rust-analyzer/crates/project-model/src/project_json.rs
2024-08-08 13:08:50 +02:00

484 lines
17 KiB
Rust

//! `rust-project.json` file format.
//!
//! This format is spiritually a serialization of [`base_db::CrateGraph`]. The
//! idea here is that people who do not use Cargo, can instead teach their build
//! system to generate `rust-project.json` which can be ingested by
//! rust-analyzer.
//!
//! This short file is a somewhat big conceptual piece of the architecture of
//! rust-analyzer, so it's worth elaborating on the underlying ideas and
//! motivation.
//!
//! For rust-analyzer to function, it needs some information about the project.
//! Specifically, it maintains an in-memory data structure which lists all the
//! crates (compilation units) and dependencies between them. This is necessary
//! a global singleton, as we do want, eg, find usages to always search across
//! the whole project, rather than just in the "current" crate.
//!
//! Normally, we get this "crate graph" by calling `cargo metadata
//! --message-format=json` for each cargo workspace and merging results. This
//! works for your typical cargo project, but breaks down for large folks who
//! have a monorepo with an infinite amount of Rust code which is built with bazel or
//! some such.
//!
//! To support this use case, we need to make _something_ configurable. To avoid
//! a [midlayer mistake](https://lwn.net/Articles/336262/), we allow configuring
//! the lowest possible layer. `ProjectJson` is essentially a hook to just set
//! that global singleton in-memory data structure. It is optimized for power,
//! not for convenience (you'd be using cargo anyway if you wanted nice things,
//! right? :)
//!
//! `rust-project.json` also isn't necessary a file. Architecturally, we support
//! any convenient way to specify this data, which today is:
//!
//! * file on disk
//! * a field in the config (ie, you can send a JSON request with the contents
//! of `rust-project.json` to rust-analyzer, no need to write anything to disk)
//!
//! Another possible thing we don't do today, but which would be totally valid,
//! is to add an extension point to VS Code extension to register custom
//! project.
//!
//! In general, it is assumed that if you are going to use `rust-project.json`,
//! you'd write a fair bit of custom code gluing your build system to ra through
//! this JSON format. This logic can take form of a VS Code extension, or a
//! proxy process which injects data into "configure" LSP request, or maybe just
//! a simple build system rule to generate the file.
//!
//! In particular, the logic for lazily loading parts of the monorepo as the
//! user explores them belongs to that extension (it's totally valid to change
//! rust-project.json over time via configuration request!)
use base_db::{CrateDisplayName, CrateName};
use cfg::CfgAtom;
use paths::{AbsPath, AbsPathBuf, Utf8PathBuf};
use rustc_hash::FxHashMap;
use serde::{de, Deserialize, Serialize};
use span::Edition;
use crate::{ManifestPath, TargetKind};
/// Roots and crates that compose this Rust project.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ProjectJson {
/// e.g. `path/to/sysroot`
pub(crate) sysroot: Option<AbsPathBuf>,
/// e.g. `path/to/sysroot/lib/rustlib/src/rust`
pub(crate) sysroot_src: Option<AbsPathBuf>,
project_root: AbsPathBuf,
manifest: Option<ManifestPath>,
crates: Vec<Crate>,
/// Configuration for CLI commands.
///
/// Examples include a check build or a test run.
runnables: Vec<Runnable>,
}
impl ProjectJson {
/// Create a new ProjectJson instance.
///
/// # Arguments
///
/// * `manifest` - The path to the `rust-project.json`.
/// * `base` - The path to the workspace root (i.e. the folder containing `rust-project.json`)
/// * `data` - The parsed contents of `rust-project.json`, or project json that's passed via
/// configuration.
pub fn new(
manifest: Option<ManifestPath>,
base: &AbsPath,
data: ProjectJsonData,
) -> ProjectJson {
let absolutize_on_base = |p| base.absolutize(p);
ProjectJson {
sysroot: data.sysroot.map(absolutize_on_base),
sysroot_src: data.sysroot_src.map(absolutize_on_base),
project_root: base.to_path_buf(),
manifest,
runnables: data.runnables.into_iter().map(Runnable::from).collect(),
crates: data
.crates
.into_iter()
.map(|crate_data| {
let root_module = absolutize_on_base(crate_data.root_module);
let is_workspace_member = crate_data
.is_workspace_member
.unwrap_or_else(|| root_module.starts_with(base));
let (include, exclude) = match crate_data.source {
Some(src) => {
let absolutize = |dirs: Vec<Utf8PathBuf>| {
dirs.into_iter().map(absolutize_on_base).collect::<Vec<_>>()
};
(absolutize(src.include_dirs), absolutize(src.exclude_dirs))
}
None => (vec![root_module.parent().unwrap().to_path_buf()], Vec::new()),
};
let build = match crate_data.build {
Some(build) => Some(Build {
label: build.label,
build_file: build.build_file,
target_kind: build.target_kind.into(),
}),
None => None,
};
Crate {
display_name: crate_data
.display_name
.as_deref()
.map(CrateDisplayName::from_canonical_name),
root_module,
edition: crate_data.edition.into(),
version: crate_data.version.as_ref().map(ToString::to_string),
deps: crate_data.deps,
cfg: crate_data.cfg,
target: crate_data.target,
env: crate_data.env,
proc_macro_dylib_path: crate_data
.proc_macro_dylib_path
.map(absolutize_on_base),
is_workspace_member,
include,
exclude,
is_proc_macro: crate_data.is_proc_macro,
repository: crate_data.repository,
build,
}
})
.collect(),
}
}
/// Returns the number of crates in the project.
pub fn n_crates(&self) -> usize {
self.crates.len()
}
/// Returns an iterator over the crates in the project.
pub fn crates(&self) -> impl Iterator<Item = (CrateArrayIdx, &Crate)> {
self.crates.iter().enumerate().map(|(idx, krate)| (CrateArrayIdx(idx), krate))
}
/// Returns the path to the project's root folder.
pub fn path(&self) -> &AbsPath {
&self.project_root
}
pub fn crate_by_root(&self, root: &AbsPath) -> Option<Crate> {
self.crates
.iter()
.filter(|krate| krate.is_workspace_member)
.find(|krate| krate.root_module == root)
.cloned()
}
/// Returns the path to the project's manifest, if it exists.
pub fn manifest(&self) -> Option<&ManifestPath> {
self.manifest.as_ref()
}
pub fn crate_by_buildfile(&self, path: &AbsPath) -> Option<Build> {
// this is fast enough for now, but it's unfortunate that this is O(crates).
let path: &std::path::Path = path.as_ref();
self.crates
.iter()
.filter(|krate| krate.is_workspace_member)
.filter_map(|krate| krate.build.clone())
.find(|build| build.build_file.as_std_path() == path)
}
/// Returns the path to the project's manifest or root folder, if no manifest exists.
pub fn manifest_or_root(&self) -> &AbsPath {
self.manifest.as_ref().map_or(&self.project_root, |manifest| manifest.as_ref())
}
/// Returns the path to the project's root folder.
pub fn project_root(&self) -> &AbsPath {
&self.project_root
}
pub fn runnables(&self) -> &[Runnable] {
&self.runnables
}
}
/// A crate points to the root module of a crate and lists the dependencies of the crate. This is
/// useful in creating the crate graph.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Crate {
pub(crate) display_name: Option<CrateDisplayName>,
pub root_module: AbsPathBuf,
pub(crate) edition: Edition,
pub(crate) version: Option<String>,
pub(crate) deps: Vec<Dep>,
pub(crate) cfg: Vec<CfgAtom>,
pub(crate) target: Option<String>,
pub(crate) env: FxHashMap<String, String>,
pub(crate) proc_macro_dylib_path: Option<AbsPathBuf>,
pub(crate) is_workspace_member: bool,
pub(crate) include: Vec<AbsPathBuf>,
pub(crate) exclude: Vec<AbsPathBuf>,
pub(crate) is_proc_macro: bool,
pub(crate) repository: Option<String>,
pub build: Option<Build>,
}
/// Additional, build-specific data about a crate.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct Build {
/// The name associated with this crate.
///
/// This is determined by the build system that produced
/// the `rust-project.json` in question. For instance, if buck were used,
/// the label might be something like `//ide/rust/rust-analyzer:rust-analyzer`.
///
/// Do not attempt to parse the contents of this string; it is a build system-specific
/// identifier similar to [`Crate::display_name`].
pub label: String,
/// Path corresponding to the build system-specific file defining the crate.
///
/// It is roughly analogous to [`ManifestPath`], but it should *not* be used with
/// [`crate::ProjectManifest::from_manifest_file`], as the build file may not be
/// be in the `rust-project.json`.
pub build_file: Utf8PathBuf,
/// The kind of target.
///
/// Examples (non-exhaustively) include [`TargetKind::Bin`], [`TargetKind::Lib`],
/// and [`TargetKind::Test`]. This information is used to determine what sort
/// of runnable codelens to provide, if any.
pub target_kind: TargetKind,
}
/// A template-like structure for describing runnables.
///
/// These are used for running and debugging binaries and tests without encoding
/// build system-specific knowledge into rust-analyzer.
///
/// # Example
///
/// Below is an example of a test runnable. `{label}` and `{test_id}`
/// are explained in [`Runnable::args`]'s documentation.
///
/// ```json
/// {
/// "program": "buck",
/// "args": [
/// "test",
/// "{label}",
/// "--",
/// "{test_id}",
/// "--print-passing-details"
/// ],
/// "cwd": "/home/user/repo-root/",
/// "kind": "testOne"
/// }
/// ```
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Runnable {
/// The program invoked by the runnable.
///
/// For example, this might be `cargo`, `buck`, or `bazel`.
pub program: String,
/// The arguments passed to [`Runnable::program`].
///
/// The args can contain two template strings: `{label}` and `{test_id}`.
/// rust-analyzer will find and replace `{label}` with [`Build::label`] and
/// `{test_id}` with the test name.
pub args: Vec<String>,
/// The current working directory of the runnable.
pub cwd: Utf8PathBuf,
pub kind: RunnableKind,
}
/// The kind of runnable.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum RunnableKind {
Check,
/// Can run a binary.
Run,
/// Run a single test.
TestOne,
}
#[derive(Serialize, Deserialize, Debug, Clone, Eq, PartialEq)]
pub struct ProjectJsonData {
sysroot: Option<Utf8PathBuf>,
sysroot_src: Option<Utf8PathBuf>,
crates: Vec<CrateData>,
#[serde(default)]
runnables: Vec<RunnableData>,
}
#[derive(Serialize, Deserialize, Debug, Clone, Eq, PartialEq)]
struct CrateData {
display_name: Option<String>,
root_module: Utf8PathBuf,
edition: EditionData,
#[serde(default)]
version: Option<semver::Version>,
deps: Vec<Dep>,
#[serde(default)]
#[serde(with = "cfg_")]
cfg: Vec<CfgAtom>,
target: Option<String>,
#[serde(default)]
env: FxHashMap<String, String>,
proc_macro_dylib_path: Option<Utf8PathBuf>,
is_workspace_member: Option<bool>,
source: Option<CrateSource>,
#[serde(default)]
is_proc_macro: bool,
#[serde(default)]
repository: Option<String>,
#[serde(default)]
build: Option<BuildData>,
}
mod cfg_ {
use cfg::CfgAtom;
use serde::{Deserialize, Serialize};
pub(super) fn deserialize<'de, D>(deserializer: D) -> Result<Vec<CfgAtom>, D::Error>
where
D: serde::Deserializer<'de>,
{
let cfg: Vec<String> = Vec::deserialize(deserializer)?;
cfg.into_iter().map(|it| crate::parse_cfg(&it).map_err(serde::de::Error::custom)).collect()
}
pub(super) fn serialize<S>(cfg: &[CfgAtom], serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
cfg.iter()
.map(|cfg| match cfg {
CfgAtom::Flag(flag) => flag.as_str().to_owned(),
CfgAtom::KeyValue { key, value } => {
format!("{}=\"{}\"", key.as_str(), value.as_str())
}
})
.collect::<Vec<String>>()
.serialize(serializer)
}
}
#[derive(Serialize, Deserialize, Debug, Clone, Eq, PartialEq)]
#[serde(rename = "edition")]
enum EditionData {
#[serde(rename = "2015")]
Edition2015,
#[serde(rename = "2018")]
Edition2018,
#[serde(rename = "2021")]
Edition2021,
#[serde(rename = "2024")]
Edition2024,
}
#[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq)]
pub struct BuildData {
label: String,
build_file: Utf8PathBuf,
target_kind: TargetKindData,
}
#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
pub struct RunnableData {
pub program: String,
pub args: Vec<String>,
pub cwd: Utf8PathBuf,
pub kind: RunnableKindData,
}
#[derive(Debug, Clone, PartialEq, Eq, Deserialize, Serialize)]
#[serde(rename_all = "camelCase")]
pub enum RunnableKindData {
Check,
Run,
TestOne,
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize, Serialize)]
#[serde(rename_all = "camelCase")]
pub enum TargetKindData {
Bin,
/// Any kind of Cargo lib crate-type (dylib, rlib, proc-macro, ...).
Lib,
Test,
}
/// Identifies a crate by position in the crates array.
///
/// This will differ from `CrateId` when multiple `ProjectJson`
/// workspaces are loaded.
#[derive(Serialize, Deserialize, Debug, Clone, Copy, Eq, PartialEq, Hash)]
#[serde(transparent)]
pub struct CrateArrayIdx(pub usize);
#[derive(Serialize, Deserialize, Debug, Clone, Eq, PartialEq)]
pub(crate) struct Dep {
/// Identifies a crate by position in the crates array.
#[serde(rename = "crate")]
pub(crate) krate: CrateArrayIdx,
#[serde(serialize_with = "serialize_crate_name")]
#[serde(deserialize_with = "deserialize_crate_name")]
pub(crate) name: CrateName,
}
#[derive(Serialize, Deserialize, Debug, Clone, PartialEq, Eq)]
struct CrateSource {
include_dirs: Vec<Utf8PathBuf>,
exclude_dirs: Vec<Utf8PathBuf>,
}
impl From<TargetKindData> for TargetKind {
fn from(data: TargetKindData) -> Self {
match data {
TargetKindData::Bin => TargetKind::Bin,
TargetKindData::Lib => TargetKind::Lib { is_proc_macro: false },
TargetKindData::Test => TargetKind::Test,
}
}
}
impl From<EditionData> for Edition {
fn from(data: EditionData) -> Self {
match data {
EditionData::Edition2015 => Edition::Edition2015,
EditionData::Edition2018 => Edition::Edition2018,
EditionData::Edition2021 => Edition::Edition2021,
EditionData::Edition2024 => Edition::Edition2024,
}
}
}
impl From<RunnableData> for Runnable {
fn from(data: RunnableData) -> Self {
Runnable { program: data.program, args: data.args, cwd: data.cwd, kind: data.kind.into() }
}
}
impl From<RunnableKindData> for RunnableKind {
fn from(data: RunnableKindData) -> Self {
match data {
RunnableKindData::Check => RunnableKind::Check,
RunnableKindData::Run => RunnableKind::Run,
RunnableKindData::TestOne => RunnableKind::TestOne,
}
}
}
fn deserialize_crate_name<'de, D>(de: D) -> std::result::Result<CrateName, D::Error>
where
D: de::Deserializer<'de>,
{
let name = String::deserialize(de)?;
CrateName::new(&name).map_err(|err| de::Error::custom(format!("invalid crate name: {err:?}")))
}
fn serialize_crate_name<S>(name: &CrateName, se: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
se.serialize_str(name)
}