mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-17 23:54:01 +00:00
747 lines
27 KiB
Rust
747 lines
27 KiB
Rust
//! Type inference, i.e. the process of walking through the code and determining
|
|
//! the type of each expression and pattern.
|
|
//!
|
|
//! For type inference, compare the implementations in rustc (the various
|
|
//! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and
|
|
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
|
|
//! inference here is the `infer` function, which infers the types of all
|
|
//! expressions in a given function.
|
|
//!
|
|
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
|
|
//! which represent currently unknown types; as we walk through the expressions,
|
|
//! we might determine that certain variables need to be equal to each other, or
|
|
//! to certain types. To record this, we use the union-find implementation from
|
|
//! the `ena` crate, which is extracted from rustc.
|
|
|
|
use std::borrow::Cow;
|
|
use std::mem;
|
|
use std::ops::Index;
|
|
use std::sync::Arc;
|
|
|
|
use ena::unify::{InPlaceUnificationTable, NoError, UnifyKey, UnifyValue};
|
|
use rustc_hash::FxHashMap;
|
|
|
|
use hir_def::{
|
|
data::{ConstData, FunctionData},
|
|
path::known,
|
|
resolver::{HasResolver, Resolver, TypeNs},
|
|
type_ref::{Mutability, TypeRef},
|
|
AdtId, DefWithBodyId,
|
|
};
|
|
use hir_expand::{diagnostics::DiagnosticSink, name};
|
|
use ra_arena::map::ArenaMap;
|
|
use ra_prof::profile;
|
|
use test_utils::tested_by;
|
|
|
|
use super::{
|
|
traits::{Guidance, Obligation, ProjectionPredicate, Solution},
|
|
ApplicationTy, InEnvironment, ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypableDef,
|
|
TypeCtor, TypeWalk, Uncertain,
|
|
};
|
|
use crate::{
|
|
code_model::TypeAlias,
|
|
db::HirDatabase,
|
|
expr::{BindingAnnotation, Body, ExprId, PatId},
|
|
ty::infer::diagnostics::InferenceDiagnostic,
|
|
Adt, AssocItem, DefWithBody, FloatTy, Function, IntTy, Path, StructField, VariantDef,
|
|
};
|
|
|
|
macro_rules! ty_app {
|
|
($ctor:pat, $param:pat) => {
|
|
crate::ty::Ty::Apply(crate::ty::ApplicationTy { ctor: $ctor, parameters: $param })
|
|
};
|
|
($ctor:pat) => {
|
|
ty_app!($ctor, _)
|
|
};
|
|
}
|
|
|
|
mod unify;
|
|
mod path;
|
|
mod expr;
|
|
mod pat;
|
|
mod coerce;
|
|
|
|
/// The entry point of type inference.
|
|
pub fn infer_query(db: &impl HirDatabase, def: DefWithBody) -> Arc<InferenceResult> {
|
|
let _p = profile("infer_query");
|
|
let resolver = DefWithBodyId::from(def).resolver(db);
|
|
let mut ctx = InferenceContext::new(db, def, resolver);
|
|
|
|
match &def {
|
|
DefWithBody::Const(c) => ctx.collect_const(&db.const_data(c.id)),
|
|
DefWithBody::Function(f) => ctx.collect_fn(&db.function_data(f.id)),
|
|
DefWithBody::Static(s) => ctx.collect_const(&db.static_data(s.id)),
|
|
}
|
|
|
|
ctx.infer_body();
|
|
|
|
Arc::new(ctx.resolve_all())
|
|
}
|
|
|
|
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
|
|
enum ExprOrPatId {
|
|
ExprId(ExprId),
|
|
PatId(PatId),
|
|
}
|
|
|
|
impl_froms!(ExprOrPatId: ExprId, PatId);
|
|
|
|
/// Binding modes inferred for patterns.
|
|
/// https://doc.rust-lang.org/reference/patterns.html#binding-modes
|
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
|
enum BindingMode {
|
|
Move,
|
|
Ref(Mutability),
|
|
}
|
|
|
|
impl BindingMode {
|
|
pub fn convert(annotation: BindingAnnotation) -> BindingMode {
|
|
match annotation {
|
|
BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
|
|
BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared),
|
|
BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Default for BindingMode {
|
|
fn default() -> Self {
|
|
BindingMode::Move
|
|
}
|
|
}
|
|
|
|
/// A mismatch between an expected and an inferred type.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
|
|
pub struct TypeMismatch {
|
|
pub expected: Ty,
|
|
pub actual: Ty,
|
|
}
|
|
|
|
/// The result of type inference: A mapping from expressions and patterns to types.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Default)]
|
|
pub struct InferenceResult {
|
|
/// For each method call expr, records the function it resolves to.
|
|
method_resolutions: FxHashMap<ExprId, Function>,
|
|
/// For each field access expr, records the field it resolves to.
|
|
field_resolutions: FxHashMap<ExprId, StructField>,
|
|
/// For each field in record literal, records the field it resolves to.
|
|
record_field_resolutions: FxHashMap<ExprId, StructField>,
|
|
/// For each struct literal, records the variant it resolves to.
|
|
variant_resolutions: FxHashMap<ExprOrPatId, VariantDef>,
|
|
/// For each associated item record what it resolves to
|
|
assoc_resolutions: FxHashMap<ExprOrPatId, AssocItem>,
|
|
diagnostics: Vec<InferenceDiagnostic>,
|
|
pub(super) type_of_expr: ArenaMap<ExprId, Ty>,
|
|
pub(super) type_of_pat: ArenaMap<PatId, Ty>,
|
|
pub(super) type_mismatches: ArenaMap<ExprId, TypeMismatch>,
|
|
}
|
|
|
|
impl InferenceResult {
|
|
pub fn method_resolution(&self, expr: ExprId) -> Option<Function> {
|
|
self.method_resolutions.get(&expr).copied()
|
|
}
|
|
pub fn field_resolution(&self, expr: ExprId) -> Option<StructField> {
|
|
self.field_resolutions.get(&expr).copied()
|
|
}
|
|
pub fn record_field_resolution(&self, expr: ExprId) -> Option<StructField> {
|
|
self.record_field_resolutions.get(&expr).copied()
|
|
}
|
|
pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantDef> {
|
|
self.variant_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantDef> {
|
|
self.variant_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<AssocItem> {
|
|
self.assoc_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<AssocItem> {
|
|
self.assoc_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
|
|
self.type_mismatches.get(expr)
|
|
}
|
|
pub(crate) fn add_diagnostics(
|
|
&self,
|
|
db: &impl HirDatabase,
|
|
owner: Function,
|
|
sink: &mut DiagnosticSink,
|
|
) {
|
|
self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink))
|
|
}
|
|
}
|
|
|
|
impl Index<ExprId> for InferenceResult {
|
|
type Output = Ty;
|
|
|
|
fn index(&self, expr: ExprId) -> &Ty {
|
|
self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown)
|
|
}
|
|
}
|
|
|
|
impl Index<PatId> for InferenceResult {
|
|
type Output = Ty;
|
|
|
|
fn index(&self, pat: PatId) -> &Ty {
|
|
self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown)
|
|
}
|
|
}
|
|
|
|
/// The inference context contains all information needed during type inference.
|
|
#[derive(Clone, Debug)]
|
|
struct InferenceContext<'a, D: HirDatabase> {
|
|
db: &'a D,
|
|
owner: DefWithBody,
|
|
body: Arc<Body>,
|
|
resolver: Resolver,
|
|
var_unification_table: InPlaceUnificationTable<TypeVarId>,
|
|
trait_env: Arc<TraitEnvironment>,
|
|
obligations: Vec<Obligation>,
|
|
result: InferenceResult,
|
|
/// The return type of the function being inferred.
|
|
return_ty: Ty,
|
|
|
|
/// Impls of `CoerceUnsized` used in coercion.
|
|
/// (from_ty_ctor, to_ty_ctor) => coerce_generic_index
|
|
// FIXME: Use trait solver for this.
|
|
// Chalk seems unable to work well with builtin impl of `Unsize` now.
|
|
coerce_unsized_map: FxHashMap<(TypeCtor, TypeCtor), usize>,
|
|
}
|
|
|
|
impl<'a, D: HirDatabase> InferenceContext<'a, D> {
|
|
fn new(db: &'a D, owner: DefWithBody, resolver: Resolver) -> Self {
|
|
InferenceContext {
|
|
result: InferenceResult::default(),
|
|
var_unification_table: InPlaceUnificationTable::new(),
|
|
obligations: Vec::default(),
|
|
return_ty: Ty::Unknown, // set in collect_fn_signature
|
|
trait_env: TraitEnvironment::lower(db, &resolver),
|
|
coerce_unsized_map: Self::init_coerce_unsized_map(db, &resolver),
|
|
db,
|
|
owner,
|
|
body: db.body(owner.into()),
|
|
resolver,
|
|
}
|
|
}
|
|
|
|
fn resolve_all(mut self) -> InferenceResult {
|
|
// FIXME resolve obligations as well (use Guidance if necessary)
|
|
let mut result = mem::replace(&mut self.result, InferenceResult::default());
|
|
let mut tv_stack = Vec::new();
|
|
for ty in result.type_of_expr.values_mut() {
|
|
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
|
|
*ty = resolved;
|
|
}
|
|
for ty in result.type_of_pat.values_mut() {
|
|
let resolved = self.resolve_ty_completely(&mut tv_stack, mem::replace(ty, Ty::Unknown));
|
|
*ty = resolved;
|
|
}
|
|
result
|
|
}
|
|
|
|
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
|
|
self.result.type_of_expr.insert(expr, ty);
|
|
}
|
|
|
|
fn write_method_resolution(&mut self, expr: ExprId, func: Function) {
|
|
self.result.method_resolutions.insert(expr, func);
|
|
}
|
|
|
|
fn write_field_resolution(&mut self, expr: ExprId, field: StructField) {
|
|
self.result.field_resolutions.insert(expr, field);
|
|
}
|
|
|
|
fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantDef) {
|
|
self.result.variant_resolutions.insert(id, variant);
|
|
}
|
|
|
|
fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItem) {
|
|
self.result.assoc_resolutions.insert(id, item);
|
|
}
|
|
|
|
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
|
|
self.result.type_of_pat.insert(pat, ty);
|
|
}
|
|
|
|
fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
|
|
self.result.diagnostics.push(diagnostic);
|
|
}
|
|
|
|
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
|
|
let ty = Ty::from_hir(
|
|
self.db,
|
|
// FIXME use right resolver for block
|
|
&self.resolver,
|
|
type_ref,
|
|
);
|
|
let ty = self.insert_type_vars(ty);
|
|
self.normalize_associated_types_in(ty)
|
|
}
|
|
|
|
fn unify_substs(&mut self, substs1: &Substs, substs2: &Substs, depth: usize) -> bool {
|
|
substs1.0.iter().zip(substs2.0.iter()).all(|(t1, t2)| self.unify_inner(t1, t2, depth))
|
|
}
|
|
|
|
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
|
|
self.unify_inner(ty1, ty2, 0)
|
|
}
|
|
|
|
fn unify_inner(&mut self, ty1: &Ty, ty2: &Ty, depth: usize) -> bool {
|
|
if depth > 1000 {
|
|
// prevent stackoverflows
|
|
panic!("infinite recursion in unification");
|
|
}
|
|
if ty1 == ty2 {
|
|
return true;
|
|
}
|
|
// try to resolve type vars first
|
|
let ty1 = self.resolve_ty_shallow(ty1);
|
|
let ty2 = self.resolve_ty_shallow(ty2);
|
|
match (&*ty1, &*ty2) {
|
|
(Ty::Apply(a_ty1), Ty::Apply(a_ty2)) if a_ty1.ctor == a_ty2.ctor => {
|
|
self.unify_substs(&a_ty1.parameters, &a_ty2.parameters, depth + 1)
|
|
}
|
|
_ => self.unify_inner_trivial(&ty1, &ty2),
|
|
}
|
|
}
|
|
|
|
fn unify_inner_trivial(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
|
|
match (ty1, ty2) {
|
|
(Ty::Unknown, _) | (_, Ty::Unknown) => true,
|
|
|
|
(Ty::Infer(InferTy::TypeVar(tv1)), Ty::Infer(InferTy::TypeVar(tv2)))
|
|
| (Ty::Infer(InferTy::IntVar(tv1)), Ty::Infer(InferTy::IntVar(tv2)))
|
|
| (Ty::Infer(InferTy::FloatVar(tv1)), Ty::Infer(InferTy::FloatVar(tv2)))
|
|
| (
|
|
Ty::Infer(InferTy::MaybeNeverTypeVar(tv1)),
|
|
Ty::Infer(InferTy::MaybeNeverTypeVar(tv2)),
|
|
) => {
|
|
// both type vars are unknown since we tried to resolve them
|
|
self.var_unification_table.union(*tv1, *tv2);
|
|
true
|
|
}
|
|
|
|
// The order of MaybeNeverTypeVar matters here.
|
|
// Unifying MaybeNeverTypeVar and TypeVar will let the latter become MaybeNeverTypeVar.
|
|
// Unifying MaybeNeverTypeVar and other concrete type will let the former become it.
|
|
(Ty::Infer(InferTy::TypeVar(tv)), other)
|
|
| (other, Ty::Infer(InferTy::TypeVar(tv)))
|
|
| (Ty::Infer(InferTy::MaybeNeverTypeVar(tv)), other)
|
|
| (other, Ty::Infer(InferTy::MaybeNeverTypeVar(tv)))
|
|
| (Ty::Infer(InferTy::IntVar(tv)), other @ ty_app!(TypeCtor::Int(_)))
|
|
| (other @ ty_app!(TypeCtor::Int(_)), Ty::Infer(InferTy::IntVar(tv)))
|
|
| (Ty::Infer(InferTy::FloatVar(tv)), other @ ty_app!(TypeCtor::Float(_)))
|
|
| (other @ ty_app!(TypeCtor::Float(_)), Ty::Infer(InferTy::FloatVar(tv))) => {
|
|
// the type var is unknown since we tried to resolve it
|
|
self.var_unification_table.union_value(*tv, TypeVarValue::Known(other.clone()));
|
|
true
|
|
}
|
|
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
fn new_type_var(&mut self) -> Ty {
|
|
Ty::Infer(InferTy::TypeVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
|
|
}
|
|
|
|
fn new_integer_var(&mut self) -> Ty {
|
|
Ty::Infer(InferTy::IntVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
|
|
}
|
|
|
|
fn new_float_var(&mut self) -> Ty {
|
|
Ty::Infer(InferTy::FloatVar(self.var_unification_table.new_key(TypeVarValue::Unknown)))
|
|
}
|
|
|
|
fn new_maybe_never_type_var(&mut self) -> Ty {
|
|
Ty::Infer(InferTy::MaybeNeverTypeVar(
|
|
self.var_unification_table.new_key(TypeVarValue::Unknown),
|
|
))
|
|
}
|
|
|
|
/// Replaces Ty::Unknown by a new type var, so we can maybe still infer it.
|
|
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
|
|
match ty {
|
|
Ty::Unknown => self.new_type_var(),
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::Int(Uncertain::Unknown), .. }) => {
|
|
self.new_integer_var()
|
|
}
|
|
Ty::Apply(ApplicationTy { ctor: TypeCtor::Float(Uncertain::Unknown), .. }) => {
|
|
self.new_float_var()
|
|
}
|
|
_ => ty,
|
|
}
|
|
}
|
|
|
|
fn insert_type_vars(&mut self, ty: Ty) -> Ty {
|
|
ty.fold(&mut |ty| self.insert_type_vars_shallow(ty))
|
|
}
|
|
|
|
fn resolve_obligations_as_possible(&mut self) {
|
|
let obligations = mem::replace(&mut self.obligations, Vec::new());
|
|
for obligation in obligations {
|
|
let in_env = InEnvironment::new(self.trait_env.clone(), obligation.clone());
|
|
let canonicalized = self.canonicalizer().canonicalize_obligation(in_env);
|
|
let solution = self
|
|
.db
|
|
.trait_solve(self.resolver.krate().unwrap().into(), canonicalized.value.clone());
|
|
|
|
match solution {
|
|
Some(Solution::Unique(substs)) => {
|
|
canonicalized.apply_solution(self, substs.0);
|
|
}
|
|
Some(Solution::Ambig(Guidance::Definite(substs))) => {
|
|
canonicalized.apply_solution(self, substs.0);
|
|
self.obligations.push(obligation);
|
|
}
|
|
Some(_) => {
|
|
// FIXME use this when trying to resolve everything at the end
|
|
self.obligations.push(obligation);
|
|
}
|
|
None => {
|
|
// FIXME obligation cannot be fulfilled => diagnostic
|
|
}
|
|
};
|
|
}
|
|
}
|
|
|
|
/// Resolves the type as far as currently possible, replacing type variables
|
|
/// by their known types. All types returned by the infer_* functions should
|
|
/// be resolved as far as possible, i.e. contain no type variables with
|
|
/// known type.
|
|
fn resolve_ty_as_possible(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
|
|
self.resolve_obligations_as_possible();
|
|
|
|
ty.fold(&mut |ty| match ty {
|
|
Ty::Infer(tv) => {
|
|
let inner = tv.to_inner();
|
|
if tv_stack.contains(&inner) {
|
|
tested_by!(type_var_cycles_resolve_as_possible);
|
|
// recursive type
|
|
return tv.fallback_value();
|
|
}
|
|
if let Some(known_ty) =
|
|
self.var_unification_table.inlined_probe_value(inner).known()
|
|
{
|
|
// known_ty may contain other variables that are known by now
|
|
tv_stack.push(inner);
|
|
let result = self.resolve_ty_as_possible(tv_stack, known_ty.clone());
|
|
tv_stack.pop();
|
|
result
|
|
} else {
|
|
ty
|
|
}
|
|
}
|
|
_ => ty,
|
|
})
|
|
}
|
|
|
|
/// If `ty` is a type variable with known type, returns that type;
|
|
/// otherwise, return ty.
|
|
fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> {
|
|
let mut ty = Cow::Borrowed(ty);
|
|
// The type variable could resolve to a int/float variable. Hence try
|
|
// resolving up to three times; each type of variable shouldn't occur
|
|
// more than once
|
|
for i in 0..3 {
|
|
if i > 0 {
|
|
tested_by!(type_var_resolves_to_int_var);
|
|
}
|
|
match &*ty {
|
|
Ty::Infer(tv) => {
|
|
let inner = tv.to_inner();
|
|
match self.var_unification_table.inlined_probe_value(inner).known() {
|
|
Some(known_ty) => {
|
|
// The known_ty can't be a type var itself
|
|
ty = Cow::Owned(known_ty.clone());
|
|
}
|
|
_ => return ty,
|
|
}
|
|
}
|
|
_ => return ty,
|
|
}
|
|
}
|
|
log::error!("Inference variable still not resolved: {:?}", ty);
|
|
ty
|
|
}
|
|
|
|
/// Recurses through the given type, normalizing associated types mentioned
|
|
/// in it by replacing them by type variables and registering obligations to
|
|
/// resolve later. This should be done once for every type we get from some
|
|
/// type annotation (e.g. from a let type annotation, field type or function
|
|
/// call). `make_ty` handles this already, but e.g. for field types we need
|
|
/// to do it as well.
|
|
fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty {
|
|
let ty = self.resolve_ty_as_possible(&mut vec![], ty);
|
|
ty.fold(&mut |ty| match ty {
|
|
Ty::Projection(proj_ty) => self.normalize_projection_ty(proj_ty),
|
|
_ => ty,
|
|
})
|
|
}
|
|
|
|
fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty {
|
|
let var = self.new_type_var();
|
|
let predicate = ProjectionPredicate { projection_ty: proj_ty, ty: var.clone() };
|
|
let obligation = Obligation::Projection(predicate);
|
|
self.obligations.push(obligation);
|
|
var
|
|
}
|
|
|
|
/// Resolves the type completely; type variables without known type are
|
|
/// replaced by Ty::Unknown.
|
|
fn resolve_ty_completely(&mut self, tv_stack: &mut Vec<TypeVarId>, ty: Ty) -> Ty {
|
|
ty.fold(&mut |ty| match ty {
|
|
Ty::Infer(tv) => {
|
|
let inner = tv.to_inner();
|
|
if tv_stack.contains(&inner) {
|
|
tested_by!(type_var_cycles_resolve_completely);
|
|
// recursive type
|
|
return tv.fallback_value();
|
|
}
|
|
if let Some(known_ty) =
|
|
self.var_unification_table.inlined_probe_value(inner).known()
|
|
{
|
|
// known_ty may contain other variables that are known by now
|
|
tv_stack.push(inner);
|
|
let result = self.resolve_ty_completely(tv_stack, known_ty.clone());
|
|
tv_stack.pop();
|
|
result
|
|
} else {
|
|
tv.fallback_value()
|
|
}
|
|
}
|
|
_ => ty,
|
|
})
|
|
}
|
|
|
|
fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option<VariantDef>) {
|
|
let path = match path {
|
|
Some(path) => path,
|
|
None => return (Ty::Unknown, None),
|
|
};
|
|
let resolver = &self.resolver;
|
|
let def: TypableDef =
|
|
// FIXME: this should resolve assoc items as well, see this example:
|
|
// https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521
|
|
match resolver.resolve_path_in_type_ns_fully(self.db, &path) {
|
|
Some(TypeNs::AdtId(AdtId::StructId(it))) => it.into(),
|
|
Some(TypeNs::AdtId(AdtId::UnionId(it))) => it.into(),
|
|
Some(TypeNs::AdtSelfType(adt)) => adt.into(),
|
|
Some(TypeNs::EnumVariantId(it)) => it.into(),
|
|
Some(TypeNs::TypeAliasId(it)) => it.into(),
|
|
|
|
Some(TypeNs::SelfType(_)) |
|
|
Some(TypeNs::GenericParam(_)) |
|
|
Some(TypeNs::BuiltinType(_)) |
|
|
Some(TypeNs::TraitId(_)) |
|
|
Some(TypeNs::AdtId(AdtId::EnumId(_))) |
|
|
None => {
|
|
return (Ty::Unknown, None)
|
|
}
|
|
};
|
|
// FIXME remove the duplication between here and `Ty::from_path`?
|
|
let substs = Ty::substs_from_path(self.db, resolver, path, def);
|
|
match def {
|
|
TypableDef::Adt(Adt::Struct(s)) => {
|
|
let ty = s.ty(self.db);
|
|
let ty = self.insert_type_vars(ty.apply_substs(substs));
|
|
(ty, Some(s.into()))
|
|
}
|
|
TypableDef::EnumVariant(var) => {
|
|
let ty = var.parent_enum(self.db).ty(self.db);
|
|
let ty = self.insert_type_vars(ty.apply_substs(substs));
|
|
(ty, Some(var.into()))
|
|
}
|
|
TypableDef::Adt(Adt::Enum(_))
|
|
| TypableDef::Adt(Adt::Union(_))
|
|
| TypableDef::TypeAlias(_)
|
|
| TypableDef::Function(_)
|
|
| TypableDef::Const(_)
|
|
| TypableDef::Static(_)
|
|
| TypableDef::BuiltinType(_) => (Ty::Unknown, None),
|
|
}
|
|
}
|
|
|
|
fn collect_const(&mut self, data: &ConstData) {
|
|
self.return_ty = self.make_ty(&data.type_ref);
|
|
}
|
|
|
|
fn collect_fn(&mut self, data: &FunctionData) {
|
|
let body = Arc::clone(&self.body); // avoid borrow checker problem
|
|
for (type_ref, pat) in data.params.iter().zip(body.params.iter()) {
|
|
let ty = self.make_ty(type_ref);
|
|
|
|
self.infer_pat(*pat, &ty, BindingMode::default());
|
|
}
|
|
self.return_ty = self.make_ty(&data.ret_type);
|
|
}
|
|
|
|
fn infer_body(&mut self) {
|
|
self.infer_expr(self.body.body_expr, &Expectation::has_type(self.return_ty.clone()));
|
|
}
|
|
|
|
fn resolve_into_iter_item(&self) -> Option<TypeAlias> {
|
|
let path = known::std_iter_into_iterator();
|
|
let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name::ITEM_TYPE).map(TypeAlias::from)
|
|
}
|
|
|
|
fn resolve_ops_try_ok(&self) -> Option<TypeAlias> {
|
|
let path = known::std_ops_try();
|
|
let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name::OK_TYPE).map(TypeAlias::from)
|
|
}
|
|
|
|
fn resolve_future_future_output(&self) -> Option<TypeAlias> {
|
|
let path = known::std_future_future();
|
|
let trait_ = self.resolver.resolve_known_trait(self.db, &path)?;
|
|
self.db.trait_data(trait_).associated_type_by_name(&name::OUTPUT_TYPE).map(TypeAlias::from)
|
|
}
|
|
|
|
fn resolve_boxed_box(&self) -> Option<AdtId> {
|
|
let path = known::std_boxed_box();
|
|
let struct_ = self.resolver.resolve_known_struct(self.db, &path)?;
|
|
Some(struct_.into())
|
|
}
|
|
}
|
|
|
|
/// The ID of a type variable.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
|
|
pub struct TypeVarId(pub(super) u32);
|
|
|
|
impl UnifyKey for TypeVarId {
|
|
type Value = TypeVarValue;
|
|
|
|
fn index(&self) -> u32 {
|
|
self.0
|
|
}
|
|
|
|
fn from_index(i: u32) -> Self {
|
|
TypeVarId(i)
|
|
}
|
|
|
|
fn tag() -> &'static str {
|
|
"TypeVarId"
|
|
}
|
|
}
|
|
|
|
/// The value of a type variable: either we already know the type, or we don't
|
|
/// know it yet.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub enum TypeVarValue {
|
|
Known(Ty),
|
|
Unknown,
|
|
}
|
|
|
|
impl TypeVarValue {
|
|
fn known(&self) -> Option<&Ty> {
|
|
match self {
|
|
TypeVarValue::Known(ty) => Some(ty),
|
|
TypeVarValue::Unknown => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl UnifyValue for TypeVarValue {
|
|
type Error = NoError;
|
|
|
|
fn unify_values(value1: &Self, value2: &Self) -> Result<Self, NoError> {
|
|
match (value1, value2) {
|
|
// We should never equate two type variables, both of which have
|
|
// known types. Instead, we recursively equate those types.
|
|
(TypeVarValue::Known(t1), TypeVarValue::Known(t2)) => panic!(
|
|
"equating two type variables, both of which have known types: {:?} and {:?}",
|
|
t1, t2
|
|
),
|
|
|
|
// If one side is known, prefer that one.
|
|
(TypeVarValue::Known(..), TypeVarValue::Unknown) => Ok(value1.clone()),
|
|
(TypeVarValue::Unknown, TypeVarValue::Known(..)) => Ok(value2.clone()),
|
|
|
|
(TypeVarValue::Unknown, TypeVarValue::Unknown) => Ok(TypeVarValue::Unknown),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The kinds of placeholders we need during type inference. There's separate
|
|
/// values for general types, and for integer and float variables. The latter
|
|
/// two are used for inference of literal values (e.g. `100` could be one of
|
|
/// several integer types).
|
|
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)]
|
|
pub enum InferTy {
|
|
TypeVar(TypeVarId),
|
|
IntVar(TypeVarId),
|
|
FloatVar(TypeVarId),
|
|
MaybeNeverTypeVar(TypeVarId),
|
|
}
|
|
|
|
impl InferTy {
|
|
fn to_inner(self) -> TypeVarId {
|
|
match self {
|
|
InferTy::TypeVar(ty)
|
|
| InferTy::IntVar(ty)
|
|
| InferTy::FloatVar(ty)
|
|
| InferTy::MaybeNeverTypeVar(ty) => ty,
|
|
}
|
|
}
|
|
|
|
fn fallback_value(self) -> Ty {
|
|
match self {
|
|
InferTy::TypeVar(..) => Ty::Unknown,
|
|
InferTy::IntVar(..) => Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::i32()))),
|
|
InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(Uncertain::Known(FloatTy::f64()))),
|
|
InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// When inferring an expression, we propagate downward whatever type hint we
|
|
/// are able in the form of an `Expectation`.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
struct Expectation {
|
|
ty: Ty,
|
|
// FIXME: In some cases, we need to be aware whether the expectation is that
|
|
// the type match exactly what we passed, or whether it just needs to be
|
|
// coercible to the expected type. See Expectation::rvalue_hint in rustc.
|
|
}
|
|
|
|
impl Expectation {
|
|
/// The expectation that the type of the expression needs to equal the given
|
|
/// type.
|
|
fn has_type(ty: Ty) -> Self {
|
|
Expectation { ty }
|
|
}
|
|
|
|
/// This expresses no expectation on the type.
|
|
fn none() -> Self {
|
|
Expectation { ty: Ty::Unknown }
|
|
}
|
|
}
|
|
|
|
mod diagnostics {
|
|
use hir_expand::diagnostics::DiagnosticSink;
|
|
|
|
use crate::{db::HirDatabase, diagnostics::NoSuchField, expr::ExprId, Function, HasSource};
|
|
|
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
|
pub(super) enum InferenceDiagnostic {
|
|
NoSuchField { expr: ExprId, field: usize },
|
|
}
|
|
|
|
impl InferenceDiagnostic {
|
|
pub(super) fn add_to(
|
|
&self,
|
|
db: &impl HirDatabase,
|
|
owner: Function,
|
|
sink: &mut DiagnosticSink,
|
|
) {
|
|
match self {
|
|
InferenceDiagnostic::NoSuchField { expr, field } => {
|
|
let file = owner.source(db).file_id;
|
|
let field = owner.body_source_map(db).field_syntax(*expr, *field);
|
|
sink.push(NoSuchField { file, field })
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|