mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-27 12:25:05 +00:00
d5d485ef92
This means we need to keep track of the kinds (general/int/float) of variables in `Canonical`, which requires some more ceremony. (It also exposes some places where we're not really dealing with canonicalization correctly -- another thing to be cleaned up when we switch to using Chalk's types directly.) Should fix the last remaining issue of #2534.
131 lines
4.7 KiB
Rust
131 lines
4.7 KiB
Rust
//! In certain situations, rust automatically inserts derefs as necessary: for
|
|
//! example, field accesses `foo.bar` still work when `foo` is actually a
|
|
//! reference to a type with the field `bar`. This is an approximation of the
|
|
//! logic in rustc (which lives in librustc_typeck/check/autoderef.rs).
|
|
|
|
use std::iter::successors;
|
|
|
|
use hir_def::lang_item::LangItemTarget;
|
|
use hir_expand::name::name;
|
|
use log::{info, warn};
|
|
use ra_db::CrateId;
|
|
|
|
use crate::{
|
|
db::HirDatabase,
|
|
traits::{InEnvironment, Solution},
|
|
utils::generics,
|
|
BoundVar, Canonical, DebruijnIndex, Obligation, Substs, TraitRef, Ty,
|
|
};
|
|
|
|
const AUTODEREF_RECURSION_LIMIT: usize = 10;
|
|
|
|
pub fn autoderef<'a>(
|
|
db: &'a dyn HirDatabase,
|
|
krate: Option<CrateId>,
|
|
ty: InEnvironment<Canonical<Ty>>,
|
|
) -> impl Iterator<Item = Canonical<Ty>> + 'a {
|
|
let InEnvironment { value: ty, environment } = ty;
|
|
successors(Some(ty), move |ty| {
|
|
deref(db, krate?, InEnvironment { value: ty, environment: environment.clone() })
|
|
})
|
|
.take(AUTODEREF_RECURSION_LIMIT)
|
|
}
|
|
|
|
pub(crate) fn deref(
|
|
db: &dyn HirDatabase,
|
|
krate: CrateId,
|
|
ty: InEnvironment<&Canonical<Ty>>,
|
|
) -> Option<Canonical<Ty>> {
|
|
if let Some(derefed) = ty.value.value.builtin_deref() {
|
|
Some(Canonical { value: derefed, kinds: ty.value.kinds.clone() })
|
|
} else {
|
|
deref_by_trait(db, krate, ty)
|
|
}
|
|
}
|
|
|
|
fn deref_by_trait(
|
|
db: &dyn HirDatabase,
|
|
krate: CrateId,
|
|
ty: InEnvironment<&Canonical<Ty>>,
|
|
) -> Option<Canonical<Ty>> {
|
|
let deref_trait = match db.lang_item(krate, "deref".into())? {
|
|
LangItemTarget::TraitId(it) => it,
|
|
_ => return None,
|
|
};
|
|
let target = db.trait_data(deref_trait).associated_type_by_name(&name![Target])?;
|
|
|
|
let generic_params = generics(db.upcast(), target.into());
|
|
if generic_params.len() != 1 {
|
|
// the Target type + Deref trait should only have one generic parameter,
|
|
// namely Deref's Self type
|
|
return None;
|
|
}
|
|
|
|
// FIXME make the Canonical / bound var handling nicer
|
|
|
|
let parameters =
|
|
Substs::build_for_generics(&generic_params).push(ty.value.value.clone()).build();
|
|
|
|
// Check that the type implements Deref at all
|
|
let trait_ref = TraitRef { trait_: deref_trait, substs: parameters.clone() };
|
|
let implements_goal = Canonical {
|
|
kinds: ty.value.kinds.clone(),
|
|
value: InEnvironment {
|
|
value: Obligation::Trait(trait_ref),
|
|
environment: ty.environment.clone(),
|
|
},
|
|
};
|
|
if db.trait_solve(krate, implements_goal).is_none() {
|
|
return None;
|
|
}
|
|
|
|
// Now do the assoc type projection
|
|
let projection = super::traits::ProjectionPredicate {
|
|
ty: Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, ty.value.kinds.len())),
|
|
projection_ty: super::ProjectionTy { associated_ty: target, parameters },
|
|
};
|
|
|
|
let obligation = super::Obligation::Projection(projection);
|
|
|
|
let in_env = InEnvironment { value: obligation, environment: ty.environment };
|
|
|
|
let canonical =
|
|
Canonical::new(in_env, ty.value.kinds.iter().copied().chain(Some(super::TyKind::General)));
|
|
|
|
let solution = db.trait_solve(krate, canonical)?;
|
|
|
|
match &solution {
|
|
Solution::Unique(vars) => {
|
|
// FIXME: vars may contain solutions for any inference variables
|
|
// that happened to be inside ty. To correctly handle these, we
|
|
// would have to pass the solution up to the inference context, but
|
|
// that requires a larger refactoring (especially if the deref
|
|
// happens during method resolution). So for the moment, we just
|
|
// check that we're not in the situation we're we would actually
|
|
// need to handle the values of the additional variables, i.e.
|
|
// they're just being 'passed through'. In the 'standard' case where
|
|
// we have `impl<T> Deref for Foo<T> { Target = T }`, that should be
|
|
// the case.
|
|
|
|
// FIXME: if the trait solver decides to truncate the type, these
|
|
// assumptions will be broken. We would need to properly introduce
|
|
// new variables in that case
|
|
|
|
for i in 1..vars.0.kinds.len() {
|
|
if vars.0.value[i - 1] != Ty::Bound(BoundVar::new(DebruijnIndex::INNERMOST, i - 1))
|
|
{
|
|
warn!("complex solution for derefing {:?}: {:?}, ignoring", ty.value, solution);
|
|
return None;
|
|
}
|
|
}
|
|
Some(Canonical {
|
|
value: vars.0.value[vars.0.value.len() - 1].clone(),
|
|
kinds: vars.0.kinds.clone(),
|
|
})
|
|
}
|
|
Solution::Ambig(_) => {
|
|
info!("Ambiguous solution for derefing {:?}: {:?}", ty.value, solution);
|
|
None
|
|
}
|
|
}
|
|
}
|