rust-analyzer/crates/ide/src/inlay_hints/bind_pat.rs

984 lines
25 KiB
Rust

//! Implementation of "type" inlay hints:
//! ```no_run
//! fn f(a: i32, b: i32) -> i32 { a + b }
//! let _x /* i32 */= f(4, 4);
//! ```
use hir::{Semantics, TypeInfo};
use ide_db::{base_db::FileId, famous_defs::FamousDefs, RootDatabase};
use itertools::Itertools;
use syntax::{
ast::{self, AstNode, HasName},
match_ast,
};
use crate::{inlay_hints::closure_has_block_body, InlayHint, InlayHintsConfig, InlayKind};
use super::label_of_ty;
pub(super) fn hints(
acc: &mut Vec<InlayHint>,
famous_defs @ FamousDefs(sema, _): &FamousDefs<'_, '_>,
config: &InlayHintsConfig,
_file_id: FileId,
pat: &ast::IdentPat,
) -> Option<()> {
if !config.type_hints {
return None;
}
let descended = sema.descend_node_into_attributes(pat.clone()).pop();
let desc_pat = descended.as_ref().unwrap_or(pat);
let ty = sema.type_of_pat(&desc_pat.clone().into())?.original;
if should_not_display_type_hint(sema, config, pat, &ty) {
return None;
}
let label = label_of_ty(famous_defs, config, ty)?;
if config.hide_named_constructor_hints
&& is_named_constructor(sema, pat, &label.to_string()).is_some()
{
return None;
}
acc.push(InlayHint {
range: match pat.name() {
Some(name) => name.syntax().text_range(),
None => pat.syntax().text_range(),
},
kind: InlayKind::Type,
label,
});
Some(())
}
fn should_not_display_type_hint(
sema: &Semantics<'_, RootDatabase>,
config: &InlayHintsConfig,
bind_pat: &ast::IdentPat,
pat_ty: &hir::Type,
) -> bool {
let db = sema.db;
if pat_ty.is_unknown() {
return true;
}
if let Some(hir::Adt::Struct(s)) = pat_ty.as_adt() {
if s.fields(db).is_empty() && s.name(db).to_smol_str() == bind_pat.to_string() {
return true;
}
}
if config.hide_closure_initialization_hints {
if let Some(parent) = bind_pat.syntax().parent() {
if let Some(it) = ast::LetStmt::cast(parent) {
if let Some(ast::Expr::ClosureExpr(closure)) = it.initializer() {
if closure_has_block_body(&closure) {
return true;
}
}
}
}
}
for node in bind_pat.syntax().ancestors() {
match_ast! {
match node {
ast::LetStmt(it) => return it.ty().is_some(),
// FIXME: We might wanna show type hints in parameters for non-top level patterns as well
ast::Param(it) => return it.ty().is_some(),
ast::MatchArm(_) => return pat_is_enum_variant(db, bind_pat, pat_ty),
ast::LetExpr(_) => return pat_is_enum_variant(db, bind_pat, pat_ty),
ast::IfExpr(_) => return false,
ast::WhileExpr(_) => return false,
ast::ForExpr(it) => {
// We *should* display hint only if user provided "in {expr}" and we know the type of expr (and it's not unit).
// Type of expr should be iterable.
return it.in_token().is_none() ||
it.iterable()
.and_then(|iterable_expr| sema.type_of_expr(&iterable_expr))
.map(TypeInfo::original)
.map_or(true, |iterable_ty| iterable_ty.is_unknown() || iterable_ty.is_unit())
},
_ => (),
}
}
}
false
}
fn is_named_constructor(
sema: &Semantics<'_, RootDatabase>,
pat: &ast::IdentPat,
ty_name: &str,
) -> Option<()> {
let let_node = pat.syntax().parent()?;
let expr = match_ast! {
match let_node {
ast::LetStmt(it) => it.initializer(),
ast::LetExpr(it) => it.expr(),
_ => None,
}
}?;
let expr = sema.descend_node_into_attributes(expr.clone()).pop().unwrap_or(expr);
// unwrap postfix expressions
let expr = match expr {
ast::Expr::TryExpr(it) => it.expr(),
ast::Expr::AwaitExpr(it) => it.expr(),
expr => Some(expr),
}?;
let expr = match expr {
ast::Expr::CallExpr(call) => match call.expr()? {
ast::Expr::PathExpr(path) => path,
_ => return None,
},
ast::Expr::PathExpr(path) => path,
_ => return None,
};
let path = expr.path()?;
let callable = sema.type_of_expr(&ast::Expr::PathExpr(expr))?.original.as_callable(sema.db);
let callable_kind = callable.map(|it| it.kind());
let qual_seg = match callable_kind {
Some(hir::CallableKind::Function(_) | hir::CallableKind::TupleEnumVariant(_)) => {
path.qualifier()?.segment()
}
_ => path.segment(),
}?;
let ctor_name = match qual_seg.kind()? {
ast::PathSegmentKind::Name(name_ref) => {
match qual_seg.generic_arg_list().map(|it| it.generic_args()) {
Some(generics) => format!("{name_ref}<{}>", generics.format(", ")),
None => name_ref.to_string(),
}
}
ast::PathSegmentKind::Type { type_ref: Some(ty), trait_ref: None } => ty.to_string(),
_ => return None,
};
(ctor_name == ty_name).then_some(())
}
fn pat_is_enum_variant(db: &RootDatabase, bind_pat: &ast::IdentPat, pat_ty: &hir::Type) -> bool {
if let Some(hir::Adt::Enum(enum_data)) = pat_ty.as_adt() {
let pat_text = bind_pat.to_string();
enum_data
.variants(db)
.into_iter()
.map(|variant| variant.name(db).to_smol_str())
.any(|enum_name| enum_name == pat_text)
} else {
false
}
}
#[cfg(test)]
mod tests {
// This module also contains tests for super::closure_ret
use expect_test::expect;
use syntax::{TextRange, TextSize};
use test_utils::extract_annotations;
use crate::{fixture, inlay_hints::InlayHintsConfig};
use crate::inlay_hints::tests::{
check, check_expect, check_with_config, DISABLED_CONFIG, DISABLED_CONFIG_WITH_LINKS,
TEST_CONFIG,
};
use crate::ClosureReturnTypeHints;
#[track_caller]
fn check_types(ra_fixture: &str) {
check_with_config(InlayHintsConfig { type_hints: true, ..DISABLED_CONFIG }, ra_fixture);
}
#[test]
fn type_hints_only() {
check_types(
r#"
fn foo(a: i32, b: i32) -> i32 { a + b }
fn main() {
let _x = foo(4, 4);
//^^ i32
}"#,
);
}
#[test]
fn type_hints_bindings_after_at() {
check_types(
r#"
//- minicore: option
fn main() {
let ref foo @ bar @ ref mut baz = 0;
//^^^ &i32
//^^^ i32
//^^^ &mut i32
let [x @ ..] = [0];
//^ [i32; 1]
if let x @ Some(_) = Some(0) {}
//^ Option<i32>
let foo @ (bar, baz) = (3, 3);
//^^^ (i32, i32)
//^^^ i32
//^^^ i32
}"#,
);
}
#[test]
fn default_generic_types_should_not_be_displayed() {
check(
r#"
struct Test<K, T = u8> { k: K, t: T }
fn main() {
let zz = Test { t: 23u8, k: 33 };
//^^ Test<i32>
let zz_ref = &zz;
//^^^^^^ &Test<i32>
let test = || zz;
//^^^^ || -> Test<i32>
}"#,
);
}
#[test]
fn shorten_iterators_in_associated_params() {
check_types(
r#"
//- minicore: iterators
use core::iter;
pub struct SomeIter<T> {}
impl<T> SomeIter<T> {
pub fn new() -> Self { SomeIter {} }
pub fn push(&mut self, t: T) {}
}
impl<T> Iterator for SomeIter<T> {
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
None
}
}
fn main() {
let mut some_iter = SomeIter::new();
//^^^^^^^^^ SomeIter<Take<Repeat<i32>>>
some_iter.push(iter::repeat(2).take(2));
let iter_of_iters = some_iter.take(2);
//^^^^^^^^^^^^^ impl Iterator<Item = impl Iterator<Item = i32>>
}
"#,
);
}
#[test]
fn iterator_hint_regression_issue_12674() {
// Ensure we don't crash while solving the projection type of iterators.
check_expect(
InlayHintsConfig { chaining_hints: true, ..DISABLED_CONFIG_WITH_LINKS },
r#"
//- minicore: iterators
struct S<T>(T);
impl<T> S<T> {
fn iter(&self) -> Iter<'_, T> { loop {} }
}
struct Iter<'a, T: 'a>(&'a T);
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> { loop {} }
}
struct Container<'a> {
elements: S<&'a str>,
}
struct SliceIter<'a, T>(&'a T);
impl<'a, T> Iterator for SliceIter<'a, T> {
type Item = &'a T;
fn next(&mut self) -> Option<Self::Item> { loop {} }
}
fn main(a: SliceIter<'_, Container>) {
a
.filter_map(|c| Some(c.elements.iter().filter_map(|v| Some(v))))
.map(|e| e);
}
"#,
expect![[r#"
[
InlayHint {
range: 484..554,
kind: Chaining,
label: [
"impl ",
InlayHintLabelPart {
text: "Iterator",
linked_location: Some(
FileRange {
file_id: FileId(
1,
),
range: 2248..2256,
},
),
tooltip: "",
},
"<Item = impl ",
InlayHintLabelPart {
text: "Iterator",
linked_location: Some(
FileRange {
file_id: FileId(
1,
),
range: 2248..2256,
},
),
tooltip: "",
},
"<Item = &&str>>",
],
},
InlayHint {
range: 484..485,
kind: Chaining,
label: [
"",
InlayHintLabelPart {
text: "SliceIter",
linked_location: Some(
FileRange {
file_id: FileId(
0,
),
range: 289..298,
},
),
tooltip: "",
},
"<",
InlayHintLabelPart {
text: "Container",
linked_location: Some(
FileRange {
file_id: FileId(
0,
),
range: 238..247,
},
),
tooltip: "",
},
">",
],
},
]
"#]],
);
}
#[test]
fn infer_call_method_return_associated_types_with_generic() {
check_types(
r#"
pub trait Default {
fn default() -> Self;
}
pub trait Foo {
type Bar: Default;
}
pub fn quux<T: Foo>() -> T::Bar {
let y = Default::default();
//^ <T as Foo>::Bar
y
}
"#,
);
}
#[test]
fn fn_hints() {
check_types(
r#"
//- minicore: fn, sized
fn foo() -> impl Fn() { loop {} }
fn foo1() -> impl Fn(f64) { loop {} }
fn foo2() -> impl Fn(f64, f64) { loop {} }
fn foo3() -> impl Fn(f64, f64) -> u32 { loop {} }
fn foo4() -> &'static dyn Fn(f64, f64) -> u32 { loop {} }
fn foo5() -> &'static dyn Fn(&'static dyn Fn(f64, f64) -> u32, f64) -> u32 { loop {} }
fn foo6() -> impl Fn(f64, f64) -> u32 + Sized { loop {} }
fn foo7() -> *const (impl Fn(f64, f64) -> u32 + Sized) { loop {} }
fn main() {
let foo = foo();
// ^^^ impl Fn()
let foo = foo1();
// ^^^ impl Fn(f64)
let foo = foo2();
// ^^^ impl Fn(f64, f64)
let foo = foo3();
// ^^^ impl Fn(f64, f64) -> u32
let foo = foo4();
// ^^^ &dyn Fn(f64, f64) -> u32
let foo = foo5();
// ^^^ &dyn Fn(&dyn Fn(f64, f64) -> u32, f64) -> u32
let foo = foo6();
// ^^^ impl Fn(f64, f64) -> u32
let foo = foo7();
// ^^^ *const impl Fn(f64, f64) -> u32
}
"#,
)
}
#[test]
fn check_hint_range_limit() {
let fixture = r#"
//- minicore: fn, sized
fn foo() -> impl Fn() { loop {} }
fn foo1() -> impl Fn(f64) { loop {} }
fn foo2() -> impl Fn(f64, f64) { loop {} }
fn foo3() -> impl Fn(f64, f64) -> u32 { loop {} }
fn foo4() -> &'static dyn Fn(f64, f64) -> u32 { loop {} }
fn foo5() -> &'static dyn Fn(&'static dyn Fn(f64, f64) -> u32, f64) -> u32 { loop {} }
fn foo6() -> impl Fn(f64, f64) -> u32 + Sized { loop {} }
fn foo7() -> *const (impl Fn(f64, f64) -> u32 + Sized) { loop {} }
fn main() {
let foo = foo();
let foo = foo1();
let foo = foo2();
// ^^^ impl Fn(f64, f64)
let foo = foo3();
// ^^^ impl Fn(f64, f64) -> u32
let foo = foo4();
let foo = foo5();
let foo = foo6();
let foo = foo7();
}
"#;
let (analysis, file_id) = fixture::file(fixture);
let expected = extract_annotations(&analysis.file_text(file_id).unwrap());
let inlay_hints = analysis
.inlay_hints(
&InlayHintsConfig { type_hints: true, ..DISABLED_CONFIG },
file_id,
Some(TextRange::new(TextSize::from(500), TextSize::from(600))),
)
.unwrap();
let actual =
inlay_hints.into_iter().map(|it| (it.range, it.label.to_string())).collect::<Vec<_>>();
assert_eq!(expected, actual, "\nExpected:\n{expected:#?}\n\nActual:\n{actual:#?}");
}
#[test]
fn fn_hints_ptr_rpit_fn_parentheses() {
check_types(
r#"
//- minicore: fn, sized
trait Trait {}
fn foo1() -> *const impl Fn() { loop {} }
fn foo2() -> *const (impl Fn() + Sized) { loop {} }
fn foo3() -> *const (impl Fn() + ?Sized) { loop {} }
fn foo4() -> *const (impl Sized + Fn()) { loop {} }
fn foo5() -> *const (impl ?Sized + Fn()) { loop {} }
fn foo6() -> *const (impl Fn() + Trait) { loop {} }
fn foo7() -> *const (impl Fn() + Sized + Trait) { loop {} }
fn foo8() -> *const (impl Fn() + ?Sized + Trait) { loop {} }
fn foo9() -> *const (impl Fn() -> u8 + ?Sized) { loop {} }
fn foo10() -> *const (impl Fn() + Sized + ?Sized) { loop {} }
fn main() {
let foo = foo1();
// ^^^ *const impl Fn()
let foo = foo2();
// ^^^ *const impl Fn()
let foo = foo3();
// ^^^ *const (impl Fn() + ?Sized)
let foo = foo4();
// ^^^ *const impl Fn()
let foo = foo5();
// ^^^ *const (impl Fn() + ?Sized)
let foo = foo6();
// ^^^ *const (impl Fn() + Trait)
let foo = foo7();
// ^^^ *const (impl Fn() + Trait)
let foo = foo8();
// ^^^ *const (impl Fn() + Trait + ?Sized)
let foo = foo9();
// ^^^ *const (impl Fn() -> u8 + ?Sized)
let foo = foo10();
// ^^^ *const impl Fn()
}
"#,
)
}
#[test]
fn unit_structs_have_no_type_hints() {
check_types(
r#"
//- minicore: result
struct SyntheticSyntax;
fn main() {
match Ok(()) {
Ok(_) => (),
Err(SyntheticSyntax) => (),
}
}"#,
);
}
#[test]
fn let_statement() {
check_types(
r#"
#[derive(PartialEq)]
enum Option<T> { None, Some(T) }
#[derive(PartialEq)]
struct Test { a: Option<u32>, b: u8 }
fn main() {
struct InnerStruct {}
let test = 54;
//^^^^ i32
let test: i32 = 33;
let mut test = 33;
//^^^^ i32
let _ = 22;
let test = "test";
//^^^^ &str
let test = InnerStruct {};
//^^^^ InnerStruct
let test = unresolved();
let test = (42, 'a');
//^^^^ (i32, char)
let (a, (b, (c,)) = (2, (3, (9.2,));
//^ i32 ^ i32 ^ f64
let &x = &92;
//^ i32
}"#,
);
}
#[test]
fn if_expr() {
check_types(
r#"
//- minicore: option
struct Test { a: Option<u32>, b: u8 }
fn main() {
let test = Some(Test { a: Some(3), b: 1 });
//^^^^ Option<Test>
if let None = &test {};
if let test = &test {};
//^^^^ &Option<Test>
if let Some(test) = &test {};
//^^^^ &Test
if let Some(Test { a, b }) = &test {};
//^ &Option<u32> ^ &u8
if let Some(Test { a: x, b: y }) = &test {};
//^ &Option<u32> ^ &u8
if let Some(Test { a: Some(x), b: y }) = &test {};
//^ &u32 ^ &u8
if let Some(Test { a: None, b: y }) = &test {};
//^ &u8
if let Some(Test { b: y, .. }) = &test {};
//^ &u8
if test == None {}
}"#,
);
}
#[test]
fn while_expr() {
check_types(
r#"
//- minicore: option
struct Test { a: Option<u32>, b: u8 }
fn main() {
let test = Some(Test { a: Some(3), b: 1 });
//^^^^ Option<Test>
while let Some(Test { a: Some(x), b: y }) = &test {};
//^ &u32 ^ &u8
}"#,
);
}
#[test]
fn match_arm_list() {
check_types(
r#"
//- minicore: option
struct Test { a: Option<u32>, b: u8 }
fn main() {
match Some(Test { a: Some(3), b: 1 }) {
None => (),
test => (),
//^^^^ Option<Test>
Some(Test { a: Some(x), b: y }) => (),
//^ u32 ^ u8
_ => {}
}
}"#,
);
}
#[test]
fn complete_for_hint() {
check_types(
r#"
//- minicore: iterator
pub struct Vec<T> {}
impl<T> Vec<T> {
pub fn new() -> Self { Vec {} }
pub fn push(&mut self, t: T) {}
}
impl<T> IntoIterator for Vec<T> {
type Item = T;
type IntoIter = IntoIter<T>;
}
struct IntoIter<T> {}
impl<T> Iterator for IntoIter<T> {
type Item = T;
}
fn main() {
let mut data = Vec::new();
//^^^^ Vec<&str>
data.push("foo");
for i in data {
//^ &str
let z = i;
//^ &str
}
}
"#,
);
}
#[test]
fn multi_dyn_trait_bounds() {
check_types(
r#"
pub struct Vec<T> {}
impl<T> Vec<T> {
pub fn new() -> Self { Vec {} }
}
pub struct Box<T> {}
trait Display {}
auto trait Sync {}
fn main() {
// The block expression wrapping disables the constructor hint hiding logic
let _v = { Vec::<Box<&(dyn Display + Sync)>>::new() };
//^^ Vec<Box<&(dyn Display + Sync)>>
let _v = { Vec::<Box<*const (dyn Display + Sync)>>::new() };
//^^ Vec<Box<*const (dyn Display + Sync)>>
let _v = { Vec::<Box<dyn Display + Sync>>::new() };
//^^ Vec<Box<dyn Display + Sync>>
}
"#,
);
}
#[test]
fn shorten_iterator_hints() {
check_types(
r#"
//- minicore: iterators
use core::iter;
struct MyIter;
impl Iterator for MyIter {
type Item = ();
fn next(&mut self) -> Option<Self::Item> {
None
}
}
fn main() {
let _x = MyIter;
//^^ MyIter
let _x = iter::repeat(0);
//^^ impl Iterator<Item = i32>
fn generic<T: Clone>(t: T) {
let _x = iter::repeat(t);
//^^ impl Iterator<Item = T>
let _chained = iter::repeat(t).take(10);
//^^^^^^^^ impl Iterator<Item = T>
}
}
"#,
);
}
#[test]
fn skip_constructor_and_enum_type_hints() {
check_with_config(
InlayHintsConfig {
type_hints: true,
hide_named_constructor_hints: true,
..DISABLED_CONFIG
},
r#"
//- minicore: try, option
use core::ops::ControlFlow;
mod x {
pub mod y { pub struct Foo; }
pub struct Foo;
pub enum AnotherEnum {
Variant()
};
}
struct Struct;
struct TupleStruct();
impl Struct {
fn new() -> Self {
Struct
}
fn try_new() -> ControlFlow<(), Self> {
ControlFlow::Continue(Struct)
}
}
struct Generic<T>(T);
impl Generic<i32> {
fn new() -> Self {
Generic(0)
}
}
enum Enum {
Variant(u32)
}
fn times2(value: i32) -> i32 {
2 * value
}
fn main() {
let enumb = Enum::Variant(0);
let strukt = x::Foo;
let strukt = x::y::Foo;
let strukt = Struct;
let strukt = Struct::new();
let tuple_struct = TupleStruct();
let generic0 = Generic::new();
// ^^^^^^^^ Generic<i32>
let generic1 = Generic(0);
// ^^^^^^^^ Generic<i32>
let generic2 = Generic::<i32>::new();
let generic3 = <Generic<i32>>::new();
let generic4 = Generic::<i32>(0);
let option = Some(0);
// ^^^^^^ Option<i32>
let func = times2;
// ^^^^ fn times2(i32) -> i32
let closure = |x: i32| x * 2;
// ^^^^^^^ |i32| -> i32
}
fn fallible() -> ControlFlow<()> {
let strukt = Struct::try_new()?;
}
"#,
);
}
#[test]
fn shows_constructor_type_hints_when_enabled() {
check_types(
r#"
//- minicore: try
use core::ops::ControlFlow;
struct Struct;
struct TupleStruct();
impl Struct {
fn new() -> Self {
Struct
}
fn try_new() -> ControlFlow<(), Self> {
ControlFlow::Continue(Struct)
}
}
struct Generic<T>(T);
impl Generic<i32> {
fn new() -> Self {
Generic(0)
}
}
fn main() {
let strukt = Struct::new();
// ^^^^^^ Struct
let tuple_struct = TupleStruct();
// ^^^^^^^^^^^^ TupleStruct
let generic0 = Generic::new();
// ^^^^^^^^ Generic<i32>
let generic1 = Generic::<i32>::new();
// ^^^^^^^^ Generic<i32>
let generic2 = <Generic<i32>>::new();
// ^^^^^^^^ Generic<i32>
}
fn fallible() -> ControlFlow<()> {
let strukt = Struct::try_new()?;
// ^^^^^^ Struct
}
"#,
);
}
#[test]
fn closures() {
check(
r#"
fn main() {
let mut start = 0;
//^^^^^ i32
(0..2).for_each(|increment | { start += increment; });
//^^^^^^^^^ i32
let multiply =
//^^^^^^^^ |i32, i32| -> i32
| a, b| a * b
//^ i32 ^ i32
;
let _: i32 = multiply(1, 2);
//^ a ^ b
let multiply_ref = &multiply;
//^^^^^^^^^^^^ &|i32, i32| -> i32
let return_42 = || 42;
//^^^^^^^^^ || -> i32
|| { 42 };
//^^ i32
}"#,
);
}
#[test]
fn return_type_hints_for_closure_without_block() {
check_with_config(
InlayHintsConfig {
closure_return_type_hints: ClosureReturnTypeHints::Always,
..DISABLED_CONFIG
},
r#"
fn main() {
let a = || { 0 };
//^^ i32
let b = || 0;
//^^ i32
}"#,
);
}
#[test]
fn skip_closure_type_hints() {
check_with_config(
InlayHintsConfig {
type_hints: true,
hide_closure_initialization_hints: true,
..DISABLED_CONFIG
},
r#"
//- minicore: fn
fn main() {
let multiple_2 = |x: i32| { x * 2 };
let multiple_2 = |x: i32| x * 2;
// ^^^^^^^^^^ |i32| -> i32
let (not) = (|x: bool| { !x });
// ^^^ |bool| -> bool
let (is_zero, _b) = (|x: usize| { x == 0 }, false);
// ^^^^^^^ |usize| -> bool
// ^^ bool
let plus_one = |x| { x + 1 };
// ^ u8
foo(plus_one);
let add_mul = bar(|x: u8| { x + 1 });
// ^^^^^^^ impl FnOnce(u8) -> u8 + ?Sized
let closure = if let Some(6) = add_mul(2).checked_sub(1) {
// ^^^^^^^ fn(i32) -> i32
|x: i32| { x * 2 }
} else {
|x: i32| { x * 3 }
};
}
fn foo(f: impl FnOnce(u8) -> u8) {}
fn bar(f: impl FnOnce(u8) -> u8) -> impl FnOnce(u8) -> u8 {
move |x: u8| f(x) * 2
}
"#,
);
}
#[test]
fn hint_truncation() {
check_with_config(
InlayHintsConfig { max_length: Some(8), ..TEST_CONFIG },
r#"
struct Smol<T>(T);
struct VeryLongOuterName<T>(T);
fn main() {
let a = Smol(0u32);
//^ Smol<u32>
let b = VeryLongOuterName(0usize);
//^ VeryLongOuterName<…>
let c = Smol(Smol(0u32))
//^ Smol<Smol<…>>
}"#,
);
}
}