4046b9e21f
translation: eager translation Part of #100717. See [Zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/336883-i18n/topic/.23100717.20lists!/near/295010720) for additional context. - **Store diagnostic arguments in a `HashMap`**: Eager translation will enable subdiagnostics to be translated multiple times with different arguments - this requires the ability to replace the value of one argument with a new value, which is better suited to a `HashMap` than the previous storage, a `Vec`. - **Add `AddToDiagnostic::add_to_diagnostic_with`**: `AddToDiagnostic::add_to_diagnostic_with` is similar to the previous `AddToDiagnostic::add_to_diagnostic` but takes a function that can be used by the caller to modify diagnostic messages originating from the subdiagnostic (such as performing translation eagerly). `add_to_diagnostic` now just calls `add_to_diagnostic_with` with an empty closure. - **Add `DiagnosticMessage::Eager`**: Add variant of `DiagnosticMessage` for eagerly translated messages (messages in the target language which don't need translated by the emitter during emission). Also adds `eager_subdiagnostic` function which is intended to be invoked by the diagnostic derive for subdiagnostic fields which are marked as needing eager translation. - **Support `#[subdiagnostic(eager)]`**: Add support for `eager` argument to the `subdiagnostic` attribute which generates a call to `eager_subdiagnostic`. - **Finish migrating `rustc_query_system`**: Using eager translation, migrate the remaining repeated cycle stack diagnostic. - **Split formatting initialization and use in diagnostic derives**: Diagnostic derives have previously had to take special care when ordering the generated code so that fields were not used after a move. This is unlikely for most fields because a field is either annotated with a subdiagnostic attribute and is thus likely a `Span` and copiable, or is a argument, in which case it is only used once by `set_arg` anyway. However, format strings for code in suggestions can result in fields being used after being moved if not ordered carefully. As a result, the derive currently puts `set_arg` calls last (just before emission), such as: let diag = { /* create diagnostic */ }; diag.span_suggestion_with_style( span, fluent::crate::slug, format!("{}", __binding_0), Applicability::Unknown, SuggestionStyle::ShowAlways ); /* + other subdiagnostic additions */ diag.set_arg("foo", __binding_0); /* + other `set_arg` calls */ diag.emit(); For eager translation, this doesn't work, as the message being translated eagerly can assume that all arguments are available - so arguments _must_ be set first. Format strings for suggestion code are now separated into two parts - an initialization line that performs the formatting into a variable, and a usage in the subdiagnostic addition. By separating these parts, the initialization can happen before arguments are set, preserving the desired order so that code compiles, while still enabling arguments to be set before subdiagnostics are added. let diag = { /* create diagnostic */ }; let __code_0 = format!("{}", __binding_0); /* + other formatting */ diag.set_arg("foo", __binding_0); /* + other `set_arg` calls */ diag.span_suggestion_with_style( span, fluent::crate::slug, __code_0, Applicability::Unknown, SuggestionStyle::ShowAlways ); /* + other subdiagnostic additions */ diag.emit(); - **Remove field ordering logic in diagnostic derive:** Following the approach taken in earlier commits to separate formatting initialization from use in the subdiagnostic derive, simplify the diagnostic derive by removing the field-ordering logic that previously solved this problem. r? ```@compiler-errors``` |
||
---|---|---|
.cargo | ||
.github | ||
.vscode | ||
assets | ||
bench_data | ||
crates | ||
docs | ||
editors/code | ||
lib | ||
xtask | ||
.editorconfig | ||
.git-blame-ignore-revs | ||
.gitattributes | ||
.gitignore | ||
Cargo.lock | ||
Cargo.toml | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
PRIVACY.md | ||
README.md | ||
rustfmt.toml | ||
triagebot.toml |
rust-analyzer is a modular compiler frontend for the Rust language. It is a part of a larger rls-2.0 effort to create excellent IDE support for Rust.
Quick Start
https://rust-analyzer.github.io/manual.html#installation
Documentation
If you want to contribute to rust-analyzer or are just curious about how things work under the hood, check the ./docs/dev folder.
If you want to use rust-analyzer's language server with your editor of choice, check the manual folder. It also contains some tips & tricks to help you be more productive when using rust-analyzer.
Security and Privacy
See the corresponding sections of the manual.
Communication
For usage and troubleshooting requests, please use "IDEs and Editors" category of the Rust forum:
https://users.rust-lang.org/c/ide/14
For questions about development and implementation, join rust-analyzer working group on Zulip:
https://rust-lang.zulipchat.com/#narrow/stream/185405-t-compiler.2Frust-analyzer
Quick Links
- Website: https://rust-analyzer.github.io/
- Metrics: https://rust-analyzer.github.io/metrics/
- API docs: https://rust-lang.github.io/rust-analyzer/ide/
- Changelog: https://rust-analyzer.github.io/thisweek
License
rust-analyzer is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0).
See LICENSE-APACHE and LICENSE-MIT for details.