mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-07 18:58:51 +00:00
61739b0c17
closes #1603
187 lines
6.5 KiB
Rust
187 lines
6.5 KiB
Rust
use hir::db::HirDatabase;
|
|
use ra_db::FileRange;
|
|
use ra_fmt::{leading_indent, reindent};
|
|
use ra_syntax::{
|
|
algo::{find_covering_element, find_node_at_offset},
|
|
AstNode, SourceFile, SyntaxElement, SyntaxNode, SyntaxToken, TextRange, TextUnit,
|
|
TokenAtOffset,
|
|
};
|
|
use ra_text_edit::TextEditBuilder;
|
|
|
|
use crate::{AssistAction, AssistId, AssistLabel};
|
|
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) enum Assist {
|
|
Unresolved(Vec<AssistLabel>),
|
|
Resolved(Vec<(AssistLabel, AssistAction)>),
|
|
}
|
|
|
|
/// `AssistCtx` allows to apply an assist or check if it could be applied.
|
|
///
|
|
/// Assists use a somewhat over-engineered approach, given the current needs. The
|
|
/// assists workflow consists of two phases. In the first phase, a user asks for
|
|
/// the list of available assists. In the second phase, the user picks a
|
|
/// particular assist and it gets applied.
|
|
///
|
|
/// There are two peculiarities here:
|
|
///
|
|
/// * first, we ideally avoid computing more things then necessary to answer
|
|
/// "is assist applicable" in the first phase.
|
|
/// * second, when we are applying assist, we don't have a guarantee that there
|
|
/// weren't any changes between the point when user asked for assists and when
|
|
/// they applied a particular assist. So, when applying assist, we need to do
|
|
/// all the checks from scratch.
|
|
///
|
|
/// To avoid repeating the same code twice for both "check" and "apply"
|
|
/// functions, we use an approach reminiscent of that of Django's function based
|
|
/// views dealing with forms. Each assist receives a runtime parameter,
|
|
/// `should_compute_edit`. It first check if an edit is applicable (potentially
|
|
/// computing info required to compute the actual edit). If it is applicable,
|
|
/// and `should_compute_edit` is `true`, it then computes the actual edit.
|
|
///
|
|
/// So, to implement the original assists workflow, we can first apply each edit
|
|
/// with `should_compute_edit = false`, and then applying the selected edit
|
|
/// again, with `should_compute_edit = true` this time.
|
|
///
|
|
/// Note, however, that we don't actually use such two-phase logic at the
|
|
/// moment, because the LSP API is pretty awkward in this place, and it's much
|
|
/// easier to just compute the edit eagerly :-)#[derive(Debug, Clone)]
|
|
#[derive(Debug)]
|
|
pub(crate) struct AssistCtx<'a, DB> {
|
|
pub(crate) db: &'a DB,
|
|
pub(crate) frange: FileRange,
|
|
source_file: SourceFile,
|
|
should_compute_edit: bool,
|
|
assist: Assist,
|
|
}
|
|
|
|
impl<'a, DB> Clone for AssistCtx<'a, DB> {
|
|
fn clone(&self) -> Self {
|
|
AssistCtx {
|
|
db: self.db,
|
|
frange: self.frange,
|
|
source_file: self.source_file.clone(),
|
|
should_compute_edit: self.should_compute_edit,
|
|
assist: self.assist.clone(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a, DB: HirDatabase> AssistCtx<'a, DB> {
|
|
pub(crate) fn with_ctx<F, T>(db: &DB, frange: FileRange, should_compute_edit: bool, f: F) -> T
|
|
where
|
|
F: FnOnce(AssistCtx<DB>) -> T,
|
|
{
|
|
let parse = db.parse(frange.file_id);
|
|
let assist =
|
|
if should_compute_edit { Assist::Resolved(vec![]) } else { Assist::Unresolved(vec![]) };
|
|
|
|
let ctx = AssistCtx { db, frange, source_file: parse.tree(), should_compute_edit, assist };
|
|
f(ctx)
|
|
}
|
|
|
|
pub(crate) fn add_action(
|
|
&mut self,
|
|
id: AssistId,
|
|
label: impl Into<String>,
|
|
f: impl FnOnce(&mut AssistBuilder),
|
|
) -> &mut Self {
|
|
let label = AssistLabel { label: label.into(), id };
|
|
match &mut self.assist {
|
|
Assist::Unresolved(labels) => labels.push(label),
|
|
Assist::Resolved(labels_actions) => {
|
|
let action = {
|
|
let mut edit = AssistBuilder::default();
|
|
f(&mut edit);
|
|
edit.build()
|
|
};
|
|
labels_actions.push((label, action));
|
|
}
|
|
}
|
|
self
|
|
}
|
|
|
|
pub(crate) fn build(self) -> Option<Assist> {
|
|
Some(self.assist)
|
|
}
|
|
|
|
pub(crate) fn token_at_offset(&self) -> TokenAtOffset<SyntaxToken> {
|
|
self.source_file.syntax().token_at_offset(self.frange.range.start())
|
|
}
|
|
|
|
pub(crate) fn node_at_offset<N: AstNode>(&self) -> Option<N> {
|
|
find_node_at_offset(self.source_file.syntax(), self.frange.range.start())
|
|
}
|
|
pub(crate) fn covering_element(&self) -> SyntaxElement {
|
|
find_covering_element(self.source_file.syntax(), self.frange.range)
|
|
}
|
|
|
|
pub(crate) fn covering_node_for_range(&self, range: TextRange) -> SyntaxElement {
|
|
find_covering_element(self.source_file.syntax(), range)
|
|
}
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub(crate) struct AssistBuilder {
|
|
edit: TextEditBuilder,
|
|
cursor_position: Option<TextUnit>,
|
|
target: Option<TextRange>,
|
|
}
|
|
|
|
impl AssistBuilder {
|
|
/// Replaces specified `range` of text with a given string.
|
|
pub(crate) fn replace(&mut self, range: TextRange, replace_with: impl Into<String>) {
|
|
self.edit.replace(range, replace_with.into())
|
|
}
|
|
|
|
/// Replaces specified `node` of text with a given string, reindenting the
|
|
/// string to maintain `node`'s existing indent.
|
|
pub(crate) fn replace_node_and_indent(
|
|
&mut self,
|
|
node: &SyntaxNode,
|
|
replace_with: impl Into<String>,
|
|
) {
|
|
let mut replace_with = replace_with.into();
|
|
if let Some(indent) = leading_indent(node) {
|
|
replace_with = reindent(&replace_with, &indent)
|
|
}
|
|
self.replace(node.text_range(), replace_with)
|
|
}
|
|
|
|
/// Remove specified `range` of text.
|
|
#[allow(unused)]
|
|
pub(crate) fn delete(&mut self, range: TextRange) {
|
|
self.edit.delete(range)
|
|
}
|
|
|
|
/// Append specified `text` at the given `offset`
|
|
pub(crate) fn insert(&mut self, offset: TextUnit, text: impl Into<String>) {
|
|
self.edit.insert(offset, text.into())
|
|
}
|
|
|
|
/// Specify desired position of the cursor after the assist is applied.
|
|
pub(crate) fn set_cursor(&mut self, offset: TextUnit) {
|
|
self.cursor_position = Some(offset)
|
|
}
|
|
|
|
/// Specify that the assist should be active withing the `target` range.
|
|
///
|
|
/// Target ranges are used to sort assists: the smaller the target range,
|
|
/// the more specific assist is, and so it should be sorted first.
|
|
pub(crate) fn target(&mut self, target: TextRange) {
|
|
self.target = Some(target)
|
|
}
|
|
|
|
/// Get access to the raw `TextEditBuilder`.
|
|
pub(crate) fn text_edit_builder(&mut self) -> &mut TextEditBuilder {
|
|
&mut self.edit
|
|
}
|
|
|
|
fn build(self) -> AssistAction {
|
|
AssistAction {
|
|
edit: self.edit.finish(),
|
|
cursor_position: self.cursor_position,
|
|
target: self.target,
|
|
}
|
|
}
|
|
}
|