rust-analyzer/crates/syntax/src/ast/expr_ext.rs
Chayim Refael Friedman 54fe3dc0f1 Fix if in #11561
2022-02-27 00:19:45 +00:00

408 lines
13 KiB
Rust

//! Various extension methods to ast Expr Nodes, which are hard to code-generate.
//!
//! These methods should only do simple, shallow tasks related to the syntax of the node itself.
use crate::{
ast::{
self,
operators::{ArithOp, BinaryOp, CmpOp, LogicOp, Ordering, RangeOp, UnaryOp},
support, AstChildren, AstNode,
},
AstToken,
SyntaxKind::*,
SyntaxNode, SyntaxToken, T,
};
impl ast::HasAttrs for ast::Expr {}
impl ast::Expr {
pub fn is_block_like(&self) -> bool {
matches!(
self,
ast::Expr::IfExpr(_)
| ast::Expr::LoopExpr(_)
| ast::Expr::ForExpr(_)
| ast::Expr::WhileExpr(_)
| ast::Expr::BlockExpr(_)
| ast::Expr::MatchExpr(_)
)
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum ElseBranch {
Block(ast::BlockExpr),
IfExpr(ast::IfExpr),
}
impl From<ast::BlockExpr> for ElseBranch {
fn from(block_expr: ast::BlockExpr) -> Self {
Self::Block(block_expr)
}
}
impl From<ast::IfExpr> for ElseBranch {
fn from(if_expr: ast::IfExpr) -> Self {
Self::IfExpr(if_expr)
}
}
impl ast::IfExpr {
pub fn then_branch(&self) -> Option<ast::BlockExpr> {
self.children_after_condition().next()
}
pub fn else_branch(&self) -> Option<ElseBranch> {
let res = match self.children_after_condition().nth(1) {
Some(block) => ElseBranch::Block(block),
None => {
let elif = self.children_after_condition().next()?;
ElseBranch::IfExpr(elif)
}
};
Some(res)
}
fn children_after_condition<N: AstNode>(&self) -> impl Iterator<Item = N> {
self.syntax().children().skip(1).filter_map(N::cast)
}
}
#[test]
fn if_block_condition() {
let parse = ast::SourceFile::parse(
r#"
fn test() {
if { true } { "if" }
else if { false } { "first elif" }
else if true { "second elif" }
else if (true) { "third elif" }
else { "else" }
}
"#,
);
let if_ = parse.tree().syntax().descendants().find_map(ast::IfExpr::cast).unwrap();
assert_eq!(if_.then_branch().unwrap().syntax().text(), r#"{ "if" }"#);
let elif = match if_.else_branch().unwrap() {
ElseBranch::IfExpr(elif) => elif,
ElseBranch::Block(_) => panic!("should be `else if`"),
};
assert_eq!(elif.then_branch().unwrap().syntax().text(), r#"{ "first elif" }"#);
let elif = match elif.else_branch().unwrap() {
ElseBranch::IfExpr(elif) => elif,
ElseBranch::Block(_) => panic!("should be `else if`"),
};
assert_eq!(elif.then_branch().unwrap().syntax().text(), r#"{ "second elif" }"#);
let elif = match elif.else_branch().unwrap() {
ElseBranch::IfExpr(elif) => elif,
ElseBranch::Block(_) => panic!("should be `else if`"),
};
assert_eq!(elif.then_branch().unwrap().syntax().text(), r#"{ "third elif" }"#);
let else_ = match elif.else_branch().unwrap() {
ElseBranch::Block(else_) => else_,
ElseBranch::IfExpr(_) => panic!("should be `else`"),
};
assert_eq!(else_.syntax().text(), r#"{ "else" }"#);
}
#[test]
fn if_condition_with_if_inside() {
let parse = ast::SourceFile::parse(
r#"
fn test() {
if if true { true } else { false } { "if" }
else { "else" }
}
"#,
);
let if_ = parse.tree().syntax().descendants().find_map(ast::IfExpr::cast).unwrap();
assert_eq!(if_.then_branch().unwrap().syntax().text(), r#"{ "if" }"#);
let else_ = match if_.else_branch().unwrap() {
ElseBranch::Block(else_) => else_,
ElseBranch::IfExpr(_) => panic!("should be `else`"),
};
assert_eq!(else_.syntax().text(), r#"{ "else" }"#);
}
impl ast::PrefixExpr {
pub fn op_kind(&self) -> Option<UnaryOp> {
let res = match self.op_token()?.kind() {
T![*] => UnaryOp::Deref,
T![!] => UnaryOp::Not,
T![-] => UnaryOp::Neg,
_ => return None,
};
Some(res)
}
pub fn op_token(&self) -> Option<SyntaxToken> {
self.syntax().first_child_or_token()?.into_token()
}
}
impl ast::BinExpr {
pub fn op_details(&self) -> Option<(SyntaxToken, BinaryOp)> {
self.syntax().children_with_tokens().filter_map(|it| it.into_token()).find_map(|c| {
#[rustfmt::skip]
let bin_op = match c.kind() {
T![||] => BinaryOp::LogicOp(LogicOp::Or),
T![&&] => BinaryOp::LogicOp(LogicOp::And),
T![==] => BinaryOp::CmpOp(CmpOp::Eq { negated: false }),
T![!=] => BinaryOp::CmpOp(CmpOp::Eq { negated: true }),
T![<=] => BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: false }),
T![>=] => BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: false }),
T![<] => BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Less, strict: true }),
T![>] => BinaryOp::CmpOp(CmpOp::Ord { ordering: Ordering::Greater, strict: true }),
T![+] => BinaryOp::ArithOp(ArithOp::Add),
T![*] => BinaryOp::ArithOp(ArithOp::Mul),
T![-] => BinaryOp::ArithOp(ArithOp::Sub),
T![/] => BinaryOp::ArithOp(ArithOp::Div),
T![%] => BinaryOp::ArithOp(ArithOp::Rem),
T![<<] => BinaryOp::ArithOp(ArithOp::Shl),
T![>>] => BinaryOp::ArithOp(ArithOp::Shr),
T![^] => BinaryOp::ArithOp(ArithOp::BitXor),
T![|] => BinaryOp::ArithOp(ArithOp::BitOr),
T![&] => BinaryOp::ArithOp(ArithOp::BitAnd),
T![=] => BinaryOp::Assignment { op: None },
T![+=] => BinaryOp::Assignment { op: Some(ArithOp::Add) },
T![*=] => BinaryOp::Assignment { op: Some(ArithOp::Mul) },
T![-=] => BinaryOp::Assignment { op: Some(ArithOp::Sub) },
T![/=] => BinaryOp::Assignment { op: Some(ArithOp::Div) },
T![%=] => BinaryOp::Assignment { op: Some(ArithOp::Rem) },
T![<<=] => BinaryOp::Assignment { op: Some(ArithOp::Shl) },
T![>>=] => BinaryOp::Assignment { op: Some(ArithOp::Shr) },
T![^=] => BinaryOp::Assignment { op: Some(ArithOp::BitXor) },
T![|=] => BinaryOp::Assignment { op: Some(ArithOp::BitOr) },
T![&=] => BinaryOp::Assignment { op: Some(ArithOp::BitAnd) },
_ => return None,
};
Some((c, bin_op))
})
}
pub fn op_kind(&self) -> Option<BinaryOp> {
self.op_details().map(|t| t.1)
}
pub fn op_token(&self) -> Option<SyntaxToken> {
self.op_details().map(|t| t.0)
}
pub fn lhs(&self) -> Option<ast::Expr> {
support::children(self.syntax()).next()
}
pub fn rhs(&self) -> Option<ast::Expr> {
support::children(self.syntax()).nth(1)
}
pub fn sub_exprs(&self) -> (Option<ast::Expr>, Option<ast::Expr>) {
let mut children = support::children(self.syntax());
let first = children.next();
let second = children.next();
(first, second)
}
}
impl ast::RangeExpr {
fn op_details(&self) -> Option<(usize, SyntaxToken, RangeOp)> {
self.syntax().children_with_tokens().enumerate().find_map(|(ix, child)| {
let token = child.into_token()?;
let bin_op = match token.kind() {
T![..] => RangeOp::Exclusive,
T![..=] => RangeOp::Inclusive,
_ => return None,
};
Some((ix, token, bin_op))
})
}
pub fn op_kind(&self) -> Option<RangeOp> {
self.op_details().map(|t| t.2)
}
pub fn op_token(&self) -> Option<SyntaxToken> {
self.op_details().map(|t| t.1)
}
pub fn start(&self) -> Option<ast::Expr> {
let op_ix = self.op_details()?.0;
self.syntax()
.children_with_tokens()
.take(op_ix)
.find_map(|it| ast::Expr::cast(it.into_node()?))
}
pub fn end(&self) -> Option<ast::Expr> {
let op_ix = self.op_details()?.0;
self.syntax()
.children_with_tokens()
.skip(op_ix + 1)
.find_map(|it| ast::Expr::cast(it.into_node()?))
}
}
impl ast::IndexExpr {
pub fn base(&self) -> Option<ast::Expr> {
support::children(self.syntax()).next()
}
pub fn index(&self) -> Option<ast::Expr> {
support::children(self.syntax()).nth(1)
}
}
pub enum ArrayExprKind {
Repeat { initializer: Option<ast::Expr>, repeat: Option<ast::Expr> },
ElementList(AstChildren<ast::Expr>),
}
impl ast::ArrayExpr {
pub fn kind(&self) -> ArrayExprKind {
if self.is_repeat() {
ArrayExprKind::Repeat {
initializer: support::children(self.syntax()).next(),
repeat: support::children(self.syntax()).nth(1),
}
} else {
ArrayExprKind::ElementList(support::children(self.syntax()))
}
}
fn is_repeat(&self) -> bool {
self.syntax().children_with_tokens().any(|it| it.kind() == T![;])
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum LiteralKind {
String(ast::String),
ByteString(ast::ByteString),
IntNumber(ast::IntNumber),
FloatNumber(ast::FloatNumber),
Char,
Byte,
Bool(bool),
}
impl ast::Literal {
pub fn token(&self) -> SyntaxToken {
self.syntax()
.children_with_tokens()
.find(|e| e.kind() != ATTR && !e.kind().is_trivia())
.and_then(|e| e.into_token())
.unwrap()
}
pub fn kind(&self) -> LiteralKind {
let token = self.token();
if let Some(t) = ast::IntNumber::cast(token.clone()) {
return LiteralKind::IntNumber(t);
}
if let Some(t) = ast::FloatNumber::cast(token.clone()) {
return LiteralKind::FloatNumber(t);
}
if let Some(t) = ast::String::cast(token.clone()) {
return LiteralKind::String(t);
}
if let Some(t) = ast::ByteString::cast(token.clone()) {
return LiteralKind::ByteString(t);
}
match token.kind() {
T![true] => LiteralKind::Bool(true),
T![false] => LiteralKind::Bool(false),
CHAR => LiteralKind::Char,
BYTE => LiteralKind::Byte,
_ => unreachable!(),
}
}
}
pub enum BlockModifier {
Async(SyntaxToken),
Unsafe(SyntaxToken),
Try(SyntaxToken),
Const(SyntaxToken),
Label(ast::Label),
}
impl ast::BlockExpr {
pub fn modifier(&self) -> Option<BlockModifier> {
self.async_token()
.map(BlockModifier::Async)
.or_else(|| self.unsafe_token().map(BlockModifier::Unsafe))
.or_else(|| self.try_token().map(BlockModifier::Try))
.or_else(|| self.const_token().map(BlockModifier::Const))
.or_else(|| self.label().map(BlockModifier::Label))
}
/// false if the block is an intrinsic part of the syntax and can't be
/// replaced with arbitrary expression.
///
/// ```not_rust
/// fn foo() { not_stand_alone }
/// const FOO: () = { stand_alone };
/// ```
pub fn is_standalone(&self) -> bool {
let parent = match self.syntax().parent() {
Some(it) => it,
None => return true,
};
!matches!(parent.kind(), FN | IF_EXPR | WHILE_EXPR | LOOP_EXPR)
}
}
#[test]
fn test_literal_with_attr() {
let parse = ast::SourceFile::parse(r#"const _: &str = { #[attr] "Hello" };"#);
let lit = parse.tree().syntax().descendants().find_map(ast::Literal::cast).unwrap();
assert_eq!(lit.token().text(), r#""Hello""#);
}
impl ast::RecordExprField {
pub fn parent_record_lit(&self) -> ast::RecordExpr {
self.syntax().ancestors().find_map(ast::RecordExpr::cast).unwrap()
}
}
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum CallableExpr {
Call(ast::CallExpr),
MethodCall(ast::MethodCallExpr),
}
impl ast::HasAttrs for CallableExpr {}
impl ast::HasArgList for CallableExpr {}
impl AstNode for CallableExpr {
fn can_cast(kind: parser::SyntaxKind) -> bool
where
Self: Sized,
{
ast::CallExpr::can_cast(kind) || ast::MethodCallExpr::can_cast(kind)
}
fn cast(syntax: SyntaxNode) -> Option<Self>
where
Self: Sized,
{
if let Some(it) = ast::CallExpr::cast(syntax.clone()) {
Some(Self::Call(it))
} else if let Some(it) = ast::MethodCallExpr::cast(syntax) {
Some(Self::MethodCall(it))
} else {
None
}
}
fn syntax(&self) -> &SyntaxNode {
match self {
Self::Call(it) => it.syntax(),
Self::MethodCall(it) => it.syntax(),
}
}
}