rust-analyzer/crates/cfg/src/dnf.rs
2022-03-21 10:43:36 +02:00

345 lines
10 KiB
Rust

//! Disjunctive Normal Form construction.
//!
//! Algorithm from <https://www.cs.drexel.edu/~jjohnson/2015-16/fall/CS270/Lectures/3/dnf.pdf>,
//! which would have been much easier to read if it used pattern matching. It's also missing the
//! entire "distribute ANDs over ORs" part, which is not trivial. Oh well.
//!
//! This is currently both messy and inefficient. Feel free to improve, there are unit tests.
use std::fmt::{self, Write};
use rustc_hash::FxHashSet;
use crate::{CfgAtom, CfgDiff, CfgExpr, CfgOptions, InactiveReason};
/// A `#[cfg]` directive in Disjunctive Normal Form (DNF).
pub struct DnfExpr {
conjunctions: Vec<Conjunction>,
}
struct Conjunction {
literals: Vec<Literal>,
}
struct Literal {
negate: bool,
var: Option<CfgAtom>, // None = Invalid
}
impl DnfExpr {
pub fn new(expr: CfgExpr) -> Self {
let builder = Builder { expr: DnfExpr { conjunctions: Vec::new() } };
builder.lower(expr)
}
/// Computes a list of present or absent atoms in `opts` that cause this expression to evaluate
/// to `false`.
///
/// Note that flipping a subset of these atoms might be sufficient to make the whole expression
/// evaluate to `true`. For that, see `compute_enable_hints`.
///
/// Returns `None` when `self` is already true, or contains errors.
pub fn why_inactive(&self, opts: &CfgOptions) -> Option<InactiveReason> {
let mut res = InactiveReason { enabled: Vec::new(), disabled: Vec::new() };
for conj in &self.conjunctions {
let mut conj_is_true = true;
for lit in &conj.literals {
let atom = lit.var.as_ref()?;
let enabled = opts.enabled.contains(atom);
if lit.negate == enabled {
// Literal is false, but needs to be true for this conjunction.
conj_is_true = false;
if enabled {
res.enabled.push(atom.clone());
} else {
res.disabled.push(atom.clone());
}
}
}
if conj_is_true {
// This expression is not actually inactive.
return None;
}
}
res.enabled.sort_unstable();
res.enabled.dedup();
res.disabled.sort_unstable();
res.disabled.dedup();
Some(res)
}
/// Returns `CfgDiff` objects that would enable this directive if applied to `opts`.
pub fn compute_enable_hints<'a>(
&'a self,
opts: &'a CfgOptions,
) -> impl Iterator<Item = CfgDiff> + 'a {
// A cfg is enabled if any of `self.conjunctions` evaluate to `true`.
self.conjunctions.iter().filter_map(move |conj| {
let mut enable = FxHashSet::default();
let mut disable = FxHashSet::default();
for lit in &conj.literals {
let atom = lit.var.as_ref()?;
let enabled = opts.enabled.contains(atom);
if lit.negate && enabled {
disable.insert(atom.clone());
}
if !lit.negate && !enabled {
enable.insert(atom.clone());
}
}
// Check that this actually makes `conj` true.
for lit in &conj.literals {
let atom = lit.var.as_ref()?;
let enabled = enable.contains(atom)
|| (opts.enabled.contains(atom) && !disable.contains(atom));
if enabled == lit.negate {
return None;
}
}
if enable.is_empty() && disable.is_empty() {
return None;
}
let mut diff = CfgDiff {
enable: enable.into_iter().collect(),
disable: disable.into_iter().collect(),
};
// Undo the FxHashMap randomization for consistent output.
diff.enable.sort_unstable();
diff.disable.sort_unstable();
Some(diff)
})
}
}
impl fmt::Display for DnfExpr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.conjunctions.len() != 1 {
f.write_str("any(")?;
}
for (i, conj) in self.conjunctions.iter().enumerate() {
if i != 0 {
f.write_str(", ")?;
}
conj.fmt(f)?;
}
if self.conjunctions.len() != 1 {
f.write_char(')')?;
}
Ok(())
}
}
impl Conjunction {
fn new(parts: Vec<CfgExpr>) -> Self {
let mut literals = Vec::new();
for part in parts {
match part {
CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => {
literals.push(Literal::new(part));
}
CfgExpr::All(conj) => {
// Flatten.
literals.extend(Conjunction::new(conj).literals);
}
CfgExpr::Any(_) => unreachable!("disjunction in conjunction"),
}
}
Self { literals }
}
}
impl fmt::Display for Conjunction {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.literals.len() != 1 {
f.write_str("all(")?;
}
for (i, lit) in self.literals.iter().enumerate() {
if i != 0 {
f.write_str(", ")?;
}
lit.fmt(f)?;
}
if self.literals.len() != 1 {
f.write_str(")")?;
}
Ok(())
}
}
impl Literal {
fn new(expr: CfgExpr) -> Self {
match expr {
CfgExpr::Invalid => Self { negate: false, var: None },
CfgExpr::Atom(atom) => Self { negate: false, var: Some(atom) },
CfgExpr::Not(expr) => match *expr {
CfgExpr::Invalid => Self { negate: true, var: None },
CfgExpr::Atom(atom) => Self { negate: true, var: Some(atom) },
_ => unreachable!("non-atom {:?}", expr),
},
CfgExpr::Any(_) | CfgExpr::All(_) => unreachable!("non-literal {:?}", expr),
}
}
}
impl fmt::Display for Literal {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.negate {
write!(f, "not(")?;
}
match &self.var {
Some(var) => var.fmt(f)?,
None => f.write_str("<invalid>")?,
}
if self.negate {
f.write_char(')')?;
}
Ok(())
}
}
struct Builder {
expr: DnfExpr,
}
impl Builder {
fn lower(mut self, expr: CfgExpr) -> DnfExpr {
let expr = make_nnf(expr);
let expr = make_dnf(expr);
match expr {
CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => {
self.expr.conjunctions.push(Conjunction::new(vec![expr]));
}
CfgExpr::All(conj) => {
self.expr.conjunctions.push(Conjunction::new(conj));
}
CfgExpr::Any(mut disj) => {
disj.reverse();
while let Some(conj) = disj.pop() {
match conj {
CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::All(_) | CfgExpr::Not(_) => {
self.expr.conjunctions.push(Conjunction::new(vec![conj]));
}
CfgExpr::Any(inner_disj) => {
// Flatten.
disj.extend(inner_disj.into_iter().rev());
}
}
}
}
}
self.expr
}
}
fn make_dnf(expr: CfgExpr) -> CfgExpr {
match expr {
CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => expr,
CfgExpr::Any(e) => flatten(CfgExpr::Any(e.into_iter().map(make_dnf).collect())),
CfgExpr::All(e) => {
let e = e.into_iter().map(make_dnf).collect::<Vec<_>>();
flatten(CfgExpr::Any(distribute_conj(&e)))
}
}
}
/// Turns a conjunction of expressions into a disjunction of expressions.
fn distribute_conj(conj: &[CfgExpr]) -> Vec<CfgExpr> {
fn go(out: &mut Vec<CfgExpr>, with: &mut Vec<CfgExpr>, rest: &[CfgExpr]) {
match rest {
[head, tail @ ..] => match head {
CfgExpr::Any(disj) => {
for part in disj {
with.push(part.clone());
go(out, with, tail);
with.pop();
}
}
_ => {
with.push(head.clone());
go(out, with, tail);
with.pop();
}
},
_ => {
// Turn accumulated parts into a new conjunction.
out.push(CfgExpr::All(with.clone()));
}
}
}
let mut out = Vec::new(); // contains only `all()`
let mut with = Vec::new();
go(&mut out, &mut with, conj);
out
}
fn make_nnf(expr: CfgExpr) -> CfgExpr {
match expr {
CfgExpr::Invalid | CfgExpr::Atom(_) => expr,
CfgExpr::Any(expr) => CfgExpr::Any(expr.into_iter().map(make_nnf).collect()),
CfgExpr::All(expr) => CfgExpr::All(expr.into_iter().map(make_nnf).collect()),
CfgExpr::Not(operand) => match *operand {
CfgExpr::Invalid | CfgExpr::Atom(_) => CfgExpr::Not(operand.clone()), // Original negated expr
CfgExpr::Not(expr) => {
// Remove double negation.
make_nnf(*expr)
}
// Convert negated conjunction/disjunction using DeMorgan's Law.
CfgExpr::Any(inner) => CfgExpr::All(
inner.into_iter().map(|expr| make_nnf(CfgExpr::Not(Box::new(expr)))).collect(),
),
CfgExpr::All(inner) => CfgExpr::Any(
inner.into_iter().map(|expr| make_nnf(CfgExpr::Not(Box::new(expr)))).collect(),
),
},
}
}
/// Collapses nested `any()` and `all()` predicates.
fn flatten(expr: CfgExpr) -> CfgExpr {
match expr {
CfgExpr::All(inner) => CfgExpr::All(
inner
.into_iter()
.flat_map(|e| match e {
CfgExpr::All(inner) => inner,
_ => vec![e],
})
.collect(),
),
CfgExpr::Any(inner) => CfgExpr::Any(
inner
.into_iter()
.flat_map(|e| match e {
CfgExpr::Any(inner) => inner,
_ => vec![e],
})
.collect(),
),
_ => expr,
}
}