rust-analyzer/crates/hir-ty/src/diagnostics/expr.rs
2022-05-01 10:48:58 +00:00

369 lines
12 KiB
Rust

//! Various diagnostics for expressions that are collected together in one pass
//! through the body using inference results: mismatched arg counts, missing
//! fields, etc.
use std::sync::Arc;
use hir_def::{path::path, resolver::HasResolver, AssocItemId, DefWithBodyId, HasModule};
use hir_expand::name;
use itertools::Either;
use rustc_hash::FxHashSet;
use typed_arena::Arena;
use crate::{
db::HirDatabase,
diagnostics::match_check::{
self,
deconstruct_pat::DeconstructedPat,
usefulness::{compute_match_usefulness, MatchCheckCtx},
},
InferenceResult, TyExt,
};
pub(crate) use hir_def::{
body::Body,
expr::{Expr, ExprId, MatchArm, Pat, PatId},
LocalFieldId, VariantId,
};
pub enum BodyValidationDiagnostic {
RecordMissingFields {
record: Either<ExprId, PatId>,
variant: VariantId,
missed_fields: Vec<LocalFieldId>,
},
ReplaceFilterMapNextWithFindMap {
method_call_expr: ExprId,
},
MissingMatchArms {
match_expr: ExprId,
},
}
impl BodyValidationDiagnostic {
pub fn collect(db: &dyn HirDatabase, owner: DefWithBodyId) -> Vec<BodyValidationDiagnostic> {
let _p = profile::span("BodyValidationDiagnostic::collect");
let infer = db.infer(owner);
let mut validator = ExprValidator::new(owner, infer);
validator.validate_body(db);
validator.diagnostics
}
}
struct ExprValidator {
owner: DefWithBodyId,
infer: Arc<InferenceResult>,
pub(super) diagnostics: Vec<BodyValidationDiagnostic>,
}
impl ExprValidator {
fn new(owner: DefWithBodyId, infer: Arc<InferenceResult>) -> ExprValidator {
ExprValidator { owner, infer, diagnostics: Vec::new() }
}
fn validate_body(&mut self, db: &dyn HirDatabase) {
let body = db.body(self.owner);
let mut filter_map_next_checker = None;
for (id, expr) in body.exprs.iter() {
if let Some((variant, missed_fields, true)) =
record_literal_missing_fields(db, &self.infer, id, expr)
{
self.diagnostics.push(BodyValidationDiagnostic::RecordMissingFields {
record: Either::Left(id),
variant,
missed_fields,
});
}
match expr {
Expr::Match { expr, arms } => {
self.validate_match(id, *expr, arms, db, self.infer.clone());
}
Expr::Call { .. } | Expr::MethodCall { .. } => {
self.validate_call(db, id, expr, &mut filter_map_next_checker);
}
_ => {}
}
}
for (id, pat) in body.pats.iter() {
if let Some((variant, missed_fields, true)) =
record_pattern_missing_fields(db, &self.infer, id, pat)
{
self.diagnostics.push(BodyValidationDiagnostic::RecordMissingFields {
record: Either::Right(id),
variant,
missed_fields,
});
}
}
}
fn validate_call(
&mut self,
db: &dyn HirDatabase,
call_id: ExprId,
expr: &Expr,
filter_map_next_checker: &mut Option<FilterMapNextChecker>,
) {
// Check that the number of arguments matches the number of parameters.
// FIXME: Due to shortcomings in the current type system implementation, only emit this
// diagnostic if there are no type mismatches in the containing function.
if self.infer.expr_type_mismatches().next().is_some() {
return;
}
match expr {
Expr::MethodCall { receiver, .. } => {
let (callee, _) = match self.infer.method_resolution(call_id) {
Some(it) => it,
None => return,
};
if filter_map_next_checker
.get_or_insert_with(|| {
FilterMapNextChecker::new(&self.owner.resolver(db.upcast()), db)
})
.check(call_id, receiver, &callee)
.is_some()
{
self.diagnostics.push(
BodyValidationDiagnostic::ReplaceFilterMapNextWithFindMap {
method_call_expr: call_id,
},
);
}
}
_ => return,
};
}
fn validate_match(
&mut self,
id: ExprId,
match_expr: ExprId,
arms: &[MatchArm],
db: &dyn HirDatabase,
infer: Arc<InferenceResult>,
) {
let body = db.body(self.owner);
let match_expr_ty = &infer[match_expr];
if match_expr_ty.is_unknown() {
return;
}
let pattern_arena = Arena::new();
let cx = MatchCheckCtx {
module: self.owner.module(db.upcast()),
body: self.owner,
db,
pattern_arena: &pattern_arena,
};
let mut m_arms = Vec::with_capacity(arms.len());
let mut has_lowering_errors = false;
for arm in arms {
if let Some(pat_ty) = infer.type_of_pat.get(arm.pat) {
// We only include patterns whose type matches the type
// of the match expression. If we had an InvalidMatchArmPattern
// diagnostic or similar we could raise that in an else
// block here.
//
// When comparing the types, we also have to consider that rustc
// will automatically de-reference the match expression type if
// necessary.
//
// FIXME we should use the type checker for this.
if (pat_ty == match_expr_ty
|| match_expr_ty
.as_reference()
.map(|(match_expr_ty, ..)| match_expr_ty == pat_ty)
.unwrap_or(false))
&& types_of_subpatterns_do_match(arm.pat, &body, &infer)
{
// If we had a NotUsefulMatchArm diagnostic, we could
// check the usefulness of each pattern as we added it
// to the matrix here.
let m_arm = match_check::MatchArm {
pat: self.lower_pattern(&cx, arm.pat, db, &body, &mut has_lowering_errors),
has_guard: arm.guard.is_some(),
};
m_arms.push(m_arm);
if !has_lowering_errors {
continue;
}
}
}
// If we can't resolve the type of a pattern, or the pattern type doesn't
// fit the match expression, we skip this diagnostic. Skipping the entire
// diagnostic rather than just not including this match arm is preferred
// to avoid the chance of false positives.
cov_mark::hit!(validate_match_bailed_out);
return;
}
let report = compute_match_usefulness(&cx, &m_arms, match_expr_ty);
// FIXME Report unreacheble arms
// https://github.com/rust-lang/rust/blob/f31622a50/compiler/rustc_mir_build/src/thir/pattern/check_match.rs#L200
let witnesses = report.non_exhaustiveness_witnesses;
// FIXME Report witnesses
// eprintln!("compute_match_usefulness(..) -> {:?}", &witnesses);
if !witnesses.is_empty() {
self.diagnostics.push(BodyValidationDiagnostic::MissingMatchArms { match_expr: id });
}
}
fn lower_pattern<'p>(
&self,
cx: &MatchCheckCtx<'_, 'p>,
pat: PatId,
db: &dyn HirDatabase,
body: &Body,
have_errors: &mut bool,
) -> &'p DeconstructedPat<'p> {
let mut patcx = match_check::PatCtxt::new(db, &self.infer, body);
let pattern = patcx.lower_pattern(pat);
let pattern = cx.pattern_arena.alloc(DeconstructedPat::from_pat(cx, &pattern));
if !patcx.errors.is_empty() {
*have_errors = true;
}
pattern
}
}
struct FilterMapNextChecker {
filter_map_function_id: Option<hir_def::FunctionId>,
next_function_id: Option<hir_def::FunctionId>,
prev_filter_map_expr_id: Option<ExprId>,
}
impl FilterMapNextChecker {
fn new(resolver: &hir_def::resolver::Resolver, db: &dyn HirDatabase) -> Self {
// Find and store the FunctionIds for Iterator::filter_map and Iterator::next
let iterator_path = path![core::iter::Iterator];
let mut filter_map_function_id = None;
let mut next_function_id = None;
if let Some(iterator_trait_id) = resolver.resolve_known_trait(db.upcast(), &iterator_path) {
let iterator_trait_items = &db.trait_data(iterator_trait_id).items;
for item in iterator_trait_items.iter() {
if let (name, AssocItemId::FunctionId(id)) = item {
if *name == name![filter_map] {
filter_map_function_id = Some(*id);
}
if *name == name![next] {
next_function_id = Some(*id);
}
}
if filter_map_function_id.is_some() && next_function_id.is_some() {
break;
}
}
}
Self { filter_map_function_id, next_function_id, prev_filter_map_expr_id: None }
}
// check for instances of .filter_map(..).next()
fn check(
&mut self,
current_expr_id: ExprId,
receiver_expr_id: &ExprId,
function_id: &hir_def::FunctionId,
) -> Option<()> {
if *function_id == self.filter_map_function_id? {
self.prev_filter_map_expr_id = Some(current_expr_id);
return None;
}
if *function_id == self.next_function_id? {
if let Some(prev_filter_map_expr_id) = self.prev_filter_map_expr_id {
if *receiver_expr_id == prev_filter_map_expr_id {
return Some(());
}
}
}
self.prev_filter_map_expr_id = None;
None
}
}
pub fn record_literal_missing_fields(
db: &dyn HirDatabase,
infer: &InferenceResult,
id: ExprId,
expr: &Expr,
) -> Option<(VariantId, Vec<LocalFieldId>, /*exhaustive*/ bool)> {
let (fields, exhaustive) = match expr {
Expr::RecordLit { path: _, fields, spread } => (fields, spread.is_none()),
_ => return None,
};
let variant_def = infer.variant_resolution_for_expr(id)?;
if let VariantId::UnionId(_) = variant_def {
return None;
}
let variant_data = variant_def.variant_data(db.upcast());
let specified_fields: FxHashSet<_> = fields.iter().map(|f| &f.name).collect();
let missed_fields: Vec<LocalFieldId> = variant_data
.fields()
.iter()
.filter_map(|(f, d)| if specified_fields.contains(&d.name) { None } else { Some(f) })
.collect();
if missed_fields.is_empty() {
return None;
}
Some((variant_def, missed_fields, exhaustive))
}
pub fn record_pattern_missing_fields(
db: &dyn HirDatabase,
infer: &InferenceResult,
id: PatId,
pat: &Pat,
) -> Option<(VariantId, Vec<LocalFieldId>, /*exhaustive*/ bool)> {
let (fields, exhaustive) = match pat {
Pat::Record { path: _, args, ellipsis } => (args, !ellipsis),
_ => return None,
};
let variant_def = infer.variant_resolution_for_pat(id)?;
if let VariantId::UnionId(_) = variant_def {
return None;
}
let variant_data = variant_def.variant_data(db.upcast());
let specified_fields: FxHashSet<_> = fields.iter().map(|f| &f.name).collect();
let missed_fields: Vec<LocalFieldId> = variant_data
.fields()
.iter()
.filter_map(|(f, d)| if specified_fields.contains(&d.name) { None } else { Some(f) })
.collect();
if missed_fields.is_empty() {
return None;
}
Some((variant_def, missed_fields, exhaustive))
}
fn types_of_subpatterns_do_match(pat: PatId, body: &Body, infer: &InferenceResult) -> bool {
fn walk(pat: PatId, body: &Body, infer: &InferenceResult, has_type_mismatches: &mut bool) {
match infer.type_mismatch_for_pat(pat) {
Some(_) => *has_type_mismatches = true,
None => {
body[pat].walk_child_pats(|subpat| walk(subpat, body, infer, has_type_mismatches))
}
}
}
let mut has_type_mismatches = false;
walk(pat, body, infer, &mut has_type_mismatches);
!has_type_mismatches
}