty = ty.subst(&sts);
}
let substs = Ty::substs_from_path(self.db, &self.resolver, path, typable);
let ty = ty.subst(&substs);
let ty = self.insert_type_vars(ty);
Some(ty)
}
Resolution::LocalBinding(pat) => {
let ty = self.type_of_pat.get(pat)?.clone();
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
Some(ty)
}
Resolution::GenericParam(..) => {
// generic params can't refer to values... yet
None
}
Resolution::SelfType(_) => {
log::error!("path expr {:?} resolved to Self type in values ns", path);
None
}
}
}
fn find_self_types(&self, def: &ModuleDef, actual_def_ty: Option<Ty>) -> Option<Substs> {
let actual_def_ty = actual_def_ty?;
if let crate::ModuleDef::Function(func) = def {
// We only do the infer if parent has generic params
let gen = func.generic_params(self.db);
if gen.count_parent_params() == 0 {
return None;
}
let impl_block = func.impl_block(self.db)?.target_ty(self.db);
let impl_block_substs = impl_block.substs()?;
let actual_substs = actual_def_ty.substs()?;
let mut new_substs = vec![Ty::Unknown; gen.count_parent_params()];
// The following code *link up* the function actual parma type
// and impl_block type param index
impl_block_substs.iter().zip(actual_substs.iter()).for_each(|(param, pty)| {
if let Ty::Param { idx, .. } = param {
if let Some(s) = new_substs.get_mut(*idx as usize) {
*s = pty.clone();
}
}
});
Some(Substs(new_substs.into()))
} else {
None
}
}
fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantDef>) {
let path = match path {
Some(path) => path,
None => return (Ty::Unknown, None),
};
let resolver = &self.resolver;
let typable: Option<TypableDef> = match resolver.resolve_path(self.db, &path).take_types() {
Some(Resolution::Def(def)) => def.into(),
Some(Resolution::LocalBinding(..)) => {
// this cannot happen
log::error!("path resolved to local binding in type ns");
return (Ty::Unknown, None);
}
Some(Resolution::GenericParam(..)) => {
// generic params can't be used in struct literals
return (Ty::Unknown, None);
}
Some(Resolution::SelfType(..)) => {
// FIXME this is allowed in an impl for a struct, handle this
return (Ty::Unknown, None);
}
None => return (Ty::Unknown, None),
};
let def = match typable {
None => return (Ty::Unknown, None),
Some(it) => it,
};
// FIXME remove the duplication between here and `Ty::from_path`?
let substs = Ty::substs_from_path(self.db, resolver, path, def);
match def {
TypableDef::Struct(s) => {
let ty = s.ty(self.db);
let ty = self.insert_type_vars(ty.apply_substs(substs));
(ty, Some(s.into()))
}
TypableDef::EnumVariant(var) => {
let ty = var.parent_enum(self.db).ty(self.db);
let ty = self.insert_type_vars(ty.apply_substs(substs));
(ty, Some(var.into()))
}
TypableDef::Union(_)
| TypableDef::TypeAlias(_)
| TypableDef::Function(_)
| TypableDef::Enum(_)
| TypableDef::Const(_)
| TypableDef::Static(_) => (Ty::Unknown, None),
}
}
fn infer_tuple_struct_pat(
&mut self,
path: Option<&Path>,
subpats: &[PatId],
expected: &Ty,
default_bm: BindingMode,
) -> Ty {
let (ty, def) = self.resolve_variant(path);
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
for (i, &subpat) in subpats.iter().enumerate() {
let expected_ty = def
.and_then(|d| d.field(self.db, &Name::tuple_field_name(i)))
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
self.infer_pat(subpat, &expected_ty, default_bm);
}
ty
}
fn infer_struct_pat(
&mut self,
path: Option<&Path>,
subpats: &[FieldPat],
expected: &Ty,
default_bm: BindingMode,
) -> Ty {
let (ty, def) = self.resolve_variant(path);
self.unify(&ty, expected);
let substs = ty.substs().unwrap_or_else(Substs::empty);
for subpat in subpats {
let matching_field = def.and_then(|it| it.field(self.db, &subpat.name));
let expected_ty =
matching_field.map_or(Ty::Unknown, |field| field.ty(self.db)).subst(&substs);
self.infer_pat(subpat.pat, &expected_ty, default_bm);
}
ty
}
fn infer_pat(&mut self, pat: PatId, mut expected: &Ty, mut default_bm: BindingMode) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let is_non_ref_pat = match &body[pat] {
Pat::Tuple(..)
| Pat::TupleStruct { .. }
| Pat::Struct { .. }
| Pat::Range { .. }
| Pat::Slice { .. } => true,
// FIXME: Path/Lit might actually evaluate to ref, but inference is unimplemented.
Pat::Path(..) | Pat::Lit(..) => true,
Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Missing => false,
};
if is_non_ref_pat {
while let Some((inner, mutability)) = expected.as_reference() {
expected = inner;
default_bm = match default_bm {
BindingMode::Move => BindingMode::Ref(mutability),
BindingMode::Ref(Mutability::Shared) => BindingMode::Ref(Mutability::Shared),
BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability),
}
}
} else if let Pat::Ref { .. } = &body[pat] {
tested_by!(match_ergonomics_ref);
// When you encounter a `&pat` pattern, reset to Move.
// This is so that `w` is by value: `let (_, &w) = &(1, &2);`
default_bm = BindingMode::Move;
}
// Lose mutability.
let default_bm = default_bm;
let expected = expected;
let ty = match &body[pat] {
Pat::Tuple(ref args) => {
let expectations = match expected.as_tuple() {
Some(parameters) => &*parameters.0,
_ => &[],
};
let expectations_iter = expectations.iter().chain(repeat(&Ty::Unknown));
let inner_tys: Substs = args
.iter()
.zip(expectations_iter)
.map(|(&pat, ty)| self.infer_pat(pat, ty, default_bm))
.collect::<Vec<_>>()
.into();
Ty::apply(TypeCtor::Tuple { cardinality: inner_tys.len() as u16 }, inner_tys)
}
Pat::Ref { pat, mutability } => {
let expectation = match expected.as_reference() {
Some((inner_ty, exp_mut)) => {
if *mutability != exp_mut {
// FIXME: emit type error?
}
inner_ty
}
_ => &Ty::Unknown,
};
let subty = self.infer_pat(*pat, expectation, default_bm);
Ty::apply_one(TypeCtor::Ref(*mutability), subty.into())
}
Pat::TupleStruct { path: ref p, args: ref subpats } => {
self.infer_tuple_struct_pat(p.as_ref(), subpats, expected, default_bm)
}
Pat::Struct { path: ref p, args: ref fields } => {
self.infer_struct_pat(p.as_ref(), fields, expected, default_bm)
}
Pat::Path(path) => {
// FIXME use correct resolver for the surrounding expression
let resolver = self.resolver.clone();
self.infer_path_expr(&resolver, &path, pat.into()).unwrap_or(Ty::Unknown)
}
Pat::Bind { mode, name: _name, subpat } => {
let mode = if mode == &BindingAnnotation::Unannotated {
default_bm
} else {
BindingMode::convert(mode)
};
let inner_ty = if let Some(subpat) = subpat {
self.infer_pat(*subpat, expected, default_bm)
} else {
expected.clone()
};
let inner_ty = self.insert_type_vars_shallow(inner_ty);
let bound_ty = match mode {
BindingMode::Ref(mutability) => {
Ty::apply_one(TypeCtor::Ref(mutability), inner_ty.clone().into())
}
BindingMode::Move => inner_ty.clone(),
};
let bound_ty = self.resolve_ty_as_possible(&mut vec![], bound_ty);
self.write_pat_ty(pat, bound_ty);
return inner_ty;
}
_ => Ty::Unknown,
};
// use a new type variable if we got Ty::Unknown here
let ty = self.insert_type_vars_shallow(ty);
self.unify(&ty, expected);
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.write_pat_ty(pat, ty.clone());
ty
}
fn substs_for_method_call(
&mut self,
def_generics: Option<Arc<GenericParams>>,
generic_args: Option<&GenericArgs>,
receiver_ty: &Ty,
) -> Substs {
let (parent_param_count, param_count) =
def_generics.as_ref().map_or((0, 0), |g| (g.count_parent_params(), g.params.len()));
let mut substs = Vec::with_capacity(parent_param_count + param_count);
// Parent arguments are unknown, except for the receiver type
if let Some(parent_generics) = def_generics.and_then(|p| p.parent_params.clone()) {
for param in &parent_generics.params {
if param.name.as_known_name() == Some(crate::KnownName::SelfType) {
substs.push(receiver_ty.clone());
} else {
substs.push(Ty::Unknown);
}
}
}
// handle provided type arguments
if let Some(generic_args) = generic_args {
// if args are provided, it should be all of them, but we can't rely on that
for arg in generic_args.args.iter().take(param_count) {
match arg {
GenericArg::Type(type_ref) => {
let ty = self.make_ty(type_ref);
substs.push(ty);
}
}
}
};
let supplied_params = substs.len();
for _ in supplied_params..parent_param_count + param_count {
substs.push(Ty::Unknown);
}
assert_eq!(substs.len(), parent_param_count + param_count);
Substs(substs.into())
}
fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
match callable_ty {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::FnDef(def) => {
// add obligation for trait implementation, if this is a trait method
// FIXME also register obligations from where clauses from the trait or impl and method
match def {
CallableDef::Function(f) => {
if let Some(trait_) = f.parent_trait(self.db) {
// construct a TraitDef
let substs = a_ty.parameters.prefix(
trait_.generic_params(self.db).count_params_including_parent(),
);
self.obligations
.push(Obligation::Trait(TraitRef { trait_, substs }));
}
}
CallableDef::Struct(_) | CallableDef::EnumVariant(_) => {}
}
}
_ => {}
},
_ => {}
}
}
fn infer_method_call(
&mut self,
tgt_expr: ExprId,
receiver: ExprId,
args: &[ExprId],
method_name: &Name,
generic_args: Option<&GenericArgs>,
) -> Ty {
let receiver_ty = self.infer_expr(receiver, &Expectation::none());
let canonicalized_receiver = self.canonicalizer().canonicalize_ty(receiver_ty.clone());
let resolved = method_resolution::lookup_method(
&canonicalized_receiver.value,
self.db,
method_name,
&self.resolver,
);
let (derefed_receiver_ty, method_ty, def_generics) = match resolved {
Some((ty, func)) => {
let ty = canonicalized_receiver.decanonicalize_ty(ty);
self.write_method_resolution(tgt_expr, func);
(
ty,
self.db.type_for_def(func.into(), Namespace::Values),
Some(func.generic_params(self.db)),
)
}
None => (receiver_ty, Ty::Unknown, None),
};
let substs =
self.substs_for_method_call(def_generics.clone(), generic_args, &derefed_receiver_ty);
let method_ty = method_ty.apply_substs(substs);
let method_ty = self.insert_type_vars(method_ty);
self.register_obligations_for_call(&method_ty);
let (expected_receiver_ty, param_tys, ret_ty) = match method_ty.callable_sig(self.db) {
Some(sig) => {
if !sig.params().is_empty() {
(sig.params()[0].clone(), sig.params()[1..].to_vec(), sig.ret().clone())
} else {
(Ty::Unknown, Vec::new(), sig.ret().clone())
}
}
None => (Ty::Unknown, Vec::new(), Ty::Unknown),
};
// Apply autoref so the below unification works correctly
// FIXME: return correct autorefs from lookup_method
let actual_receiver_ty = match expected_receiver_ty.as_reference() {
Some((_, mutability)) => Ty::apply_one(TypeCtor::Ref(mutability), derefed_receiver_ty),
_ => derefed_receiver_ty,
};
self.unify(&expected_receiver_ty, &actual_receiver_ty);
let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown));
for (arg, param) in args.iter().zip(param_iter) {
self.infer_expr(*arg, &Expectation::has_type(param));
}
ret_ty
}
fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
let body = Arc::clone(&self.body); // avoid borrow checker problem
let ty = match &body[tgt_expr] {
Expr::Missing => Ty::Unknown,
Expr::If { condition, then_branch, else_branch } => {
// if let is desugared to match, so this is always simple if
self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
let then_ty = self.infer_expr(*then_branch, expected);
match else_branch {
Some(else_branch) => {
self.infer_expr(*else_branch, expected);
}
None => {
// no else branch -> unit
self.unify(&then_ty, &Ty::unit()); // actually coerce
}
};
then_ty
}
Expr::Block { statements, tail } => self.infer_block(statements, *tail, expected),
Expr::Loop { body } => {
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
// FIXME handle break with value
Ty::simple(TypeCtor::Never)
}
Expr::While { condition, body } => {
// while let is desugared to a match loop, so this is always simple while
self.infer_expr(*condition, &Expectation::has_type(Ty::simple(TypeCtor::Bool)));
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
Ty::unit()
}
Expr::For { iterable, body, pat } => {
let _iterable_ty = self.infer_expr(*iterable, &Expectation::none());
self.infer_pat(*pat, &Ty::Unknown, BindingMode::default());
self.infer_expr(*body, &Expectation::has_type(Ty::unit()));
Ty::unit()
}
Expr::Lambda { body, args, arg_types } => {
assert_eq!(args.len(), arg_types.len());
for (arg_pat, arg_type) in args.iter().zip(arg_types.iter()) {
let expected = if let Some(type_ref) = arg_type {
let ty = self.make_ty(type_ref);
ty
} else {
Ty::Unknown
};
self.infer_pat(*arg_pat, &expected, BindingMode::default());
}
// FIXME: infer lambda type etc.
let _body_ty = self.infer_expr(*body, &Expectation::none());
Ty::Unknown
}
Expr::Call { callee, args } => {
let callee_ty = self.infer_expr(*callee, &Expectation::none());
let (param_tys, ret_ty) = match callee_ty.callable_sig(self.db) {
Some(sig) => (sig.params().to_vec(), sig.ret().clone()),
None => {
// Not callable
// FIXME: report an error
(Vec::new(), Ty::Unknown)
}
};
// FIXME register obligations from where clauses from the function
let param_iter = param_tys.into_iter().chain(repeat(Ty::Unknown));
for (arg, param) in args.iter().zip(param_iter) {
self.infer_expr(*arg, &Expectation::has_type(param));
}
ret_ty
}
Expr::MethodCall { receiver, args, method_name, generic_args } => self
.infer_method_call(tgt_expr, *receiver, &args, &method_name, generic_args.as_ref()),
Expr::Match { expr, arms } => {
let expected = if expected.ty == Ty::Unknown {
Expectation::has_type(self.new_type_var())
} else {
expected.clone()
};
let input_ty = self.infer_expr(*expr, &Expectation::none());
for arm in arms {
for &pat in &arm.pats {
let _pat_ty = self.infer_pat(pat, &input_ty, BindingMode::default());
}
if let Some(guard_expr) = arm.guard {
self.infer_expr(
guard_expr,
&Expectation::has_type(Ty::simple(TypeCtor::Bool)),
);
}
self.infer_expr(arm.expr, &expected);
}
expected.ty
}
Expr::Path(p) => {
// FIXME this could be more efficient...
let resolver = expr::resolver_for_expr(self.body.clone(), self.db, tgt_expr);
self.infer_path_expr(&resolver, p, tgt_expr.into()).unwrap_or(Ty::Unknown)
}
Expr::Continue => Ty::simple(TypeCtor::Never),
Expr::Break { expr } => {
if let Some(expr) = expr {
// FIXME handle break with value
self.infer_expr(*expr, &Expectation::none());
}
Ty::simple(TypeCtor::Never)
}
Expr::Return { expr } => {
if let Some(expr) = expr {
self.infer_expr(*expr, &Expectation::has_type(self.return_ty.clone()));
}
Ty::simple(TypeCtor::Never)
}
Expr::StructLit { path, fields, spread } => {
let (ty, def_id) = self.resolve_variant(path.as_ref());
let substs = ty.substs().unwrap_or_else(Substs::empty);
for (field_idx, field) in fields.into_iter().enumerate() {
let field_ty = def_id
.and_then(|it| match it.field(self.db, &field.name) {
Some(field) => Some(field),
None => {
self.diagnostics.push(InferenceDiagnostic::NoSuchField {
expr: tgt_expr,
field: field_idx,
});
None
}
})
.map_or(Ty::Unknown, |field| field.ty(self.db))
.subst(&substs);
self.infer_expr(field.expr, &Expectation::has_type(field_ty));
}
if let Some(expr) = spread {
self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
}
ty
}
Expr::Field { expr, name } => {
let receiver_ty = self.infer_expr(*expr, &Expectation::none());
let ty = receiver_ty
.autoderef(self.db)
.find_map(|derefed_ty| match derefed_ty {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Tuple { .. } => {
let i = name.to_string().parse::<usize>().ok();
i.and_then(|i| a_ty.parameters.0.get(i).cloned())
}
TypeCtor::Adt(AdtDef::Struct(s)) => {
s.field(self.db, name).map(|field| {
self.write_field_resolution(tgt_expr, field);
field.ty(self.db).subst(&a_ty.parameters)
})
}
_ => None,
},
_ => None,
})
.unwrap_or(Ty::Unknown);
self.insert_type_vars(ty)
}
Expr::Try { expr } => {
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
Ty::Unknown
}
Expr::Cast { expr, type_ref } => {
let _inner_ty = self.infer_expr(*expr, &Expectation::none());
let cast_ty = self.make_ty(type_ref);
// FIXME check the cast...
cast_ty
}
Expr::Ref { expr, mutability } => {
let expectation =
if let Some((exp_inner, exp_mutability)) = &expected.ty.as_reference() {
if *exp_mutability == Mutability::Mut && *mutability == Mutability::Shared {
// FIXME: throw type error - expected mut reference but found shared ref,
// which cannot be coerced
}
Expectation::has_type(Ty::clone(exp_inner))
} else {
Expectation::none()
};
// FIXME reference coercions etc.
let inner_ty = self.infer_expr(*expr, &expectation);
Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
}
Expr::UnaryOp { expr, op } => {
let inner_ty = self.infer_expr(*expr, &Expectation::none());
match op {
UnaryOp::Deref => {
if let Some(derefed_ty) = inner_ty.builtin_deref() {
derefed_ty
} else {
// FIXME Deref::deref
Ty::Unknown
}
}
UnaryOp::Neg => {
match &inner_ty {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Int(primitive::UncertainIntTy::Unknown)
| TypeCtor::Int(primitive::UncertainIntTy::Known(
primitive::IntTy {
signedness: primitive::Signedness::Signed,
..
},
))
| TypeCtor::Float(..) => inner_ty,
_ => Ty::Unknown,
},
Ty::Infer(InferTy::IntVar(..)) | Ty::Infer(InferTy::FloatVar(..)) => {
inner_ty
}
// FIXME: resolve ops::Neg trait
_ => Ty::Unknown,
}
}
UnaryOp::Not => {
match &inner_ty {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Bool | TypeCtor::Int(_) => inner_ty,
_ => Ty::Unknown,
},
Ty::Infer(InferTy::IntVar(..)) => inner_ty,
// FIXME: resolve ops::Not trait for inner_ty
_ => Ty::Unknown,
}
}
}
}
Expr::BinaryOp { lhs, rhs, op } => match op {
Some(op) => {
let lhs_expectation = match op {
BinaryOp::BooleanAnd | BinaryOp::BooleanOr => {
Expectation::has_type(Ty::simple(TypeCtor::Bool))
}
_ => Expectation::none(),
};
let lhs_ty = self.infer_expr(*lhs, &lhs_expectation);
// FIXME: find implementation of trait corresponding to operation
// symbol and resolve associated `Output` type
let rhs_expectation = op::binary_op_rhs_expectation(*op, lhs_ty);
let rhs_ty = self.infer_expr(*rhs, &Expectation::has_type(rhs_expectation));
// FIXME: similar as above, return ty is often associated trait type
op::binary_op_return_ty(*op, rhs_ty)
}
_ => Ty::Unknown,
},
Expr::Tuple { exprs } => {
let mut ty_vec = Vec::with_capacity(exprs.len());
for arg in exprs.iter() {
ty_vec.push(self.infer_expr(*arg, &Expectation::none()));
}
Ty::apply(
TypeCtor::Tuple { cardinality: ty_vec.len() as u16 },
Substs(ty_vec.into()),
)
}
Expr::Array(array) => {
let elem_ty = match &expected.ty {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Slice | TypeCtor::Array => {
Ty::clone(&a_ty.parameters.as_single())
}
_ => self.new_type_var(),
},
_ => self.new_type_var(),
};
match array {
Array::ElementList(items) => {
for expr in items.iter() {
self.infer_expr(*expr, &Expectation::has_type(elem_ty.clone()));
}
}
Array::Repeat { initializer, repeat } => {
self.infer_expr(*initializer, &Expectation::has_type(elem_ty.clone()));
self.infer_expr(
*repeat,
&Expectation::has_type(Ty::simple(TypeCtor::Int(
primitive::UncertainIntTy::Known(primitive::IntTy::usize()),
))),
);
}
}
Ty::apply_one(TypeCtor::Array, elem_ty)
}
Expr::Literal(lit) => match lit {
Literal::Bool(..) => Ty::simple(TypeCtor::Bool),
Literal::String(..) => {
Ty::apply_one(TypeCtor::Ref(Mutability::Shared), Ty::simple(TypeCtor::Str))
}
Literal::ByteString(..) => {
let byte_type = Ty::simple(TypeCtor::Int(primitive::UncertainIntTy::Known(
primitive::IntTy::u8(),
)));
let slice_type = Ty::apply_one(TypeCtor::Slice, byte_type);
Ty::apply_one(TypeCtor::Ref(Mutability::Shared), slice_type)
}
Literal::Char(..) => Ty::simple(TypeCtor::Char),
Literal::Int(_v, ty) => Ty::simple(TypeCtor::Int(*ty)),
Literal::Float(_v, ty) => Ty::simple(TypeCtor::Float(*ty)),
},
};
// use a new type variable if we got Ty::Unknown here
let ty = self.insert_type_vars_shallow(ty);
self.unify(&ty, &expected.ty);
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
self.write_expr_ty(tgt_expr, ty.clone());
ty
}
fn infer_block(
&mut self,
statements: &[Statement],
tail: Option<ExprId>,
expected: &Expectation,
) -> Ty {
for stmt in statements {
match stmt {
Statement::Let { pat, type_ref, initializer } => {
let decl_ty =
type_ref.as_ref().map(|tr| self.make_ty(tr)).unwrap_or(Ty::Unknown);
let decl_ty = self.insert_type_vars(decl_ty);
let ty = if let Some(expr) = initializer {
let expr_ty = self.infer_expr(*expr, &Expectation::has_type(decl_ty));
expr_ty
} else {
decl_ty
};
self.infer_pat(*pat, &ty, BindingMode::default());
}
Statement::Expr(expr) => {
self.infer_expr(*expr, &Expectation::none());
}
}
}
let ty = if let Some(expr) = tail { self.infer_expr(expr, expected) } else { Ty::unit() };
ty
}
fn collect_const_signature(&mut self, signature: &ConstSignature) {
self.return_ty = self.make_ty(signature.type_ref());
}
fn collect_fn_signature(&mut self, signature: &FnSignature) {
let body = Arc::clone(&self.body); // avoid borrow checker problem
for (type_ref, pat) in signature.params().iter().zip(body.params()) {
let ty = self.make_ty(type_ref);
self.infer_pat(*pat, &ty, BindingMode::default());
}
self.return_ty = self.make_ty(signature.ret_type());
}
fn infer_body(&mut self) {
self.infer_expr(self.body.body_expr(), &Expectation::has_type(self.return_ty.clone()));
}
}
/// The ID of a type variable.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub struct TypeVarId(pub(super) u32);
impl UnifyKey for TypeVarId {
type Value = TypeVarValue;
fn index(&self) -> u32 {
self.0
}
fn from_index(i: u32) -> Self {
TypeVarId(i)
}
fn tag() -> &'static str {
"TypeVarId"
}
}
/// The value of a type variable: either we already know the type, or we don't
/// know it yet.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum TypeVarValue {
Known(Ty),
Unknown,
}
impl TypeVarValue {
fn known(&self) -> Option<&Ty> {
match self {
TypeVarValue::Known(ty) => Some(ty),
TypeVarValue::Unknown => None,
}
}
}
impl UnifyValue for TypeVarValue {
type Error = NoError;
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
match (value1, value2) {
// We should never equate two type variables, both of which have
// known types. Instead, we recursively equate those types.
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
"equating two type variables, both of which have known types: {:?} and {:?}",
t1, t2
),
// If one side is known, prefer that one.
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
}
}
}
/// The kinds of placeholders we need during type inference. There's separate
/// values for general types, and for integer and float variables. The latter
/// two are used for inference of literal values (e.g. `100` could be one of
/// several integer types).
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
pub enum InferTy {
TypeVar(TypeVarId),
IntVar(TypeVarId),
FloatVar(TypeVarId),
}
impl InferTy {
fn to_inner(self) -> TypeVarId {
match self {
InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) => ty,
}
}
fn fallback_value(self) -> Ty {
match self {
InferTy::TypeVar(..) => Ty::Unknown,
InferTy::IntVar(..) => {
Ty::simple(TypeCtor::Int(primitive::UncertainIntTy::Known(primitive::IntTy::i32())))
}
InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(
primitive::UncertainFloatTy::Known(primitive::FloatTy::f64()),
)),
}
}
}
/// When inferring an expression, we propagate downward whatever type hint we
/// are able in the form of an `Expectation`.
#[derive(Clone, PartialEq, Eq, Debug)]
struct Expectation {
ty: Ty,
// FIXME: In some cases, we need to be aware whether the expectation is that
// the type match exactly what we passed, or whether it just needs to be
// coercible to the expected type. See Expectation::rvalue_hint in rustc.
}
impl Expectation {
/// The expectation that the type of the expression needs to equal the given
/// type.
fn has_type(ty: Ty) -> Self {
Expectation { ty }
}
/// This expresses no expectation on the type.
fn none() -> Self {
Expectation { ty: Ty::Unknown }
}
}
mod diagnostics {
use crate::{
expr::ExprId,
diagnostics::{DiagnosticSink, NoSuchField},
HirDatabase, Function,
};
#[derive(Debug, PartialEq, Eq, Clone)]
pub(super) enum InferenceDiagnostic {
NoSuchField { expr: ExprId, field: usize },
}
impl InferenceDiagnostic {
pub(super) fn add_to(
&self,
db: &impl HirDatabase,
owner: Function,
sink: &mut DiagnosticSink,
) {
match self {
InferenceDiagnostic::NoSuchField { expr, field } => {
let (file, _) = owner.source(db);
let field = owner.body_source_map(db).field_syntax(*expr, *field);
sink.push(NoSuchField { file, field })
}
}
}
}
}