rust-analyzer/crates/hir/src/display.rs

464 lines
15 KiB
Rust

//! HirDisplay implementations for various hir types.
use hir_def::{
adt::VariantData,
generics::{TypeParamProvenance, WherePredicate, WherePredicateTypeTarget},
type_ref::{TypeBound, TypeRef},
AdtId, GenericDefId,
};
use hir_ty::display::{
write_bounds_like_dyn_trait_with_prefix, write_visibility, HirDisplay, HirDisplayError,
HirFormatter, SizedByDefault,
};
use hir_ty::Interner;
use syntax::ast::{self, NameOwner};
use crate::{
Adt, Const, ConstParam, Enum, Field, Function, GenericParam, HasVisibility, LifetimeParam,
Module, Static, Struct, Trait, TyBuilder, Type, TypeAlias, TypeParam, Union, Variant,
};
impl HirDisplay for Function {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
let data = f.db.function_data(self.id);
write_visibility(self.module(f.db).id, self.visibility(f.db), f)?;
if data.is_default() {
write!(f, "default ")?;
}
if data.is_const() {
write!(f, "const ")?;
}
if data.is_async() {
write!(f, "async ")?;
}
if data.is_unsafe() {
write!(f, "unsafe ")?;
}
if let Some(abi) = &data.abi {
// FIXME: String escape?
write!(f, "extern \"{}\" ", &**abi)?;
}
write!(f, "fn {}", data.name)?;
write_generic_params(GenericDefId::FunctionId(self.id), f)?;
write!(f, "(")?;
let write_self_param = |ty: &TypeRef, f: &mut HirFormatter| match ty {
TypeRef::Path(p) if p.is_self_type() => write!(f, "self"),
TypeRef::Reference(inner, lifetime, mut_) if matches!(&**inner,TypeRef::Path(p) if p.is_self_type()) =>
{
write!(f, "&")?;
if let Some(lifetime) = lifetime {
write!(f, "{} ", lifetime.name)?;
}
if let hir_def::type_ref::Mutability::Mut = mut_ {
write!(f, "mut ")?;
}
write!(f, "self")
}
_ => {
write!(f, "self: ")?;
ty.hir_fmt(f)
}
};
let mut first = true;
for (param, type_ref) in self.assoc_fn_params(f.db).into_iter().zip(&data.params) {
if !first {
write!(f, ", ")?;
} else {
first = false;
if data.has_self_param() {
write_self_param(type_ref, f)?;
continue;
}
}
match param.pattern_source(f.db) {
Some(ast::Pat::IdentPat(p)) if p.name().is_some() => {
write!(f, "{}: ", p.name().unwrap())?
}
_ => write!(f, "_: ")?,
}
// FIXME: Use resolved `param.ty` or raw `type_ref`?
// The former will ignore lifetime arguments currently.
type_ref.hir_fmt(f)?;
}
write!(f, ")")?;
// `FunctionData::ret_type` will be `::core::future::Future<Output = ...>` for async fns.
// Use ugly pattern match to strip the Future trait.
// Better way?
let ret_type = if !data.is_async() {
&data.ret_type
} else {
match &*data.ret_type {
TypeRef::ImplTrait(bounds) => match bounds[0].as_ref() {
TypeBound::Path(path, _) => {
path.segments().iter().last().unwrap().args_and_bindings.unwrap().bindings
[0]
.type_ref
.as_ref()
.unwrap()
}
_ => panic!("Async fn ret_type should be impl Future"),
},
_ => panic!("Async fn ret_type should be impl Future"),
}
};
match ret_type {
TypeRef::Tuple(tup) if tup.is_empty() => {}
ty => {
write!(f, " -> ")?;
ty.hir_fmt(f)?;
}
}
write_where_clause(GenericDefId::FunctionId(self.id), f)?;
Ok(())
}
}
impl HirDisplay for Adt {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
match self {
Adt::Struct(it) => it.hir_fmt(f),
Adt::Union(it) => it.hir_fmt(f),
Adt::Enum(it) => it.hir_fmt(f),
}
}
}
impl HirDisplay for Struct {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write_visibility(self.module(f.db).id, self.visibility(f.db), f)?;
write!(f, "struct ")?;
write!(f, "{}", self.name(f.db))?;
let def_id = GenericDefId::AdtId(AdtId::StructId(self.id));
write_generic_params(def_id, f)?;
write_where_clause(def_id, f)?;
Ok(())
}
}
impl HirDisplay for Enum {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write_visibility(self.module(f.db).id, self.visibility(f.db), f)?;
write!(f, "enum ")?;
write!(f, "{}", self.name(f.db))?;
let def_id = GenericDefId::AdtId(AdtId::EnumId(self.id));
write_generic_params(def_id, f)?;
write_where_clause(def_id, f)?;
Ok(())
}
}
impl HirDisplay for Union {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write_visibility(self.module(f.db).id, self.visibility(f.db), f)?;
write!(f, "union ")?;
write!(f, "{}", self.name(f.db))?;
let def_id = GenericDefId::AdtId(AdtId::UnionId(self.id));
write_generic_params(def_id, f)?;
write_where_clause(def_id, f)?;
Ok(())
}
}
impl HirDisplay for Field {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write_visibility(self.parent.module(f.db).id, self.visibility(f.db), f)?;
write!(f, "{}: ", self.name(f.db))?;
self.ty(f.db).hir_fmt(f)
}
}
impl HirDisplay for Variant {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write!(f, "{}", self.name(f.db))?;
let data = self.variant_data(f.db);
match &*data {
VariantData::Unit => {}
VariantData::Tuple(fields) => {
write!(f, "(")?;
let mut first = true;
for (_, field) in fields.iter() {
if first {
first = false;
} else {
write!(f, ", ")?;
}
// Enum variant fields must be pub.
field.type_ref.hir_fmt(f)?;
}
write!(f, ")")?;
}
VariantData::Record(fields) => {
write!(f, " {{")?;
let mut first = true;
for (_, field) in fields.iter() {
if first {
first = false;
write!(f, " ")?;
} else {
write!(f, ", ")?;
}
// Enum variant fields must be pub.
write!(f, "{}: ", field.name)?;
field.type_ref.hir_fmt(f)?;
}
write!(f, " }}")?;
}
}
Ok(())
}
}
impl HirDisplay for Type {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
self.ty.hir_fmt(f)
}
}
impl HirDisplay for GenericParam {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
match self {
GenericParam::TypeParam(it) => it.hir_fmt(f),
GenericParam::LifetimeParam(it) => it.hir_fmt(f),
GenericParam::ConstParam(it) => it.hir_fmt(f),
}
}
}
impl HirDisplay for TypeParam {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write!(f, "{}", self.name(f.db))?;
let bounds = f.db.generic_predicates_for_param(self.id);
let substs = TyBuilder::type_params_subst(f.db, self.id.parent);
let predicates =
bounds.iter().cloned().map(|b| b.substitute(&Interner, &substs)).collect::<Vec<_>>();
if !(predicates.is_empty() || f.omit_verbose_types()) {
write_bounds_like_dyn_trait_with_prefix(":", &predicates, SizedByDefault::Sized, f)?;
}
Ok(())
}
}
impl HirDisplay for LifetimeParam {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write!(f, "{}", self.name(f.db))
}
}
impl HirDisplay for ConstParam {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write!(f, "const {}: ", self.name(f.db))?;
self.ty(f.db).hir_fmt(f)
}
}
fn write_generic_params(def: GenericDefId, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
let params = f.db.generic_params(def);
if params.lifetimes.is_empty()
&& params.consts.is_empty()
&& params
.types
.iter()
.all(|(_, param)| !matches!(param.provenance, TypeParamProvenance::TypeParamList))
{
return Ok(());
}
write!(f, "<")?;
let mut first = true;
let mut delim = |f: &mut HirFormatter| {
if first {
first = false;
Ok(())
} else {
write!(f, ", ")
}
};
for (_, lifetime) in params.lifetimes.iter() {
delim(f)?;
write!(f, "{}", lifetime.name)?;
}
for (_, ty) in params.types.iter() {
if ty.provenance != TypeParamProvenance::TypeParamList {
continue;
}
if let Some(name) = &ty.name {
delim(f)?;
write!(f, "{}", name)?;
if let Some(default) = &ty.default {
write!(f, " = ")?;
default.hir_fmt(f)?;
}
}
}
for (_, konst) in params.consts.iter() {
delim(f)?;
write!(f, "const {}: ", konst.name)?;
konst.ty.hir_fmt(f)?;
}
write!(f, ">")?;
Ok(())
}
fn write_where_clause(def: GenericDefId, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
let params = f.db.generic_params(def);
if params.where_predicates.is_empty() {
return Ok(());
}
let write_target = |target: &WherePredicateTypeTarget, f: &mut HirFormatter| match target {
WherePredicateTypeTarget::TypeRef(ty) => ty.hir_fmt(f),
WherePredicateTypeTarget::TypeParam(id) => match &params.types[*id].name {
Some(name) => write!(f, "{}", name),
None => write!(f, "{{unnamed}}"),
},
};
write!(f, "\nwhere")?;
for (pred_idx, pred) in params.where_predicates.iter().enumerate() {
let prev_pred =
if pred_idx == 0 { None } else { Some(&params.where_predicates[pred_idx - 1]) };
let new_predicate = |f: &mut HirFormatter| {
write!(f, "{}", if pred_idx == 0 { "\n " } else { ",\n " })
};
match pred {
WherePredicate::TypeBound { target, bound } => {
if matches!(prev_pred, Some(WherePredicate::TypeBound { target: target_, .. }) if target_ == target)
{
write!(f, " + ")?;
} else {
new_predicate(f)?;
write_target(target, f)?;
write!(f, ": ")?;
}
bound.hir_fmt(f)?;
}
WherePredicate::Lifetime { target, bound } => {
if matches!(prev_pred, Some(WherePredicate::Lifetime { target: target_, .. }) if target_ == target)
{
write!(f, " + {}", bound.name)?;
} else {
new_predicate(f)?;
write!(f, "{}: {}", target.name, bound.name)?;
}
}
WherePredicate::ForLifetime { lifetimes, target, bound } => {
if matches!(
prev_pred,
Some(WherePredicate::ForLifetime { lifetimes: lifetimes_, target: target_, .. })
if lifetimes_ == lifetimes && target_ == target,
) {
write!(f, " + ")?;
} else {
new_predicate(f)?;
write!(f, "for<")?;
for (idx, lifetime) in lifetimes.iter().enumerate() {
if idx != 0 {
write!(f, ", ")?;
}
write!(f, "{}", lifetime)?;
}
write!(f, "> ")?;
write_target(target, f)?;
write!(f, ": ")?;
}
bound.hir_fmt(f)?;
}
}
}
// End of final predicate. There must be at least one predicate here.
write!(f, ",")?;
Ok(())
}
impl HirDisplay for Const {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write_visibility(self.module(f.db).id, self.visibility(f.db), f)?;
let data = f.db.const_data(self.id);
write!(f, "const ")?;
match &data.name {
Some(name) => write!(f, "{}: ", name)?,
None => write!(f, "_: ")?,
}
data.type_ref.hir_fmt(f)?;
Ok(())
}
}
impl HirDisplay for Static {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write_visibility(self.module(f.db).id, self.visibility(f.db), f)?;
let data = f.db.static_data(self.id);
write!(f, "static ")?;
if data.mutable {
write!(f, "mut ")?;
}
match &data.name {
Some(name) => write!(f, "{}: ", name)?,
None => write!(f, "_: ")?,
}
data.type_ref.hir_fmt(f)?;
Ok(())
}
}
impl HirDisplay for Trait {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write_visibility(self.module(f.db).id, self.visibility(f.db), f)?;
let data = f.db.trait_data(self.id);
if data.is_unsafe {
write!(f, "unsafe ")?;
}
if data.is_auto {
write!(f, "auto ")?;
}
write!(f, "trait {}", data.name)?;
let def_id = GenericDefId::TraitId(self.id);
write_generic_params(def_id, f)?;
write_where_clause(def_id, f)?;
Ok(())
}
}
impl HirDisplay for TypeAlias {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write_visibility(self.module(f.db).id, self.visibility(f.db), f)?;
let data = f.db.type_alias_data(self.id);
write!(f, "type {}", data.name)?;
if !data.bounds.is_empty() {
write!(f, ": ")?;
f.write_joined(&data.bounds, " + ")?;
}
if let Some(ty) = &data.type_ref {
write!(f, " = ")?;
ty.hir_fmt(f)?;
}
Ok(())
}
}
impl HirDisplay for Module {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
// FIXME: Module doesn't have visibility saved in data.
match self.name(f.db) {
Some(name) => write!(f, "mod {}", name),
None if self.crate_root(f.db) == *self => match self.krate().display_name(f.db) {
Some(name) => write!(f, "extern crate {}", name),
None => write!(f, "extern crate {{unknown}}"),
},
None => write!(f, "mod {{unnamed}}"),
}
}
}