mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-08 03:08:48 +00:00
289 lines
10 KiB
Rust
289 lines
10 KiB
Rust
//! This module is concerned with finding methods that a given type provides.
|
|
//! For details about how this works in rustc, see the method lookup page in the
|
|
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
|
|
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
|
|
use std::sync::Arc;
|
|
|
|
use rustc_hash::FxHashMap;
|
|
|
|
use crate::{
|
|
HirDatabase, Module, Crate, Name, Function, Trait,
|
|
impl_block::{ImplId, ImplBlock, ImplItem},
|
|
ty::{Ty, TypeCtor},
|
|
nameres::CrateModuleId,
|
|
resolve::Resolver,
|
|
traits::TraitItem,
|
|
generics::HasGenericParams,
|
|
ty::primitive::{UncertainIntTy, UncertainFloatTy}
|
|
};
|
|
use super::{TraitRef, Canonical};
|
|
|
|
/// This is used as a key for indexing impls.
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
|
pub enum TyFingerprint {
|
|
Apply(TypeCtor),
|
|
}
|
|
|
|
impl TyFingerprint {
|
|
/// Creates a TyFingerprint for looking up an impl. Only certain types can
|
|
/// have impls: if we have some `struct S`, we can have an `impl S`, but not
|
|
/// `impl &S`. Hence, this will return `None` for reference types and such.
|
|
fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
|
|
match ty {
|
|
Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub struct CrateImplBlocks {
|
|
/// To make sense of the CrateModuleIds, we need the source root.
|
|
krate: Crate,
|
|
impls: FxHashMap<TyFingerprint, Vec<(CrateModuleId, ImplId)>>,
|
|
impls_by_trait: FxHashMap<Trait, Vec<(CrateModuleId, ImplId)>>,
|
|
}
|
|
|
|
impl CrateImplBlocks {
|
|
pub fn lookup_impl_blocks<'a>(&'a self, ty: &Ty) -> impl Iterator<Item = ImplBlock> + 'a {
|
|
let fingerprint = TyFingerprint::for_impl(ty);
|
|
fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flat_map(|i| i.iter()).map(
|
|
move |(module_id, impl_id)| {
|
|
let module = Module { krate: self.krate, module_id: *module_id };
|
|
ImplBlock::from_id(module, *impl_id)
|
|
},
|
|
)
|
|
}
|
|
|
|
pub fn lookup_impl_blocks_for_trait<'a>(
|
|
&'a self,
|
|
tr: &Trait,
|
|
) -> impl Iterator<Item = ImplBlock> + 'a {
|
|
self.impls_by_trait.get(&tr).into_iter().flat_map(|i| i.iter()).map(
|
|
move |(module_id, impl_id)| {
|
|
let module = Module { krate: self.krate, module_id: *module_id };
|
|
ImplBlock::from_id(module, *impl_id)
|
|
},
|
|
)
|
|
}
|
|
|
|
fn collect_recursive(&mut self, db: &impl HirDatabase, module: &Module) {
|
|
let module_impl_blocks = db.impls_in_module(module.clone());
|
|
|
|
for (impl_id, _) in module_impl_blocks.impls.iter() {
|
|
let impl_block = ImplBlock::from_id(module_impl_blocks.module, impl_id);
|
|
|
|
let target_ty = impl_block.target_ty(db);
|
|
|
|
if impl_block.target_trait(db).is_some() {
|
|
if let Some(tr) = impl_block.target_trait_ref(db) {
|
|
self.impls_by_trait
|
|
.entry(tr.trait_)
|
|
.or_insert_with(Vec::new)
|
|
.push((module.module_id, impl_id));
|
|
}
|
|
} else {
|
|
if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) {
|
|
self.impls
|
|
.entry(target_ty_fp)
|
|
.or_insert_with(Vec::new)
|
|
.push((module.module_id, impl_id));
|
|
}
|
|
}
|
|
}
|
|
|
|
for child in module.children(db) {
|
|
self.collect_recursive(db, &child);
|
|
}
|
|
}
|
|
|
|
pub(crate) fn impls_in_crate_query(
|
|
db: &impl HirDatabase,
|
|
krate: Crate,
|
|
) -> Arc<CrateImplBlocks> {
|
|
let mut crate_impl_blocks = CrateImplBlocks {
|
|
krate,
|
|
impls: FxHashMap::default(),
|
|
impls_by_trait: FxHashMap::default(),
|
|
};
|
|
if let Some(module) = krate.root_module(db) {
|
|
crate_impl_blocks.collect_recursive(db, &module);
|
|
}
|
|
Arc::new(crate_impl_blocks)
|
|
}
|
|
}
|
|
|
|
fn def_crate(db: &impl HirDatabase, cur_crate: Crate, ty: &Ty) -> Option<Crate> {
|
|
match ty {
|
|
Ty::Apply(a_ty) => match a_ty.ctor {
|
|
TypeCtor::Adt(def_id) => def_id.krate(db),
|
|
TypeCtor::Bool => db.lang_item(cur_crate, "bool".into())?.krate(db),
|
|
TypeCtor::Char => db.lang_item(cur_crate, "char".into())?.krate(db),
|
|
TypeCtor::Float(UncertainFloatTy::Known(f)) => {
|
|
db.lang_item(cur_crate, f.ty_to_string().into())?.krate(db)
|
|
}
|
|
TypeCtor::Int(UncertainIntTy::Known(i)) => {
|
|
db.lang_item(cur_crate, i.ty_to_string().into())?.krate(db)
|
|
}
|
|
TypeCtor::Str => db.lang_item(cur_crate, "str".into())?.krate(db),
|
|
_ => None,
|
|
},
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// Look up the method with the given name, returning the actual autoderefed
|
|
/// receiver type (but without autoref applied yet).
|
|
pub(crate) fn lookup_method(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
name: &Name,
|
|
resolver: &Resolver,
|
|
) -> Option<(Ty, Function)> {
|
|
iterate_method_candidates(ty, db, resolver, Some(name), |ty, f| Some((ty.clone(), f)))
|
|
}
|
|
|
|
// This would be nicer if it just returned an iterator, but that runs into
|
|
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
|
|
pub(crate) fn iterate_method_candidates<T>(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
|
|
) -> Option<T> {
|
|
// For method calls, rust first does any number of autoderef, and then one
|
|
// autoref (i.e. when the method takes &self or &mut self). We just ignore
|
|
// the autoref currently -- when we find a method matching the given name,
|
|
// we assume it fits.
|
|
|
|
// Also note that when we've got a receiver like &S, even if the method we
|
|
// find in the end takes &self, we still do the autoderef step (just as
|
|
// rustc does an autoderef and then autoref again).
|
|
|
|
let krate = resolver.krate()?;
|
|
for derefed_ty in ty.value.clone().autoderef(db) {
|
|
let derefed_ty = Canonical { value: derefed_ty, num_vars: ty.num_vars };
|
|
if let Some(result) = iterate_inherent_methods(&derefed_ty, db, name, krate, &mut callback)
|
|
{
|
|
return Some(result);
|
|
}
|
|
if let Some(result) =
|
|
iterate_trait_method_candidates(&derefed_ty, db, resolver, name, &mut callback)
|
|
{
|
|
return Some(result);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_trait_method_candidates<T>(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
|
|
) -> Option<T> {
|
|
let krate = resolver.krate()?;
|
|
'traits: for t in resolver.traits_in_scope(db) {
|
|
let data = t.trait_data(db);
|
|
// we'll be lazy about checking whether the type implements the
|
|
// trait, but if we find out it doesn't, we'll skip the rest of the
|
|
// iteration
|
|
let mut known_implemented = false;
|
|
for item in data.items() {
|
|
if let TraitItem::Function(m) = *item {
|
|
let sig = m.signature(db);
|
|
if name.map_or(true, |name| sig.name() == name) && sig.has_self_param() {
|
|
if !known_implemented {
|
|
let trait_ref = canonical_trait_ref(db, t, ty.clone());
|
|
if db.implements(krate, trait_ref).is_none() {
|
|
continue 'traits;
|
|
}
|
|
}
|
|
known_implemented = true;
|
|
if let Some(result) = callback(&ty.value, m) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_inherent_methods<T>(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
name: Option<&Name>,
|
|
krate: Crate,
|
|
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
|
|
) -> Option<T> {
|
|
let krate = match def_crate(db, krate, &ty.value) {
|
|
Some(krate) => krate,
|
|
None => return None,
|
|
};
|
|
let impls = db.impls_in_crate(krate);
|
|
|
|
for impl_block in impls.lookup_impl_blocks(&ty.value) {
|
|
for item in impl_block.items(db) {
|
|
if let ImplItem::Method(f) = item {
|
|
let sig = f.signature(db);
|
|
if name.map_or(true, |name| sig.name() == name) && sig.has_self_param() {
|
|
if let Some(result) = callback(&ty.value, f) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
impl Ty {
|
|
// This would be nicer if it just returned an iterator, but that runs into
|
|
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
|
|
pub fn iterate_impl_items<T>(
|
|
self,
|
|
db: &impl HirDatabase,
|
|
krate: Crate,
|
|
mut callback: impl FnMut(ImplItem) -> Option<T>,
|
|
) -> Option<T> {
|
|
let krate = def_crate(db, krate, &self)?;
|
|
let impls = db.impls_in_crate(krate);
|
|
|
|
for impl_block in impls.lookup_impl_blocks(&self) {
|
|
for item in impl_block.items(db) {
|
|
if let Some(result) = callback(item) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
/// This creates Substs for a trait with the given Self type and type variables
|
|
/// for all other parameters, to query Chalk with it.
|
|
fn canonical_trait_ref(
|
|
db: &impl HirDatabase,
|
|
trait_: Trait,
|
|
self_ty: Canonical<Ty>,
|
|
) -> Canonical<TraitRef> {
|
|
let mut substs = Vec::new();
|
|
let generics = trait_.generic_params(db);
|
|
let num_vars = self_ty.num_vars;
|
|
substs.push(self_ty.value);
|
|
substs.extend(
|
|
generics
|
|
.params_including_parent()
|
|
.into_iter()
|
|
.skip(1)
|
|
.enumerate()
|
|
.map(|(i, _p)| Ty::Bound((i + num_vars) as u32)),
|
|
);
|
|
Canonical {
|
|
num_vars: substs.len() - 1 + self_ty.num_vars,
|
|
value: TraitRef { trait_, substs: substs.into() },
|
|
}
|
|
}
|