rust-analyzer/crates/syntax/src/lib.rs

486 lines
16 KiB
Rust

//! Syntax Tree library used throughout the rust-analyzer.
//!
//! Properties:
//! - easy and fast incremental re-parsing
//! - graceful handling of errors
//! - full-fidelity representation (*any* text can be precisely represented as
//! a syntax tree)
//!
//! For more information, see the [RFC]. Current implementation is inspired by
//! the [Swift] one.
//!
//! The most interesting modules here are `syntax_node` (which defines concrete
//! syntax tree) and `ast` (which defines abstract syntax tree on top of the
//! CST). The actual parser live in a separate `parser` crate, though the
//! lexer lives in this crate.
//!
//! See `api_walkthrough` test in this file for a quick API tour!
//!
//! [RFC]: <https://github.com/rust-lang/rfcs/pull/2256>
//! [Swift]: <https://github.com/apple/swift/blob/13d593df6f359d0cb2fc81cfaac273297c539455/lib/Syntax/README.md>
#![cfg_attr(feature = "in-rust-tree", feature(rustc_private))]
#![warn(rust_2018_idioms, unused_lifetimes)]
#[cfg(not(feature = "in-rust-tree"))]
extern crate ra_ap_rustc_lexer as rustc_lexer;
#[cfg(feature = "in-rust-tree")]
extern crate rustc_lexer;
#[allow(unused)]
macro_rules! eprintln {
($($tt:tt)*) => { stdx::eprintln!($($tt)*) };
}
mod parsing;
mod ptr;
mod syntax_error;
mod syntax_node;
#[cfg(test)]
mod tests;
mod token_text;
mod validation;
pub mod algo;
pub mod ast;
#[doc(hidden)]
pub mod fuzz;
pub mod hacks;
pub mod ted;
pub mod utils;
use std::marker::PhantomData;
use stdx::format_to;
use text_edit::Indel;
use triomphe::Arc;
pub use crate::{
ast::{AstNode, AstToken},
ptr::{AstPtr, SyntaxNodePtr},
syntax_error::SyntaxError,
syntax_node::{
PreorderWithTokens, RustLanguage, SyntaxElement, SyntaxElementChildren, SyntaxNode,
SyntaxNodeChildren, SyntaxToken, SyntaxTreeBuilder,
},
token_text::TokenText,
};
pub use parser::{SyntaxKind, T};
pub use rowan::{
api::Preorder, Direction, GreenNode, NodeOrToken, SyntaxText, TextRange, TextSize,
TokenAtOffset, WalkEvent,
};
pub use smol_str::{format_smolstr, SmolStr};
/// `Parse` is the result of the parsing: a syntax tree and a collection of
/// errors.
///
/// Note that we always produce a syntax tree, even for completely invalid
/// files.
#[derive(Debug, PartialEq, Eq)]
pub struct Parse<T> {
green: GreenNode,
errors: Option<Arc<[SyntaxError]>>,
_ty: PhantomData<fn() -> T>,
}
impl<T> Clone for Parse<T> {
fn clone(&self) -> Parse<T> {
Parse { green: self.green.clone(), errors: self.errors.clone(), _ty: PhantomData }
}
}
impl<T> Parse<T> {
fn new(green: GreenNode, errors: Vec<SyntaxError>) -> Parse<T> {
Parse {
green,
errors: if errors.is_empty() { None } else { Some(errors.into()) },
_ty: PhantomData,
}
}
pub fn syntax_node(&self) -> SyntaxNode {
SyntaxNode::new_root(self.green.clone())
}
pub fn errors(&self) -> &[SyntaxError] {
self.errors.as_deref().unwrap_or_default()
}
}
impl<T: AstNode> Parse<T> {
pub fn to_syntax(self) -> Parse<SyntaxNode> {
Parse { green: self.green, errors: self.errors, _ty: PhantomData }
}
pub fn tree(&self) -> T {
T::cast(self.syntax_node()).unwrap()
}
pub fn ok(self) -> Result<T, Arc<[SyntaxError]>> {
match self.errors {
Some(e) => Err(e),
None => Ok(self.tree()),
}
}
}
impl Parse<SyntaxNode> {
pub fn cast<N: AstNode>(self) -> Option<Parse<N>> {
if N::cast(self.syntax_node()).is_some() {
Some(Parse { green: self.green, errors: self.errors, _ty: PhantomData })
} else {
None
}
}
}
impl Parse<SourceFile> {
pub fn debug_dump(&self) -> String {
let mut buf = format!("{:#?}", self.tree().syntax());
for err in self.errors.as_deref().into_iter().flat_map(<[_]>::iter) {
format_to!(buf, "error {:?}: {}\n", err.range(), err);
}
buf
}
pub fn reparse(&self, indel: &Indel) -> Parse<SourceFile> {
self.incremental_reparse(indel).unwrap_or_else(|| self.full_reparse(indel))
}
fn incremental_reparse(&self, indel: &Indel) -> Option<Parse<SourceFile>> {
// FIXME: validation errors are not handled here
parsing::incremental_reparse(
self.tree().syntax(),
indel,
self.errors.as_deref().unwrap_or_default().iter().cloned(),
)
.map(|(green_node, errors, _reparsed_range)| Parse {
green: green_node,
errors: if errors.is_empty() { None } else { Some(errors.into()) },
_ty: PhantomData,
})
}
fn full_reparse(&self, indel: &Indel) -> Parse<SourceFile> {
let mut text = self.tree().syntax().text().to_string();
indel.apply(&mut text);
SourceFile::parse(&text)
}
}
/// `SourceFile` represents a parse tree for a single Rust file.
pub use crate::ast::SourceFile;
impl SourceFile {
pub fn parse(text: &str) -> Parse<SourceFile> {
let (green, mut errors) = parsing::parse_text(text);
let root = SyntaxNode::new_root(green.clone());
errors.extend(validation::validate(&root));
assert_eq!(root.kind(), SyntaxKind::SOURCE_FILE);
Parse {
green,
errors: if errors.is_empty() { None } else { Some(errors.into()) },
_ty: PhantomData,
}
}
}
impl ast::TokenTree {
pub fn reparse_as_comma_separated_expr(self) -> Parse<ast::MacroEagerInput> {
let tokens = self.syntax().descendants_with_tokens().filter_map(NodeOrToken::into_token);
let mut parser_input = parser::Input::default();
let mut was_joint = false;
for t in tokens {
let kind = t.kind();
if kind.is_trivia() {
was_joint = false
} else if kind == SyntaxKind::IDENT {
let token_text = t.text();
let contextual_kw =
SyntaxKind::from_contextual_keyword(token_text).unwrap_or(SyntaxKind::IDENT);
parser_input.push_ident(contextual_kw);
} else {
if was_joint {
parser_input.was_joint();
}
parser_input.push(kind);
// Tag the token as joint if it is float with a fractional part
// we use this jointness to inform the parser about what token split
// event to emit when we encounter a float literal in a field access
if kind == SyntaxKind::FLOAT_NUMBER {
if !t.text().ends_with('.') {
parser_input.was_joint();
} else {
was_joint = false;
}
} else {
was_joint = true;
}
}
}
let parser_output = parser::TopEntryPoint::MacroEagerInput.parse(&parser_input);
let mut tokens =
self.syntax().descendants_with_tokens().filter_map(NodeOrToken::into_token);
let mut text = String::new();
let mut pos = TextSize::from(0);
let mut builder = SyntaxTreeBuilder::default();
for event in parser_output.iter() {
match event {
parser::Step::Token { kind, n_input_tokens } => {
let mut token = tokens.next().unwrap();
while token.kind().is_trivia() {
let text = token.text();
pos += TextSize::from(text.len() as u32);
builder.token(token.kind(), text);
token = tokens.next().unwrap();
}
text.push_str(token.text());
for _ in 1..n_input_tokens {
let token = tokens.next().unwrap();
text.push_str(token.text());
}
pos += TextSize::from(text.len() as u32);
builder.token(kind, &text);
text.clear();
}
parser::Step::FloatSplit { ends_in_dot: has_pseudo_dot } => {
let token = tokens.next().unwrap();
let text = token.text();
match text.split_once('.') {
Some((left, right)) => {
assert!(!left.is_empty());
builder.start_node(SyntaxKind::NAME_REF);
builder.token(SyntaxKind::INT_NUMBER, left);
builder.finish_node();
// here we move the exit up, the original exit has been deleted in process
builder.finish_node();
builder.token(SyntaxKind::DOT, ".");
if has_pseudo_dot {
assert!(right.is_empty(), "{left}.{right}");
} else {
assert!(!right.is_empty(), "{left}.{right}");
builder.start_node(SyntaxKind::NAME_REF);
builder.token(SyntaxKind::INT_NUMBER, right);
builder.finish_node();
// the parser creates an unbalanced start node, we are required to close it here
builder.finish_node();
}
}
None => unreachable!(),
}
pos += TextSize::from(text.len() as u32);
}
parser::Step::Enter { kind } => builder.start_node(kind),
parser::Step::Exit => builder.finish_node(),
parser::Step::Error { msg } => builder.error(msg.to_owned(), pos),
}
}
let (green, errors) = builder.finish_raw();
Parse {
green,
errors: if errors.is_empty() { None } else { Some(errors.into()) },
_ty: PhantomData,
}
}
}
/// Matches a `SyntaxNode` against an `ast` type.
///
/// # Example:
///
/// ```ignore
/// match_ast! {
/// match node {
/// ast::CallExpr(it) => { ... },
/// ast::MethodCallExpr(it) => { ... },
/// ast::MacroCall(it) => { ... },
/// _ => None,
/// }
/// }
/// ```
#[macro_export]
macro_rules! match_ast {
(match $node:ident { $($tt:tt)* }) => { $crate::match_ast!(match ($node) { $($tt)* }) };
(match ($node:expr) {
$( $( $path:ident )::+ ($it:pat) => $res:expr, )*
_ => $catch_all:expr $(,)?
}) => {{
$( if let Some($it) = $($path::)+cast($node.clone()) { $res } else )*
{ $catch_all }
}};
}
/// This test does not assert anything and instead just shows off the crate's
/// API.
#[test]
fn api_walkthrough() {
use ast::{HasModuleItem, HasName};
let source_code = "
fn foo() {
1 + 1
}
";
// `SourceFile` is the main entry point.
//
// The `parse` method returns a `Parse` -- a pair of syntax tree and a list
// of errors. That is, syntax tree is constructed even in presence of errors.
let parse = SourceFile::parse(source_code);
assert!(parse.errors().is_empty());
// The `tree` method returns an owned syntax node of type `SourceFile`.
// Owned nodes are cheap: inside, they are `Rc` handles to the underling data.
let file: SourceFile = parse.tree();
// `SourceFile` is the root of the syntax tree. We can iterate file's items.
// Let's fetch the `foo` function.
let mut func = None;
for item in file.items() {
match item {
ast::Item::Fn(f) => func = Some(f),
_ => unreachable!(),
}
}
let func: ast::Fn = func.unwrap();
// Each AST node has a bunch of getters for children. All getters return
// `Option`s though, to account for incomplete code. Some getters are common
// for several kinds of node. In this case, a trait like `ast::NameOwner`
// usually exists. By convention, all ast types should be used with `ast::`
// qualifier.
let name: Option<ast::Name> = func.name();
let name = name.unwrap();
assert_eq!(name.text(), "foo");
// Let's get the `1 + 1` expression!
let body: ast::BlockExpr = func.body().unwrap();
let stmt_list: ast::StmtList = body.stmt_list().unwrap();
let expr: ast::Expr = stmt_list.tail_expr().unwrap();
// Enums are used to group related ast nodes together, and can be used for
// matching. However, because there are no public fields, it's possible to
// match only the top level enum: that is the price we pay for increased API
// flexibility
let bin_expr: &ast::BinExpr = match &expr {
ast::Expr::BinExpr(e) => e,
_ => unreachable!(),
};
// Besides the "typed" AST API, there's an untyped CST one as well.
// To switch from AST to CST, call `.syntax()` method:
let expr_syntax: &SyntaxNode = expr.syntax();
// Note how `expr` and `bin_expr` are in fact the same node underneath:
assert!(expr_syntax == bin_expr.syntax());
// To go from CST to AST, `AstNode::cast` function is used:
let _expr: ast::Expr = match ast::Expr::cast(expr_syntax.clone()) {
Some(e) => e,
None => unreachable!(),
};
// The two properties each syntax node has is a `SyntaxKind`:
assert_eq!(expr_syntax.kind(), SyntaxKind::BIN_EXPR);
// And text range:
assert_eq!(expr_syntax.text_range(), TextRange::new(32.into(), 37.into()));
// You can get node's text as a `SyntaxText` object, which will traverse the
// tree collecting token's text:
let text: SyntaxText = expr_syntax.text();
assert_eq!(text.to_string(), "1 + 1");
// There's a bunch of traversal methods on `SyntaxNode`:
assert_eq!(expr_syntax.parent().as_ref(), Some(stmt_list.syntax()));
assert_eq!(stmt_list.syntax().first_child_or_token().map(|it| it.kind()), Some(T!['{']));
assert_eq!(
expr_syntax.next_sibling_or_token().map(|it| it.kind()),
Some(SyntaxKind::WHITESPACE)
);
// As well as some iterator helpers:
let f = expr_syntax.ancestors().find_map(ast::Fn::cast);
assert_eq!(f, Some(func));
assert!(expr_syntax.siblings_with_tokens(Direction::Next).any(|it| it.kind() == T!['}']));
assert_eq!(
expr_syntax.descendants_with_tokens().count(),
8, // 5 tokens `1`, ` `, `+`, ` `, `!`
// 2 child literal expressions: `1`, `1`
// 1 the node itself: `1 + 1`
);
// There's also a `preorder` method with a more fine-grained iteration control:
let mut buf = String::new();
let mut indent = 0;
for event in expr_syntax.preorder_with_tokens() {
match event {
WalkEvent::Enter(node) => {
let text = match &node {
NodeOrToken::Node(it) => it.text().to_string(),
NodeOrToken::Token(it) => it.text().to_string(),
};
format_to!(buf, "{:indent$}{:?} {:?}\n", " ", text, node.kind(), indent = indent);
indent += 2;
}
WalkEvent::Leave(_) => indent -= 2,
}
}
assert_eq!(indent, 0);
assert_eq!(
buf.trim(),
r#"
"1 + 1" BIN_EXPR
"1" LITERAL
"1" INT_NUMBER
" " WHITESPACE
"+" PLUS
" " WHITESPACE
"1" LITERAL
"1" INT_NUMBER
"#
.trim()
);
// To recursively process the tree, there are three approaches:
// 1. explicitly call getter methods on AST nodes.
// 2. use descendants and `AstNode::cast`.
// 3. use descendants and `match_ast!`.
//
// Here's how the first one looks like:
let exprs_cast: Vec<String> = file
.syntax()
.descendants()
.filter_map(ast::Expr::cast)
.map(|expr| expr.syntax().text().to_string())
.collect();
// An alternative is to use a macro.
let mut exprs_visit = Vec::new();
for node in file.syntax().descendants() {
match_ast! {
match node {
ast::Expr(it) => {
let res = it.syntax().text().to_string();
exprs_visit.push(res);
},
_ => (),
}
}
}
assert_eq!(exprs_cast, exprs_visit);
}