mirror of
https://github.com/rust-lang/rust-analyzer
synced 2024-12-31 23:38:45 +00:00
487 lines
17 KiB
Rust
487 lines
17 KiB
Rust
//! This module is concerned with finding methods that a given type provides.
|
|
//! For details about how this works in rustc, see the method lookup page in the
|
|
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
|
|
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
|
|
use std::sync::Arc;
|
|
|
|
use arrayvec::ArrayVec;
|
|
use hir_def::{
|
|
lang_item::LangItemTarget, resolver::Resolver, type_ref::Mutability, AssocItemId, AstItemDef,
|
|
FunctionId, HasModule, ImplId, Lookup, TraitId,
|
|
};
|
|
use hir_expand::name::Name;
|
|
use ra_db::CrateId;
|
|
use ra_prof::profile;
|
|
use rustc_hash::FxHashMap;
|
|
|
|
use super::Substs;
|
|
use crate::{
|
|
autoderef,
|
|
db::HirDatabase,
|
|
primitive::{FloatBitness, Uncertain},
|
|
utils::all_super_traits,
|
|
Canonical, InEnvironment, TraitEnvironment, TraitRef, Ty, TypeCtor, TypeWalk,
|
|
};
|
|
|
|
/// This is used as a key for indexing impls.
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
|
pub enum TyFingerprint {
|
|
Apply(TypeCtor),
|
|
}
|
|
|
|
impl TyFingerprint {
|
|
/// Creates a TyFingerprint for looking up an impl. Only certain types can
|
|
/// have impls: if we have some `struct S`, we can have an `impl S`, but not
|
|
/// `impl &S`. Hence, this will return `None` for reference types and such.
|
|
fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
|
|
match ty {
|
|
Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub struct CrateImplBlocks {
|
|
impls: FxHashMap<TyFingerprint, Vec<ImplId>>,
|
|
impls_by_trait: FxHashMap<TraitId, Vec<ImplId>>,
|
|
}
|
|
|
|
impl CrateImplBlocks {
|
|
pub(crate) fn impls_in_crate_query(
|
|
db: &impl HirDatabase,
|
|
krate: CrateId,
|
|
) -> Arc<CrateImplBlocks> {
|
|
let _p = profile("impls_in_crate_query");
|
|
let mut res =
|
|
CrateImplBlocks { impls: FxHashMap::default(), impls_by_trait: FxHashMap::default() };
|
|
|
|
let crate_def_map = db.crate_def_map(krate);
|
|
for (_module_id, module_data) in crate_def_map.modules.iter() {
|
|
for &impl_id in module_data.impls.iter() {
|
|
match db.impl_trait(impl_id) {
|
|
Some(tr) => {
|
|
res.impls_by_trait.entry(tr.trait_).or_default().push(impl_id);
|
|
}
|
|
None => {
|
|
let self_ty = db.impl_self_ty(impl_id);
|
|
if let Some(self_ty_fp) = TyFingerprint::for_impl(&self_ty) {
|
|
res.impls.entry(self_ty_fp).or_default().push(impl_id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Arc::new(res)
|
|
}
|
|
pub fn lookup_impl_blocks(&self, ty: &Ty) -> impl Iterator<Item = ImplId> + '_ {
|
|
let fingerprint = TyFingerprint::for_impl(ty);
|
|
fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flatten().copied()
|
|
}
|
|
|
|
pub fn lookup_impl_blocks_for_trait(&self, tr: TraitId) -> impl Iterator<Item = ImplId> + '_ {
|
|
self.impls_by_trait.get(&tr).into_iter().flatten().copied()
|
|
}
|
|
|
|
pub fn all_impls<'a>(&'a self) -> impl Iterator<Item = ImplId> + 'a {
|
|
self.impls.values().chain(self.impls_by_trait.values()).flatten().copied()
|
|
}
|
|
}
|
|
|
|
impl Ty {
|
|
pub fn def_crates(
|
|
&self,
|
|
db: &impl HirDatabase,
|
|
cur_crate: CrateId,
|
|
) -> Option<ArrayVec<[CrateId; 2]>> {
|
|
// Types like slice can have inherent impls in several crates, (core and alloc).
|
|
// The corresponding impls are marked with lang items, so we can use them to find the required crates.
|
|
macro_rules! lang_item_crate {
|
|
($($name:expr),+ $(,)?) => {{
|
|
let mut v = ArrayVec::<[LangItemTarget; 2]>::new();
|
|
$(
|
|
v.extend(db.lang_item(cur_crate, $name.into()));
|
|
)+
|
|
v
|
|
}};
|
|
}
|
|
|
|
let lang_item_targets = match self {
|
|
Ty::Apply(a_ty) => match a_ty.ctor {
|
|
TypeCtor::Adt(def_id) => {
|
|
return Some(std::iter::once(def_id.module(db).krate).collect())
|
|
}
|
|
TypeCtor::Bool => lang_item_crate!("bool"),
|
|
TypeCtor::Char => lang_item_crate!("char"),
|
|
TypeCtor::Float(Uncertain::Known(f)) => match f.bitness {
|
|
// There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
|
|
FloatBitness::X32 => lang_item_crate!("f32", "f32_runtime"),
|
|
FloatBitness::X64 => lang_item_crate!("f64", "f64_runtime"),
|
|
},
|
|
TypeCtor::Int(Uncertain::Known(i)) => lang_item_crate!(i.ty_to_string()),
|
|
TypeCtor::Str => lang_item_crate!("str_alloc", "str"),
|
|
TypeCtor::Slice => lang_item_crate!("slice_alloc", "slice"),
|
|
TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!("const_ptr"),
|
|
TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!("mut_ptr"),
|
|
_ => return None,
|
|
},
|
|
_ => return None,
|
|
};
|
|
let res = lang_item_targets
|
|
.into_iter()
|
|
.filter_map(|it| match it {
|
|
LangItemTarget::ImplBlockId(it) => Some(it),
|
|
_ => None,
|
|
})
|
|
.map(|it| it.module(db).krate)
|
|
.collect();
|
|
Some(res)
|
|
}
|
|
}
|
|
/// Look up the method with the given name, returning the actual autoderefed
|
|
/// receiver type (but without autoref applied yet).
|
|
pub(crate) fn lookup_method(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
name: &Name,
|
|
resolver: &Resolver,
|
|
) -> Option<(Ty, FunctionId)> {
|
|
iterate_method_candidates(ty, db, resolver, Some(name), LookupMode::MethodCall, |ty, f| match f
|
|
{
|
|
AssocItemId::FunctionId(f) => Some((ty.clone(), f)),
|
|
_ => None,
|
|
})
|
|
}
|
|
|
|
/// Whether we're looking up a dotted method call (like `v.len()`) or a path
|
|
/// (like `Vec::new`).
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
|
pub enum LookupMode {
|
|
/// Looking up a method call like `v.len()`: We only consider candidates
|
|
/// that have a `self` parameter, and do autoderef.
|
|
MethodCall,
|
|
/// Looking up a path like `Vec::new` or `Vec::default`: We consider all
|
|
/// candidates including associated constants, but don't do autoderef.
|
|
Path,
|
|
}
|
|
|
|
// This would be nicer if it just returned an iterator, but that runs into
|
|
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
|
|
// FIXME add a context type here?
|
|
pub fn iterate_method_candidates<T>(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
name: Option<&Name>,
|
|
mode: LookupMode,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
match mode {
|
|
LookupMode::MethodCall => {
|
|
// For method calls, rust first does any number of autoderef, and then one
|
|
// autoref (i.e. when the method takes &self or &mut self). We just ignore
|
|
// the autoref currently -- when we find a method matching the given name,
|
|
// we assume it fits.
|
|
|
|
// Also note that when we've got a receiver like &S, even if the method we
|
|
// find in the end takes &self, we still do the autoderef step (just as
|
|
// rustc does an autoderef and then autoref again).
|
|
let environment = TraitEnvironment::lower(db, resolver);
|
|
let ty = InEnvironment { value: ty.clone(), environment };
|
|
let krate = resolver.krate()?;
|
|
|
|
// We have to be careful about the order of operations here.
|
|
// Consider the case where we're resolving `x.clone()` where `x:
|
|
// &Vec<_>`. This resolves to the clone method with self type
|
|
// `Vec<_>`, *not* `&_`. I.e. we need to consider methods where the
|
|
// receiver type exactly matches before cases where we have to do
|
|
// autoref. But in the autoderef steps, the `&_` self type comes up
|
|
// *before* the `Vec<_>` self type.
|
|
//
|
|
// On the other hand, we don't want to just pick any by-value method
|
|
// before any by-autoref method; it's just that we need to consider
|
|
// the methods by autoderef order of *receiver types*, not *self
|
|
// types*.
|
|
|
|
let deref_chain: Vec<_> = autoderef::autoderef(db, Some(krate), ty.clone()).collect();
|
|
for i in 0..deref_chain.len() {
|
|
if let Some(result) = iterate_method_candidates_autoref(
|
|
&deref_chain[i..],
|
|
db,
|
|
resolver,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
LookupMode::Path => {
|
|
// No autoderef for path lookups
|
|
iterate_method_candidates_inner(&ty, db, resolver, name, None, &mut callback)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn iterate_method_candidates_autoref<T>(
|
|
deref_chain: &[Canonical<Ty>],
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
if let Some(result) = iterate_method_candidates_by_receiver(
|
|
&deref_chain[0],
|
|
&deref_chain[1..],
|
|
db,
|
|
resolver,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
let refed = Canonical {
|
|
num_vars: deref_chain[0].num_vars,
|
|
value: Ty::apply_one(TypeCtor::Ref(Mutability::Shared), deref_chain[0].value.clone()),
|
|
};
|
|
if let Some(result) = iterate_method_candidates_by_receiver(
|
|
&refed,
|
|
deref_chain,
|
|
db,
|
|
resolver,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
let ref_muted = Canonical {
|
|
num_vars: deref_chain[0].num_vars,
|
|
value: Ty::apply_one(TypeCtor::Ref(Mutability::Mut), deref_chain[0].value.clone()),
|
|
};
|
|
if let Some(result) = iterate_method_candidates_by_receiver(
|
|
&ref_muted,
|
|
deref_chain,
|
|
db,
|
|
resolver,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_method_candidates_by_receiver<T>(
|
|
receiver_ty: &Canonical<Ty>,
|
|
deref_chain: &[Canonical<Ty>],
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
// TODO: do we need to do the whole loop for inherents before traits?
|
|
// We're looking for methods with *receiver* type receiver_ty. These could
|
|
// be found in any of the derefs of receiver_ty, so we have to go through
|
|
// that.
|
|
for self_ty in std::iter::once(receiver_ty).chain(deref_chain) {
|
|
if let Some(result) = iterate_method_candidates_inner(
|
|
self_ty,
|
|
db,
|
|
resolver,
|
|
name,
|
|
Some(receiver_ty),
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_method_candidates_inner<T>(
|
|
self_ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
name: Option<&Name>,
|
|
receiver_ty: Option<&Canonical<Ty>>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
let krate = resolver.krate()?;
|
|
if let Some(result) =
|
|
iterate_inherent_methods(self_ty, db, name, receiver_ty, krate, &mut callback)
|
|
{
|
|
return Some(result);
|
|
}
|
|
if let Some(result) =
|
|
iterate_trait_method_candidates(self_ty, db, resolver, name, receiver_ty, &mut callback)
|
|
{
|
|
return Some(result);
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_trait_method_candidates<T>(
|
|
self_ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
name: Option<&Name>,
|
|
receiver_ty: Option<&Canonical<Ty>>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
let krate = resolver.krate()?;
|
|
// FIXME: maybe put the trait_env behind a query (need to figure out good input parameters for that)
|
|
let env = TraitEnvironment::lower(db, resolver);
|
|
// if ty is `impl Trait` or `dyn Trait`, the trait doesn't need to be in scope
|
|
let inherent_trait = self_ty.value.inherent_trait().into_iter();
|
|
// if we have `T: Trait` in the param env, the trait doesn't need to be in scope
|
|
let traits_from_env = env
|
|
.trait_predicates_for_self_ty(&self_ty.value)
|
|
.map(|tr| tr.trait_)
|
|
.flat_map(|t| all_super_traits(db, t));
|
|
let traits =
|
|
inherent_trait.chain(traits_from_env).chain(resolver.traits_in_scope(db).into_iter());
|
|
'traits: for t in traits {
|
|
let data = db.trait_data(t);
|
|
|
|
// we'll be lazy about checking whether the type implements the
|
|
// trait, but if we find out it doesn't, we'll skip the rest of the
|
|
// iteration
|
|
let mut known_implemented = false;
|
|
for (_name, item) in data.items.iter() {
|
|
if !is_valid_candidate(db, name, receiver_ty, (*item).into(), self_ty) {
|
|
continue;
|
|
}
|
|
if !known_implemented {
|
|
let goal = generic_implements_goal(db, env.clone(), t, self_ty.clone());
|
|
if db.trait_solve(krate.into(), goal).is_none() {
|
|
continue 'traits;
|
|
}
|
|
}
|
|
known_implemented = true;
|
|
if let Some(result) = callback(&self_ty.value, (*item).into()) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_inherent_methods<T>(
|
|
self_ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
name: Option<&Name>,
|
|
receiver_ty: Option<&Canonical<Ty>>,
|
|
krate: CrateId,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
for krate in self_ty.value.def_crates(db, krate)? {
|
|
let impls = db.impls_in_crate(krate);
|
|
|
|
for impl_block in impls.lookup_impl_blocks(&self_ty.value) {
|
|
for &item in db.impl_data(impl_block).items.iter() {
|
|
if !is_valid_candidate(db, name, receiver_ty, item, self_ty) {
|
|
continue;
|
|
}
|
|
if let Some(result) = callback(&self_ty.value, item) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn is_valid_candidate(
|
|
db: &impl HirDatabase,
|
|
name: Option<&Name>,
|
|
receiver_ty: Option<&Canonical<Ty>>,
|
|
item: AssocItemId,
|
|
self_ty: &Canonical<Ty>,
|
|
) -> bool {
|
|
match item {
|
|
AssocItemId::FunctionId(m) => {
|
|
let data = db.function_data(m);
|
|
if let Some(name) = name {
|
|
if &data.name != name {
|
|
return false;
|
|
}
|
|
}
|
|
if let Some(receiver_ty) = receiver_ty {
|
|
if !data.has_self_param {
|
|
return false;
|
|
}
|
|
let substs = match m.lookup(db).container {
|
|
hir_def::ContainerId::TraitId(_) => Substs::build_for_def(db, item)
|
|
.push(self_ty.value.clone())
|
|
.fill_with_unknown()
|
|
.build(),
|
|
hir_def::ContainerId::ImplId(impl_id) => {
|
|
let vars =
|
|
Substs::build_for_def(db, impl_id).fill_with_bound_vars(0).build();
|
|
let self_ty_with_vars = db.impl_self_ty(impl_id).subst(&vars);
|
|
let self_ty_with_vars =
|
|
Canonical { num_vars: vars.len(), value: &self_ty_with_vars };
|
|
if let Some(substs) = super::infer::unify(self_ty_with_vars, &self_ty.value)
|
|
{
|
|
substs
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
hir_def::ContainerId::ModuleId(_) => unreachable!(),
|
|
};
|
|
let sig = db.callable_item_signature(m.into());
|
|
let receiver = sig.params()[0].clone().subst(&substs);
|
|
if receiver != receiver_ty.value {
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
}
|
|
AssocItemId::ConstId(c) => {
|
|
let data = db.const_data(c);
|
|
name.map_or(true, |name| data.name.as_ref() == Some(name)) && receiver_ty.is_none()
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
pub fn implements_trait(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
resolver: &Resolver,
|
|
krate: CrateId,
|
|
trait_: TraitId,
|
|
) -> bool {
|
|
if ty.value.inherent_trait() == Some(trait_) {
|
|
// FIXME this is a bit of a hack, since Chalk should say the same thing
|
|
// anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
|
|
return true;
|
|
}
|
|
let env = TraitEnvironment::lower(db, resolver);
|
|
let goal = generic_implements_goal(db, env, trait_, ty.clone());
|
|
let solution = db.trait_solve(krate.into(), goal);
|
|
|
|
solution.is_some()
|
|
}
|
|
|
|
/// This creates Substs for a trait with the given Self type and type variables
|
|
/// for all other parameters, to query Chalk with it.
|
|
fn generic_implements_goal(
|
|
db: &impl HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
trait_: TraitId,
|
|
self_ty: Canonical<Ty>,
|
|
) -> Canonical<InEnvironment<super::Obligation>> {
|
|
let num_vars = self_ty.num_vars;
|
|
let substs = super::Substs::build_for_def(db, trait_)
|
|
.push(self_ty.value)
|
|
.fill_with_bound_vars(num_vars as u32)
|
|
.build();
|
|
let num_vars = substs.len() - 1 + self_ty.num_vars;
|
|
let trait_ref = TraitRef { trait_, substs };
|
|
let obligation = super::Obligation::Trait(trait_ref);
|
|
Canonical { num_vars, value: InEnvironment::new(env, obligation) }
|
|
}
|