mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-09 19:58:50 +00:00
1825 lines
79 KiB
Rust
1825 lines
79 KiB
Rust
//! Type inference for expressions.
|
|
|
|
use std::{
|
|
iter::{repeat, repeat_with},
|
|
mem,
|
|
};
|
|
|
|
use chalk_ir::{
|
|
cast::Cast, fold::Shift, DebruijnIndex, GenericArgData, Mutability, TyKind, TyVariableKind,
|
|
};
|
|
use hir_def::{
|
|
expr::{
|
|
ArithOp, Array, BinaryOp, ClosureKind, Expr, ExprId, LabelId, Literal, Statement, UnaryOp,
|
|
},
|
|
generics::TypeOrConstParamData,
|
|
lang_item::LangItem,
|
|
path::{GenericArg, GenericArgs},
|
|
resolver::resolver_for_expr,
|
|
ConstParamId, FieldId, ItemContainerId, Lookup,
|
|
};
|
|
use hir_expand::name::{name, Name};
|
|
use stdx::always;
|
|
use syntax::ast::RangeOp;
|
|
|
|
use crate::{
|
|
autoderef::{self, Autoderef},
|
|
consteval,
|
|
infer::{
|
|
coerce::CoerceMany, find_continuable, pat::contains_explicit_ref_binding, BreakableKind,
|
|
},
|
|
lower::{
|
|
const_or_path_to_chalk, generic_arg_to_chalk, lower_to_chalk_mutability, ParamLoweringMode,
|
|
},
|
|
mapping::{from_chalk, ToChalk},
|
|
method_resolution::{self, lang_items_for_bin_op, VisibleFromModule},
|
|
primitive::{self, UintTy},
|
|
static_lifetime, to_chalk_trait_id,
|
|
utils::{generics, Generics},
|
|
Adjust, Adjustment, AdtId, AutoBorrow, Binders, CallableDefId, FnPointer, FnSig, FnSubst,
|
|
Interner, Rawness, Scalar, Substitution, TraitRef, Ty, TyBuilder, TyExt,
|
|
};
|
|
|
|
use super::{
|
|
coerce::auto_deref_adjust_steps, find_breakable, BreakableContext, Diverges, Expectation,
|
|
InferenceContext, InferenceDiagnostic, TypeMismatch,
|
|
};
|
|
|
|
impl<'a> InferenceContext<'a> {
|
|
pub(crate) fn infer_expr(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
|
|
let ty = self.infer_expr_inner(tgt_expr, expected);
|
|
if let Some(expected_ty) = expected.only_has_type(&mut self.table) {
|
|
let could_unify = self.unify(&ty, &expected_ty);
|
|
if !could_unify {
|
|
self.result.type_mismatches.insert(
|
|
tgt_expr.into(),
|
|
TypeMismatch { expected: expected_ty, actual: ty.clone() },
|
|
);
|
|
}
|
|
}
|
|
ty
|
|
}
|
|
|
|
pub(crate) fn infer_expr_no_expect(&mut self, tgt_expr: ExprId) -> Ty {
|
|
self.infer_expr_inner(tgt_expr, &Expectation::None)
|
|
}
|
|
|
|
/// Infer type of expression with possibly implicit coerce to the expected type.
|
|
/// Return the type after possible coercion.
|
|
pub(super) fn infer_expr_coerce(&mut self, expr: ExprId, expected: &Expectation) -> Ty {
|
|
let ty = self.infer_expr_inner(expr, expected);
|
|
if let Some(target) = expected.only_has_type(&mut self.table) {
|
|
match self.coerce(Some(expr), &ty, &target) {
|
|
Ok(res) => res,
|
|
Err(_) => {
|
|
self.result.type_mismatches.insert(
|
|
expr.into(),
|
|
TypeMismatch { expected: target.clone(), actual: ty.clone() },
|
|
);
|
|
target
|
|
}
|
|
}
|
|
} else {
|
|
ty
|
|
}
|
|
}
|
|
|
|
fn infer_expr_inner(&mut self, tgt_expr: ExprId, expected: &Expectation) -> Ty {
|
|
self.db.unwind_if_cancelled();
|
|
|
|
let ty = match &self.body[tgt_expr] {
|
|
Expr::Missing => self.err_ty(),
|
|
&Expr::If { condition, then_branch, else_branch } => {
|
|
let expected = &expected.adjust_for_branches(&mut self.table);
|
|
self.infer_expr(
|
|
condition,
|
|
&Expectation::HasType(self.result.standard_types.bool_.clone()),
|
|
);
|
|
|
|
let condition_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
|
|
let mut both_arms_diverge = Diverges::Always;
|
|
|
|
let then_ty = self.infer_expr_inner(then_branch, expected);
|
|
both_arms_diverge &= mem::replace(&mut self.diverges, Diverges::Maybe);
|
|
let mut coerce = CoerceMany::new(expected.coercion_target_type(&mut self.table));
|
|
coerce.coerce(self, Some(then_branch), &then_ty);
|
|
match else_branch {
|
|
Some(else_branch) => {
|
|
let else_ty = self.infer_expr_inner(else_branch, expected);
|
|
coerce.coerce(self, Some(else_branch), &else_ty);
|
|
}
|
|
None => {
|
|
coerce.coerce_forced_unit(self);
|
|
}
|
|
}
|
|
both_arms_diverge &= self.diverges;
|
|
|
|
self.diverges = condition_diverges | both_arms_diverge;
|
|
|
|
coerce.complete(self)
|
|
}
|
|
&Expr::Let { pat, expr } => {
|
|
let input_ty = self.infer_expr(expr, &Expectation::none());
|
|
self.infer_top_pat(pat, &input_ty);
|
|
self.result.standard_types.bool_.clone()
|
|
}
|
|
Expr::Block { statements, tail, label, id: _ } => {
|
|
let old_resolver = mem::replace(
|
|
&mut self.resolver,
|
|
resolver_for_expr(self.db.upcast(), self.owner, tgt_expr),
|
|
);
|
|
let ty = match label {
|
|
Some(_) => {
|
|
let break_ty = expected.coercion_target_type(&mut self.table);
|
|
let (breaks, ty) = self.with_breakable_ctx(
|
|
BreakableKind::Block,
|
|
Some(break_ty.clone()),
|
|
*label,
|
|
|this| {
|
|
this.infer_block(
|
|
tgt_expr,
|
|
statements,
|
|
*tail,
|
|
&Expectation::has_type(break_ty),
|
|
)
|
|
},
|
|
);
|
|
breaks.unwrap_or(ty)
|
|
}
|
|
None => self.infer_block(tgt_expr, statements, *tail, expected),
|
|
};
|
|
self.resolver = old_resolver;
|
|
ty
|
|
}
|
|
Expr::Unsafe { body } => self.infer_expr(*body, expected),
|
|
Expr::Const { body } => {
|
|
self.with_breakable_ctx(BreakableKind::Border, None, None, |this| {
|
|
this.infer_expr(*body, expected)
|
|
})
|
|
.1
|
|
}
|
|
Expr::TryBlock { body } => {
|
|
// The type that is returned from the try block
|
|
let try_ty = self.table.new_type_var();
|
|
if let Some(ty) = expected.only_has_type(&mut self.table) {
|
|
self.unify(&try_ty, &ty);
|
|
}
|
|
|
|
// The ok-ish type that is expected from the last expression
|
|
let ok_ty =
|
|
self.resolve_associated_type(try_ty.clone(), self.resolve_ops_try_output());
|
|
|
|
self.with_breakable_ctx(BreakableKind::Block, Some(ok_ty.clone()), None, |this| {
|
|
this.infer_expr(*body, &Expectation::has_type(ok_ty));
|
|
});
|
|
|
|
try_ty
|
|
}
|
|
Expr::Async { body } => {
|
|
let ret_ty = self.table.new_type_var();
|
|
let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
|
|
let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone());
|
|
let prev_ret_coercion =
|
|
mem::replace(&mut self.return_coercion, Some(CoerceMany::new(ret_ty.clone())));
|
|
|
|
let (_, inner_ty) =
|
|
self.with_breakable_ctx(BreakableKind::Border, None, None, |this| {
|
|
this.infer_expr_coerce(*body, &Expectation::has_type(ret_ty))
|
|
});
|
|
|
|
self.diverges = prev_diverges;
|
|
self.return_ty = prev_ret_ty;
|
|
self.return_coercion = prev_ret_coercion;
|
|
|
|
// Use the first type parameter as the output type of future.
|
|
// existential type AsyncBlockImplTrait<InnerType>: Future<Output = InnerType>
|
|
let impl_trait_id = crate::ImplTraitId::AsyncBlockTypeImplTrait(self.owner, *body);
|
|
let opaque_ty_id = self.db.intern_impl_trait_id(impl_trait_id).into();
|
|
TyKind::OpaqueType(opaque_ty_id, Substitution::from1(Interner, inner_ty))
|
|
.intern(Interner)
|
|
}
|
|
&Expr::Loop { body, label } => {
|
|
// FIXME: should be:
|
|
// let ty = expected.coercion_target_type(&mut self.table);
|
|
let ty = self.table.new_type_var();
|
|
let (breaks, ()) =
|
|
self.with_breakable_ctx(BreakableKind::Loop, Some(ty), label, |this| {
|
|
this.infer_expr(body, &Expectation::HasType(TyBuilder::unit()));
|
|
});
|
|
|
|
match breaks {
|
|
Some(breaks) => {
|
|
self.diverges = Diverges::Maybe;
|
|
breaks
|
|
}
|
|
None => self.result.standard_types.never.clone(),
|
|
}
|
|
}
|
|
&Expr::While { condition, body, label } => {
|
|
self.with_breakable_ctx(BreakableKind::Loop, None, label, |this| {
|
|
this.infer_expr(
|
|
condition,
|
|
&Expectation::HasType(this.result.standard_types.bool_.clone()),
|
|
);
|
|
this.infer_expr(body, &Expectation::HasType(TyBuilder::unit()));
|
|
});
|
|
|
|
// the body may not run, so it diverging doesn't mean we diverge
|
|
self.diverges = Diverges::Maybe;
|
|
TyBuilder::unit()
|
|
}
|
|
&Expr::For { iterable, body, pat, label } => {
|
|
let iterable_ty = self.infer_expr(iterable, &Expectation::none());
|
|
let into_iter_ty =
|
|
self.resolve_associated_type(iterable_ty, self.resolve_into_iter_item());
|
|
let pat_ty =
|
|
self.resolve_associated_type(into_iter_ty, self.resolve_iterator_item());
|
|
|
|
self.infer_top_pat(pat, &pat_ty);
|
|
self.with_breakable_ctx(BreakableKind::Loop, None, label, |this| {
|
|
this.infer_expr(body, &Expectation::HasType(TyBuilder::unit()));
|
|
});
|
|
|
|
// the body may not run, so it diverging doesn't mean we diverge
|
|
self.diverges = Diverges::Maybe;
|
|
TyBuilder::unit()
|
|
}
|
|
Expr::Closure { body, args, ret_type, arg_types, closure_kind } => {
|
|
assert_eq!(args.len(), arg_types.len());
|
|
|
|
let mut sig_tys = Vec::with_capacity(arg_types.len() + 1);
|
|
|
|
// collect explicitly written argument types
|
|
for arg_type in arg_types.iter() {
|
|
let arg_ty = match arg_type {
|
|
Some(type_ref) => self.make_ty(type_ref),
|
|
None => self.table.new_type_var(),
|
|
};
|
|
sig_tys.push(arg_ty);
|
|
}
|
|
|
|
// add return type
|
|
let ret_ty = match ret_type {
|
|
Some(type_ref) => self.make_ty(type_ref),
|
|
None => self.table.new_type_var(),
|
|
};
|
|
sig_tys.push(ret_ty.clone());
|
|
let sig_ty = TyKind::Function(FnPointer {
|
|
num_binders: 0,
|
|
sig: FnSig { abi: (), safety: chalk_ir::Safety::Safe, variadic: false },
|
|
substitution: FnSubst(
|
|
Substitution::from_iter(Interner, sig_tys.iter().cloned())
|
|
.shifted_in(Interner),
|
|
),
|
|
})
|
|
.intern(Interner);
|
|
|
|
let (ty, resume_yield_tys) = if matches!(closure_kind, ClosureKind::Generator(_)) {
|
|
// FIXME: report error when there are more than 1 parameter.
|
|
let resume_ty = match sig_tys.first() {
|
|
// When `sig_tys.len() == 1` the first type is the return type, not the
|
|
// first parameter type.
|
|
Some(ty) if sig_tys.len() > 1 => ty.clone(),
|
|
_ => self.result.standard_types.unit.clone(),
|
|
};
|
|
let yield_ty = self.table.new_type_var();
|
|
|
|
let subst = TyBuilder::subst_for_generator(self.db, self.owner)
|
|
.push(resume_ty.clone())
|
|
.push(yield_ty.clone())
|
|
.push(ret_ty.clone())
|
|
.build();
|
|
|
|
let generator_id = self.db.intern_generator((self.owner, tgt_expr)).into();
|
|
let generator_ty = TyKind::Generator(generator_id, subst).intern(Interner);
|
|
|
|
(generator_ty, Some((resume_ty, yield_ty)))
|
|
} else {
|
|
let closure_id = self.db.intern_closure((self.owner, tgt_expr)).into();
|
|
let closure_ty =
|
|
TyKind::Closure(closure_id, Substitution::from1(Interner, sig_ty.clone()))
|
|
.intern(Interner);
|
|
|
|
(closure_ty, None)
|
|
};
|
|
|
|
// Eagerly try to relate the closure type with the expected
|
|
// type, otherwise we often won't have enough information to
|
|
// infer the body.
|
|
self.deduce_closure_type_from_expectations(tgt_expr, &ty, &sig_ty, expected);
|
|
|
|
// Now go through the argument patterns
|
|
for (arg_pat, arg_ty) in args.iter().zip(sig_tys) {
|
|
self.infer_top_pat(*arg_pat, &arg_ty);
|
|
}
|
|
|
|
// FIXME: lift these out into a struct
|
|
let prev_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
|
|
let prev_ret_ty = mem::replace(&mut self.return_ty, ret_ty.clone());
|
|
let prev_ret_coercion =
|
|
mem::replace(&mut self.return_coercion, Some(CoerceMany::new(ret_ty.clone())));
|
|
let prev_resume_yield_tys =
|
|
mem::replace(&mut self.resume_yield_tys, resume_yield_tys);
|
|
|
|
self.with_breakable_ctx(BreakableKind::Border, None, None, |this| {
|
|
this.infer_return(*body);
|
|
});
|
|
|
|
self.diverges = prev_diverges;
|
|
self.return_ty = prev_ret_ty;
|
|
self.return_coercion = prev_ret_coercion;
|
|
self.resume_yield_tys = prev_resume_yield_tys;
|
|
|
|
ty
|
|
}
|
|
Expr::Call { callee, args, .. } => {
|
|
let callee_ty = self.infer_expr(*callee, &Expectation::none());
|
|
let mut derefs = Autoderef::new(&mut self.table, callee_ty.clone());
|
|
let (res, derefed_callee) = 'b: {
|
|
// manual loop to be able to access `derefs.table`
|
|
while let Some((callee_deref_ty, _)) = derefs.next() {
|
|
let res = derefs.table.callable_sig(&callee_deref_ty, args.len());
|
|
if res.is_some() {
|
|
break 'b (res, callee_deref_ty);
|
|
}
|
|
}
|
|
(None, callee_ty.clone())
|
|
};
|
|
// if the function is unresolved, we use is_varargs=true to
|
|
// suppress the arg count diagnostic here
|
|
let is_varargs =
|
|
derefed_callee.callable_sig(self.db).map_or(false, |sig| sig.is_varargs)
|
|
|| res.is_none();
|
|
let (param_tys, ret_ty) = match res {
|
|
Some((func, params, ret_ty)) => {
|
|
let adjustments = auto_deref_adjust_steps(&derefs);
|
|
// FIXME: Handle call adjustments for Fn/FnMut
|
|
self.write_expr_adj(*callee, adjustments);
|
|
if let Some((trait_, func)) = func {
|
|
let subst = TyBuilder::subst_for_def(self.db, trait_, None)
|
|
.push(callee_ty.clone())
|
|
.push(TyBuilder::tuple_with(params.iter().cloned()))
|
|
.build();
|
|
self.write_method_resolution(tgt_expr, func, subst.clone());
|
|
}
|
|
(params, ret_ty)
|
|
}
|
|
None => {
|
|
self.result.diagnostics.push(InferenceDiagnostic::ExpectedFunction {
|
|
call_expr: tgt_expr,
|
|
found: callee_ty.clone(),
|
|
});
|
|
(Vec::new(), self.err_ty())
|
|
}
|
|
};
|
|
let indices_to_skip = self.check_legacy_const_generics(derefed_callee, args);
|
|
self.register_obligations_for_call(&callee_ty);
|
|
|
|
let expected_inputs = self.expected_inputs_for_expected_output(
|
|
expected,
|
|
ret_ty.clone(),
|
|
param_tys.clone(),
|
|
);
|
|
|
|
self.check_call_arguments(
|
|
tgt_expr,
|
|
args,
|
|
&expected_inputs,
|
|
¶m_tys,
|
|
&indices_to_skip,
|
|
is_varargs,
|
|
);
|
|
self.normalize_associated_types_in(ret_ty)
|
|
}
|
|
Expr::MethodCall { receiver, args, method_name, generic_args } => self
|
|
.infer_method_call(
|
|
tgt_expr,
|
|
*receiver,
|
|
args,
|
|
method_name,
|
|
generic_args.as_deref(),
|
|
expected,
|
|
),
|
|
Expr::Match { expr, arms } => {
|
|
let input_ty = self.infer_expr(*expr, &Expectation::none());
|
|
|
|
if arms.is_empty() {
|
|
self.diverges = Diverges::Always;
|
|
self.result.standard_types.never.clone()
|
|
} else {
|
|
let matchee_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
|
|
let mut all_arms_diverge = Diverges::Always;
|
|
for arm in arms.iter() {
|
|
let input_ty = self.resolve_ty_shallow(&input_ty);
|
|
self.infer_top_pat(arm.pat, &input_ty);
|
|
}
|
|
|
|
let expected = expected.adjust_for_branches(&mut self.table);
|
|
let result_ty = match &expected {
|
|
// We don't coerce to `()` so that if the match expression is a
|
|
// statement it's branches can have any consistent type.
|
|
Expectation::HasType(ty) if *ty != self.result.standard_types.unit => {
|
|
ty.clone()
|
|
}
|
|
_ => self.table.new_type_var(),
|
|
};
|
|
let mut coerce = CoerceMany::new(result_ty);
|
|
|
|
for arm in arms.iter() {
|
|
if let Some(guard_expr) = arm.guard {
|
|
self.diverges = Diverges::Maybe;
|
|
self.infer_expr(
|
|
guard_expr,
|
|
&Expectation::HasType(self.result.standard_types.bool_.clone()),
|
|
);
|
|
}
|
|
self.diverges = Diverges::Maybe;
|
|
|
|
let arm_ty = self.infer_expr_inner(arm.expr, &expected);
|
|
all_arms_diverge &= self.diverges;
|
|
coerce.coerce(self, Some(arm.expr), &arm_ty);
|
|
}
|
|
|
|
self.diverges = matchee_diverges | all_arms_diverge;
|
|
|
|
coerce.complete(self)
|
|
}
|
|
}
|
|
Expr::Path(p) => {
|
|
// FIXME this could be more efficient...
|
|
let resolver = resolver_for_expr(self.db.upcast(), self.owner, tgt_expr);
|
|
self.infer_path(&resolver, p, tgt_expr.into()).unwrap_or_else(|| self.err_ty())
|
|
}
|
|
Expr::Continue { label } => {
|
|
if let None = find_continuable(&mut self.breakables, label.as_ref()) {
|
|
self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop {
|
|
expr: tgt_expr,
|
|
is_break: false,
|
|
bad_value_break: false,
|
|
});
|
|
};
|
|
self.result.standard_types.never.clone()
|
|
}
|
|
Expr::Break { expr, label } => {
|
|
let val_ty = if let Some(expr) = *expr {
|
|
let opt_coerce_to = match find_breakable(&mut self.breakables, label.as_ref()) {
|
|
Some(ctxt) => match &ctxt.coerce {
|
|
Some(coerce) => coerce.expected_ty(),
|
|
None => {
|
|
self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop {
|
|
expr: tgt_expr,
|
|
is_break: true,
|
|
bad_value_break: true,
|
|
});
|
|
self.err_ty()
|
|
}
|
|
},
|
|
None => self.err_ty(),
|
|
};
|
|
self.infer_expr_inner(expr, &Expectation::HasType(opt_coerce_to))
|
|
} else {
|
|
TyBuilder::unit()
|
|
};
|
|
|
|
match find_breakable(&mut self.breakables, label.as_ref()) {
|
|
Some(ctxt) => match ctxt.coerce.take() {
|
|
Some(mut coerce) => {
|
|
coerce.coerce(self, *expr, &val_ty);
|
|
|
|
// Avoiding borrowck
|
|
let ctxt = find_breakable(&mut self.breakables, label.as_ref())
|
|
.expect("breakable stack changed during coercion");
|
|
ctxt.may_break = true;
|
|
ctxt.coerce = Some(coerce);
|
|
}
|
|
None => ctxt.may_break = true,
|
|
},
|
|
None => {
|
|
self.push_diagnostic(InferenceDiagnostic::BreakOutsideOfLoop {
|
|
expr: tgt_expr,
|
|
is_break: true,
|
|
bad_value_break: false,
|
|
});
|
|
}
|
|
}
|
|
self.result.standard_types.never.clone()
|
|
}
|
|
&Expr::Return { expr } => self.infer_expr_return(expr),
|
|
Expr::Yield { expr } => {
|
|
if let Some((resume_ty, yield_ty)) = self.resume_yield_tys.clone() {
|
|
if let Some(expr) = expr {
|
|
self.infer_expr_coerce(*expr, &Expectation::has_type(yield_ty));
|
|
} else {
|
|
let unit = self.result.standard_types.unit.clone();
|
|
let _ = self.coerce(Some(tgt_expr), &unit, &yield_ty);
|
|
}
|
|
resume_ty
|
|
} else {
|
|
// FIXME: report error (yield expr in non-generator)
|
|
self.result.standard_types.unknown.clone()
|
|
}
|
|
}
|
|
Expr::Yeet { expr } => {
|
|
if let &Some(expr) = expr {
|
|
self.infer_expr_no_expect(expr);
|
|
}
|
|
self.result.standard_types.never.clone()
|
|
}
|
|
Expr::RecordLit { path, fields, spread, .. } => {
|
|
let (ty, def_id) = self.resolve_variant(path.as_deref(), false);
|
|
if let Some(variant) = def_id {
|
|
self.write_variant_resolution(tgt_expr.into(), variant);
|
|
}
|
|
|
|
if let Some(t) = expected.only_has_type(&mut self.table) {
|
|
self.unify(&ty, &t);
|
|
}
|
|
|
|
let substs = ty
|
|
.as_adt()
|
|
.map(|(_, s)| s.clone())
|
|
.unwrap_or_else(|| Substitution::empty(Interner));
|
|
let field_types = def_id.map(|it| self.db.field_types(it)).unwrap_or_default();
|
|
let variant_data = def_id.map(|it| it.variant_data(self.db.upcast()));
|
|
for field in fields.iter() {
|
|
let field_def =
|
|
variant_data.as_ref().and_then(|it| match it.field(&field.name) {
|
|
Some(local_id) => Some(FieldId { parent: def_id.unwrap(), local_id }),
|
|
None => {
|
|
self.push_diagnostic(InferenceDiagnostic::NoSuchField {
|
|
expr: field.expr,
|
|
});
|
|
None
|
|
}
|
|
});
|
|
let field_ty = field_def.map_or(self.err_ty(), |it| {
|
|
field_types[it.local_id].clone().substitute(Interner, &substs)
|
|
});
|
|
self.infer_expr_coerce(field.expr, &Expectation::has_type(field_ty));
|
|
}
|
|
if let Some(expr) = spread {
|
|
self.infer_expr(*expr, &Expectation::has_type(ty.clone()));
|
|
}
|
|
ty
|
|
}
|
|
Expr::Field { expr, name } => self.infer_field_access(tgt_expr, *expr, name),
|
|
Expr::Await { expr } => {
|
|
let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
|
|
self.resolve_associated_type(inner_ty, self.resolve_future_future_output())
|
|
}
|
|
Expr::Try { expr } => {
|
|
let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
|
|
if let Some(trait_) = self.resolve_lang_trait(LangItem::Try) {
|
|
if let Some(func) = self.db.trait_data(trait_).method_by_name(&name!(branch)) {
|
|
let subst = TyBuilder::subst_for_def(self.db, trait_, None)
|
|
.push(inner_ty.clone())
|
|
.build();
|
|
self.write_method_resolution(tgt_expr, func, subst.clone());
|
|
}
|
|
let try_output = self.resolve_output_on(trait_);
|
|
self.resolve_associated_type(inner_ty, try_output)
|
|
} else {
|
|
self.err_ty()
|
|
}
|
|
}
|
|
Expr::Cast { expr, type_ref } => {
|
|
let cast_ty = self.make_ty(type_ref);
|
|
// FIXME: propagate the "castable to" expectation
|
|
let _inner_ty = self.infer_expr_no_expect(*expr);
|
|
// FIXME check the cast...
|
|
cast_ty
|
|
}
|
|
Expr::Ref { expr, rawness, mutability } => {
|
|
let mutability = lower_to_chalk_mutability(*mutability);
|
|
let expectation = if let Some((exp_inner, exp_rawness, exp_mutability)) = expected
|
|
.only_has_type(&mut self.table)
|
|
.as_ref()
|
|
.and_then(|t| t.as_reference_or_ptr())
|
|
{
|
|
if exp_mutability == Mutability::Mut && mutability == Mutability::Not {
|
|
// FIXME: record type error - expected mut reference but found shared ref,
|
|
// which cannot be coerced
|
|
}
|
|
if exp_rawness == Rawness::Ref && *rawness == Rawness::RawPtr {
|
|
// FIXME: record type error - expected reference but found ptr,
|
|
// which cannot be coerced
|
|
}
|
|
Expectation::rvalue_hint(&mut self.table, Ty::clone(exp_inner))
|
|
} else {
|
|
Expectation::none()
|
|
};
|
|
let inner_ty = self.infer_expr_inner(*expr, &expectation);
|
|
match rawness {
|
|
Rawness::RawPtr => TyKind::Raw(mutability, inner_ty),
|
|
Rawness::Ref => TyKind::Ref(mutability, static_lifetime(), inner_ty),
|
|
}
|
|
.intern(Interner)
|
|
}
|
|
&Expr::Box { expr } => self.infer_expr_box(expr, expected),
|
|
Expr::UnaryOp { expr, op } => {
|
|
let inner_ty = self.infer_expr_inner(*expr, &Expectation::none());
|
|
let inner_ty = self.resolve_ty_shallow(&inner_ty);
|
|
// FIXME: Note down method resolution her
|
|
match op {
|
|
UnaryOp::Deref => {
|
|
autoderef::deref(&mut self.table, inner_ty).unwrap_or_else(|| self.err_ty())
|
|
}
|
|
UnaryOp::Neg => {
|
|
match inner_ty.kind(Interner) {
|
|
// Fast path for builtins
|
|
TyKind::Scalar(Scalar::Int(_) | Scalar::Uint(_) | Scalar::Float(_))
|
|
| TyKind::InferenceVar(
|
|
_,
|
|
TyVariableKind::Integer | TyVariableKind::Float,
|
|
) => inner_ty,
|
|
// Otherwise we resolve via the std::ops::Neg trait
|
|
_ => self
|
|
.resolve_associated_type(inner_ty, self.resolve_ops_neg_output()),
|
|
}
|
|
}
|
|
UnaryOp::Not => {
|
|
match inner_ty.kind(Interner) {
|
|
// Fast path for builtins
|
|
TyKind::Scalar(Scalar::Bool | Scalar::Int(_) | Scalar::Uint(_))
|
|
| TyKind::InferenceVar(_, TyVariableKind::Integer) => inner_ty,
|
|
// Otherwise we resolve via the std::ops::Not trait
|
|
_ => self
|
|
.resolve_associated_type(inner_ty, self.resolve_ops_not_output()),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Expr::BinaryOp { lhs, rhs, op } => match op {
|
|
Some(BinaryOp::Assignment { op: None }) => {
|
|
let lhs = *lhs;
|
|
let is_ordinary = match &self.body[lhs] {
|
|
Expr::Array(_)
|
|
| Expr::RecordLit { .. }
|
|
| Expr::Tuple { .. }
|
|
| Expr::Underscore => false,
|
|
Expr::Call { callee, .. } => !matches!(&self.body[*callee], Expr::Path(_)),
|
|
_ => true,
|
|
};
|
|
|
|
// In ordinary (non-destructuring) assignments, the type of
|
|
// `lhs` must be inferred first so that the ADT fields
|
|
// instantiations in RHS can be coerced to it. Note that this
|
|
// cannot happen in destructuring assignments because of how
|
|
// they are desugared.
|
|
if is_ordinary {
|
|
let lhs_ty = self.infer_expr(lhs, &Expectation::none());
|
|
self.infer_expr_coerce(*rhs, &Expectation::has_type(lhs_ty));
|
|
} else {
|
|
let rhs_ty = self.infer_expr(*rhs, &Expectation::none());
|
|
self.infer_assignee_expr(lhs, &rhs_ty);
|
|
}
|
|
self.result.standard_types.unit.clone()
|
|
}
|
|
Some(BinaryOp::LogicOp(_)) => {
|
|
let bool_ty = self.result.standard_types.bool_.clone();
|
|
self.infer_expr_coerce(*lhs, &Expectation::HasType(bool_ty.clone()));
|
|
let lhs_diverges = self.diverges;
|
|
self.infer_expr_coerce(*rhs, &Expectation::HasType(bool_ty.clone()));
|
|
// Depending on the LHS' value, the RHS can never execute.
|
|
self.diverges = lhs_diverges;
|
|
bool_ty
|
|
}
|
|
Some(op) => self.infer_overloadable_binop(*lhs, *op, *rhs, tgt_expr),
|
|
_ => self.err_ty(),
|
|
},
|
|
Expr::Range { lhs, rhs, range_type } => {
|
|
let lhs_ty = lhs.map(|e| self.infer_expr_inner(e, &Expectation::none()));
|
|
let rhs_expect = lhs_ty
|
|
.as_ref()
|
|
.map_or_else(Expectation::none, |ty| Expectation::has_type(ty.clone()));
|
|
let rhs_ty = rhs.map(|e| self.infer_expr(e, &rhs_expect));
|
|
match (range_type, lhs_ty, rhs_ty) {
|
|
(RangeOp::Exclusive, None, None) => match self.resolve_range_full() {
|
|
Some(adt) => TyBuilder::adt(self.db, adt).build(),
|
|
None => self.err_ty(),
|
|
},
|
|
(RangeOp::Exclusive, None, Some(ty)) => match self.resolve_range_to() {
|
|
Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
|
|
None => self.err_ty(),
|
|
},
|
|
(RangeOp::Inclusive, None, Some(ty)) => {
|
|
match self.resolve_range_to_inclusive() {
|
|
Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
|
|
None => self.err_ty(),
|
|
}
|
|
}
|
|
(RangeOp::Exclusive, Some(_), Some(ty)) => match self.resolve_range() {
|
|
Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
|
|
None => self.err_ty(),
|
|
},
|
|
(RangeOp::Inclusive, Some(_), Some(ty)) => {
|
|
match self.resolve_range_inclusive() {
|
|
Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
|
|
None => self.err_ty(),
|
|
}
|
|
}
|
|
(RangeOp::Exclusive, Some(ty), None) => match self.resolve_range_from() {
|
|
Some(adt) => TyBuilder::adt(self.db, adt).push(ty).build(),
|
|
None => self.err_ty(),
|
|
},
|
|
(RangeOp::Inclusive, _, None) => self.err_ty(),
|
|
}
|
|
}
|
|
Expr::Index { base, index } => {
|
|
let base_ty = self.infer_expr_inner(*base, &Expectation::none());
|
|
let index_ty = self.infer_expr(*index, &Expectation::none());
|
|
|
|
if let Some(index_trait) = self.resolve_lang_trait(LangItem::Index) {
|
|
let canonicalized = self.canonicalize(base_ty.clone());
|
|
let receiver_adjustments = method_resolution::resolve_indexing_op(
|
|
self.db,
|
|
self.trait_env.clone(),
|
|
canonicalized.value,
|
|
index_trait,
|
|
);
|
|
let (self_ty, adj) = receiver_adjustments
|
|
.map_or((self.err_ty(), Vec::new()), |adj| {
|
|
adj.apply(&mut self.table, base_ty)
|
|
});
|
|
self.write_expr_adj(*base, adj);
|
|
if let Some(func) =
|
|
self.db.trait_data(index_trait).method_by_name(&name!(index))
|
|
{
|
|
let substs = TyBuilder::subst_for_def(self.db, index_trait, None)
|
|
.push(self_ty.clone())
|
|
.push(index_ty.clone())
|
|
.build();
|
|
self.write_method_resolution(tgt_expr, func, substs.clone());
|
|
}
|
|
self.resolve_associated_type_with_params(
|
|
self_ty,
|
|
self.resolve_ops_index_output(),
|
|
&[GenericArgData::Ty(index_ty).intern(Interner)],
|
|
)
|
|
} else {
|
|
self.err_ty()
|
|
}
|
|
}
|
|
Expr::Tuple { exprs, .. } => {
|
|
let mut tys = match expected
|
|
.only_has_type(&mut self.table)
|
|
.as_ref()
|
|
.map(|t| t.kind(Interner))
|
|
{
|
|
Some(TyKind::Tuple(_, substs)) => substs
|
|
.iter(Interner)
|
|
.map(|a| a.assert_ty_ref(Interner).clone())
|
|
.chain(repeat_with(|| self.table.new_type_var()))
|
|
.take(exprs.len())
|
|
.collect::<Vec<_>>(),
|
|
_ => (0..exprs.len()).map(|_| self.table.new_type_var()).collect(),
|
|
};
|
|
|
|
for (expr, ty) in exprs.iter().zip(tys.iter_mut()) {
|
|
self.infer_expr_coerce(*expr, &Expectation::has_type(ty.clone()));
|
|
}
|
|
|
|
TyKind::Tuple(tys.len(), Substitution::from_iter(Interner, tys)).intern(Interner)
|
|
}
|
|
Expr::Array(array) => self.infer_expr_array(array, expected),
|
|
Expr::Literal(lit) => match lit {
|
|
Literal::Bool(..) => self.result.standard_types.bool_.clone(),
|
|
Literal::String(..) => {
|
|
TyKind::Ref(Mutability::Not, static_lifetime(), TyKind::Str.intern(Interner))
|
|
.intern(Interner)
|
|
}
|
|
Literal::ByteString(bs) => {
|
|
let byte_type = TyKind::Scalar(Scalar::Uint(UintTy::U8)).intern(Interner);
|
|
|
|
let len = consteval::usize_const(
|
|
self.db,
|
|
Some(bs.len() as u128),
|
|
self.resolver.krate(),
|
|
);
|
|
|
|
let array_type = TyKind::Array(byte_type, len).intern(Interner);
|
|
TyKind::Ref(Mutability::Not, static_lifetime(), array_type).intern(Interner)
|
|
}
|
|
Literal::Char(..) => TyKind::Scalar(Scalar::Char).intern(Interner),
|
|
Literal::Int(_v, ty) => match ty {
|
|
Some(int_ty) => {
|
|
TyKind::Scalar(Scalar::Int(primitive::int_ty_from_builtin(*int_ty)))
|
|
.intern(Interner)
|
|
}
|
|
None => self.table.new_integer_var(),
|
|
},
|
|
Literal::Uint(_v, ty) => match ty {
|
|
Some(int_ty) => {
|
|
TyKind::Scalar(Scalar::Uint(primitive::uint_ty_from_builtin(*int_ty)))
|
|
.intern(Interner)
|
|
}
|
|
None => self.table.new_integer_var(),
|
|
},
|
|
Literal::Float(_v, ty) => match ty {
|
|
Some(float_ty) => {
|
|
TyKind::Scalar(Scalar::Float(primitive::float_ty_from_builtin(*float_ty)))
|
|
.intern(Interner)
|
|
}
|
|
None => self.table.new_float_var(),
|
|
},
|
|
},
|
|
Expr::Underscore => {
|
|
// Underscore expressions may only appear in assignee expressions,
|
|
// which are handled by `infer_assignee_expr()`, so any underscore
|
|
// expression reaching this branch is an error.
|
|
self.err_ty()
|
|
}
|
|
};
|
|
// use a new type variable if we got unknown here
|
|
let ty = self.insert_type_vars_shallow(ty);
|
|
self.write_expr_ty(tgt_expr, ty.clone());
|
|
if self.resolve_ty_shallow(&ty).is_never() {
|
|
// Any expression that produces a value of type `!` must have diverged
|
|
self.diverges = Diverges::Always;
|
|
}
|
|
ty
|
|
}
|
|
|
|
fn infer_expr_array(
|
|
&mut self,
|
|
array: &Array,
|
|
expected: &Expectation,
|
|
) -> chalk_ir::Ty<Interner> {
|
|
let elem_ty = match expected.to_option(&mut self.table).as_ref().map(|t| t.kind(Interner)) {
|
|
Some(TyKind::Array(st, _) | TyKind::Slice(st)) => st.clone(),
|
|
_ => self.table.new_type_var(),
|
|
};
|
|
|
|
let krate = self.resolver.krate();
|
|
|
|
let expected = Expectation::has_type(elem_ty.clone());
|
|
let (elem_ty, len) = match array {
|
|
Array::ElementList { elements, .. } if elements.is_empty() => {
|
|
(elem_ty, consteval::usize_const(self.db, Some(0), krate))
|
|
}
|
|
Array::ElementList { elements, .. } => {
|
|
let mut coerce = CoerceMany::new(elem_ty.clone());
|
|
for &expr in elements.iter() {
|
|
let cur_elem_ty = self.infer_expr_inner(expr, &expected);
|
|
coerce.coerce(self, Some(expr), &cur_elem_ty);
|
|
}
|
|
(
|
|
coerce.complete(self),
|
|
consteval::usize_const(self.db, Some(elements.len() as u128), krate),
|
|
)
|
|
}
|
|
&Array::Repeat { initializer, repeat } => {
|
|
self.infer_expr_coerce(initializer, &Expectation::has_type(elem_ty.clone()));
|
|
self.infer_expr(
|
|
repeat,
|
|
&Expectation::HasType(
|
|
TyKind::Scalar(Scalar::Uint(UintTy::Usize)).intern(Interner),
|
|
),
|
|
);
|
|
|
|
(
|
|
elem_ty,
|
|
if let Some(g_def) = self.owner.as_generic_def_id() {
|
|
let generics = generics(self.db.upcast(), g_def);
|
|
consteval::eval_to_const(
|
|
repeat,
|
|
ParamLoweringMode::Placeholder,
|
|
self,
|
|
|| generics,
|
|
DebruijnIndex::INNERMOST,
|
|
)
|
|
} else {
|
|
consteval::usize_const(self.db, None, krate)
|
|
},
|
|
)
|
|
}
|
|
};
|
|
|
|
TyKind::Array(elem_ty, len).intern(Interner)
|
|
}
|
|
|
|
pub(super) fn infer_return(&mut self, expr: ExprId) {
|
|
let ret_ty = self
|
|
.return_coercion
|
|
.as_mut()
|
|
.expect("infer_return called outside function body")
|
|
.expected_ty();
|
|
let return_expr_ty = self.infer_expr_inner(expr, &Expectation::HasType(ret_ty));
|
|
let mut coerce_many = self.return_coercion.take().unwrap();
|
|
coerce_many.coerce(self, Some(expr), &return_expr_ty);
|
|
self.return_coercion = Some(coerce_many);
|
|
}
|
|
|
|
fn infer_expr_return(&mut self, expr: Option<ExprId>) -> Ty {
|
|
match self.return_coercion {
|
|
Some(_) => {
|
|
if let Some(expr) = expr {
|
|
self.infer_return(expr);
|
|
} else {
|
|
let mut coerce = self.return_coercion.take().unwrap();
|
|
coerce.coerce_forced_unit(self);
|
|
self.return_coercion = Some(coerce);
|
|
}
|
|
}
|
|
None => {
|
|
// FIXME: diagnose return outside of function
|
|
if let Some(expr) = expr {
|
|
self.infer_expr_no_expect(expr);
|
|
}
|
|
}
|
|
}
|
|
self.result.standard_types.never.clone()
|
|
}
|
|
|
|
fn infer_expr_box(&mut self, inner_expr: ExprId, expected: &Expectation) -> Ty {
|
|
if let Some(box_id) = self.resolve_boxed_box() {
|
|
let table = &mut self.table;
|
|
let inner_exp = expected
|
|
.to_option(table)
|
|
.as_ref()
|
|
.map(|e| e.as_adt())
|
|
.flatten()
|
|
.filter(|(e_adt, _)| e_adt == &box_id)
|
|
.map(|(_, subts)| {
|
|
let g = subts.at(Interner, 0);
|
|
Expectation::rvalue_hint(table, Ty::clone(g.assert_ty_ref(Interner)))
|
|
})
|
|
.unwrap_or_else(Expectation::none);
|
|
|
|
let inner_ty = self.infer_expr_inner(inner_expr, &inner_exp);
|
|
TyBuilder::adt(self.db, box_id)
|
|
.push(inner_ty)
|
|
.fill_with_defaults(self.db, || self.table.new_type_var())
|
|
.build()
|
|
} else {
|
|
self.err_ty()
|
|
}
|
|
}
|
|
|
|
pub(super) fn infer_assignee_expr(&mut self, lhs: ExprId, rhs_ty: &Ty) -> Ty {
|
|
let is_rest_expr = |expr| {
|
|
matches!(
|
|
&self.body[expr],
|
|
Expr::Range { lhs: None, rhs: None, range_type: RangeOp::Exclusive },
|
|
)
|
|
};
|
|
|
|
let rhs_ty = self.resolve_ty_shallow(rhs_ty);
|
|
|
|
let ty = match &self.body[lhs] {
|
|
Expr::Tuple { exprs, .. } => {
|
|
// We don't consider multiple ellipses. This is analogous to
|
|
// `hir_def::body::lower::ExprCollector::collect_tuple_pat()`.
|
|
let ellipsis = exprs.iter().position(|e| is_rest_expr(*e));
|
|
let exprs: Vec<_> = exprs.iter().filter(|e| !is_rest_expr(**e)).copied().collect();
|
|
|
|
self.infer_tuple_pat_like(&rhs_ty, (), ellipsis, &exprs)
|
|
}
|
|
Expr::Call { callee, args, .. } => {
|
|
// Tuple structs
|
|
let path = match &self.body[*callee] {
|
|
Expr::Path(path) => Some(path),
|
|
_ => None,
|
|
};
|
|
|
|
// We don't consider multiple ellipses. This is analogous to
|
|
// `hir_def::body::lower::ExprCollector::collect_tuple_pat()`.
|
|
let ellipsis = args.iter().position(|e| is_rest_expr(*e));
|
|
let args: Vec<_> = args.iter().filter(|e| !is_rest_expr(**e)).copied().collect();
|
|
|
|
self.infer_tuple_struct_pat_like(path, &rhs_ty, (), lhs, ellipsis, &args)
|
|
}
|
|
Expr::Array(Array::ElementList { elements, .. }) => {
|
|
let elem_ty = match rhs_ty.kind(Interner) {
|
|
TyKind::Array(st, _) => st.clone(),
|
|
_ => self.err_ty(),
|
|
};
|
|
|
|
// There's no need to handle `..` as it cannot be bound.
|
|
let sub_exprs = elements.iter().filter(|e| !is_rest_expr(**e));
|
|
|
|
for e in sub_exprs {
|
|
self.infer_assignee_expr(*e, &elem_ty);
|
|
}
|
|
|
|
match rhs_ty.kind(Interner) {
|
|
TyKind::Array(_, _) => rhs_ty.clone(),
|
|
// Even when `rhs_ty` is not an array type, this assignee
|
|
// expression is inferred to be an array (of unknown element
|
|
// type and length). This should not be just an error type,
|
|
// because we are to compute the unifiability of this type and
|
|
// `rhs_ty` in the end of this function to issue type mismatches.
|
|
_ => TyKind::Array(
|
|
self.err_ty(),
|
|
crate::consteval::usize_const(self.db, None, self.resolver.krate()),
|
|
)
|
|
.intern(Interner),
|
|
}
|
|
}
|
|
Expr::RecordLit { path, fields, .. } => {
|
|
let subs = fields.iter().map(|f| (f.name.clone(), f.expr));
|
|
|
|
self.infer_record_pat_like(path.as_deref(), &rhs_ty, (), lhs, subs)
|
|
}
|
|
Expr::Underscore => rhs_ty.clone(),
|
|
_ => {
|
|
// `lhs` is a place expression, a unit struct, or an enum variant.
|
|
let lhs_ty = self.infer_expr(lhs, &Expectation::none());
|
|
|
|
// This is the only branch where this function may coerce any type.
|
|
// We are returning early to avoid the unifiability check below.
|
|
let lhs_ty = self.insert_type_vars_shallow(lhs_ty);
|
|
let ty = match self.coerce(None, &rhs_ty, &lhs_ty) {
|
|
Ok(ty) => ty,
|
|
Err(_) => {
|
|
self.result.type_mismatches.insert(
|
|
lhs.into(),
|
|
TypeMismatch { expected: rhs_ty.clone(), actual: lhs_ty.clone() },
|
|
);
|
|
// `rhs_ty` is returned so no further type mismatches are
|
|
// reported because of this mismatch.
|
|
rhs_ty
|
|
}
|
|
};
|
|
self.write_expr_ty(lhs, ty.clone());
|
|
return ty;
|
|
}
|
|
};
|
|
|
|
let ty = self.insert_type_vars_shallow(ty);
|
|
if !self.unify(&ty, &rhs_ty) {
|
|
self.result
|
|
.type_mismatches
|
|
.insert(lhs.into(), TypeMismatch { expected: rhs_ty.clone(), actual: ty.clone() });
|
|
}
|
|
self.write_expr_ty(lhs, ty.clone());
|
|
ty
|
|
}
|
|
|
|
fn infer_overloadable_binop(
|
|
&mut self,
|
|
lhs: ExprId,
|
|
op: BinaryOp,
|
|
rhs: ExprId,
|
|
tgt_expr: ExprId,
|
|
) -> Ty {
|
|
let lhs_expectation = Expectation::none();
|
|
let lhs_ty = self.infer_expr(lhs, &lhs_expectation);
|
|
let rhs_ty = self.table.new_type_var();
|
|
|
|
let trait_func = lang_items_for_bin_op(op).and_then(|(name, lang_item)| {
|
|
let trait_id = self.resolve_lang_item(lang_item)?.as_trait()?;
|
|
let func = self.db.trait_data(trait_id).method_by_name(&name)?;
|
|
Some((trait_id, func))
|
|
});
|
|
let (trait_, func) = match trait_func {
|
|
Some(it) => it,
|
|
None => {
|
|
// HACK: `rhs_ty` is a general inference variable with no clue at all at this
|
|
// point. Passing `lhs_ty` as both operands just to check if `lhs_ty` is a builtin
|
|
// type applicable to `op`.
|
|
let ret_ty = if self.is_builtin_binop(&lhs_ty, &lhs_ty, op) {
|
|
// Assume both operands are builtin so we can continue inference. No guarantee
|
|
// on the correctness, rustc would complain as necessary lang items don't seem
|
|
// to exist anyway.
|
|
self.enforce_builtin_binop_types(&lhs_ty, &rhs_ty, op)
|
|
} else {
|
|
self.err_ty()
|
|
};
|
|
|
|
self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty));
|
|
|
|
return ret_ty;
|
|
}
|
|
};
|
|
|
|
// HACK: We can use this substitution for the function because the function itself doesn't
|
|
// have its own generic parameters.
|
|
let subst = TyBuilder::subst_for_def(self.db, trait_, None)
|
|
.push(lhs_ty.clone())
|
|
.push(rhs_ty.clone())
|
|
.build();
|
|
self.write_method_resolution(tgt_expr, func, subst.clone());
|
|
|
|
let method_ty = self.db.value_ty(func.into()).substitute(Interner, &subst);
|
|
self.register_obligations_for_call(&method_ty);
|
|
|
|
self.infer_expr_coerce(rhs, &Expectation::has_type(rhs_ty.clone()));
|
|
|
|
let ret_ty = match method_ty.callable_sig(self.db) {
|
|
Some(sig) => {
|
|
let p_left = &sig.params()[0];
|
|
if matches!(op, BinaryOp::CmpOp(..) | BinaryOp::Assignment { .. }) {
|
|
if let &TyKind::Ref(mtbl, _, _) = p_left.kind(Interner) {
|
|
self.write_expr_adj(
|
|
lhs,
|
|
vec![Adjustment {
|
|
kind: Adjust::Borrow(AutoBorrow::Ref(mtbl)),
|
|
target: p_left.clone(),
|
|
}],
|
|
);
|
|
}
|
|
}
|
|
let p_right = &sig.params()[1];
|
|
if matches!(op, BinaryOp::CmpOp(..)) {
|
|
if let &TyKind::Ref(mtbl, _, _) = p_right.kind(Interner) {
|
|
self.write_expr_adj(
|
|
rhs,
|
|
vec![Adjustment {
|
|
kind: Adjust::Borrow(AutoBorrow::Ref(mtbl)),
|
|
target: p_right.clone(),
|
|
}],
|
|
);
|
|
}
|
|
}
|
|
sig.ret().clone()
|
|
}
|
|
None => self.err_ty(),
|
|
};
|
|
|
|
let ret_ty = self.normalize_associated_types_in(ret_ty);
|
|
|
|
if self.is_builtin_binop(&lhs_ty, &rhs_ty, op) {
|
|
// use knowledge of built-in binary ops, which can sometimes help inference
|
|
let builtin_ret = self.enforce_builtin_binop_types(&lhs_ty, &rhs_ty, op);
|
|
self.unify(&builtin_ret, &ret_ty);
|
|
}
|
|
|
|
ret_ty
|
|
}
|
|
|
|
fn infer_block(
|
|
&mut self,
|
|
expr: ExprId,
|
|
statements: &[Statement],
|
|
tail: Option<ExprId>,
|
|
expected: &Expectation,
|
|
) -> Ty {
|
|
for stmt in statements {
|
|
match stmt {
|
|
Statement::Let { pat, type_ref, initializer, else_branch } => {
|
|
let decl_ty = type_ref
|
|
.as_ref()
|
|
.map(|tr| self.make_ty(tr))
|
|
.unwrap_or_else(|| self.table.new_type_var());
|
|
|
|
let ty = if let Some(expr) = initializer {
|
|
let ty = if contains_explicit_ref_binding(&self.body, *pat) {
|
|
self.infer_expr(*expr, &Expectation::has_type(decl_ty.clone()))
|
|
} else {
|
|
self.infer_expr_coerce(*expr, &Expectation::has_type(decl_ty.clone()))
|
|
};
|
|
if type_ref.is_some() {
|
|
decl_ty
|
|
} else {
|
|
ty
|
|
}
|
|
} else {
|
|
decl_ty
|
|
};
|
|
|
|
self.infer_top_pat(*pat, &ty);
|
|
|
|
if let Some(expr) = else_branch {
|
|
let previous_diverges = mem::replace(&mut self.diverges, Diverges::Maybe);
|
|
self.infer_expr_coerce(
|
|
*expr,
|
|
&Expectation::HasType(self.result.standard_types.never.clone()),
|
|
);
|
|
self.diverges = previous_diverges;
|
|
}
|
|
}
|
|
&Statement::Expr { expr, has_semi } => {
|
|
self.infer_expr(
|
|
expr,
|
|
&if has_semi {
|
|
Expectation::none()
|
|
} else {
|
|
Expectation::HasType(self.result.standard_types.unit.clone())
|
|
},
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
if let Some(expr) = tail {
|
|
self.infer_expr_coerce(expr, expected)
|
|
} else {
|
|
// Citing rustc: if there is no explicit tail expression,
|
|
// that is typically equivalent to a tail expression
|
|
// of `()` -- except if the block diverges. In that
|
|
// case, there is no value supplied from the tail
|
|
// expression (assuming there are no other breaks,
|
|
// this implies that the type of the block will be
|
|
// `!`).
|
|
if self.diverges.is_always() {
|
|
// we don't even make an attempt at coercion
|
|
self.table.new_maybe_never_var()
|
|
} else if let Some(t) = expected.only_has_type(&mut self.table) {
|
|
if self.coerce(Some(expr), &TyBuilder::unit(), &t).is_err() {
|
|
self.result.type_mismatches.insert(
|
|
expr.into(),
|
|
TypeMismatch { expected: t.clone(), actual: TyBuilder::unit() },
|
|
);
|
|
}
|
|
t
|
|
} else {
|
|
TyBuilder::unit()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn lookup_field(
|
|
&mut self,
|
|
receiver_ty: &Ty,
|
|
name: &Name,
|
|
) -> Option<(Ty, Option<FieldId>, Vec<Adjustment>, bool)> {
|
|
let mut autoderef = Autoderef::new(&mut self.table, receiver_ty.clone());
|
|
let mut private_field = None;
|
|
let res = autoderef.by_ref().find_map(|(derefed_ty, _)| {
|
|
let (field_id, parameters) = match derefed_ty.kind(Interner) {
|
|
TyKind::Tuple(_, substs) => {
|
|
return name.as_tuple_index().and_then(|idx| {
|
|
substs
|
|
.as_slice(Interner)
|
|
.get(idx)
|
|
.map(|a| a.assert_ty_ref(Interner))
|
|
.cloned()
|
|
.map(|ty| (None, ty))
|
|
});
|
|
}
|
|
TyKind::Adt(AdtId(hir_def::AdtId::StructId(s)), parameters) => {
|
|
let local_id = self.db.struct_data(*s).variant_data.field(name)?;
|
|
let field = FieldId { parent: (*s).into(), local_id };
|
|
(field, parameters.clone())
|
|
}
|
|
TyKind::Adt(AdtId(hir_def::AdtId::UnionId(u)), parameters) => {
|
|
let local_id = self.db.union_data(*u).variant_data.field(name)?;
|
|
let field = FieldId { parent: (*u).into(), local_id };
|
|
(field, parameters.clone())
|
|
}
|
|
_ => return None,
|
|
};
|
|
let is_visible = self.db.field_visibilities(field_id.parent)[field_id.local_id]
|
|
.is_visible_from(self.db.upcast(), self.resolver.module());
|
|
if !is_visible {
|
|
if private_field.is_none() {
|
|
private_field = Some((field_id, parameters));
|
|
}
|
|
return None;
|
|
}
|
|
let ty = self.db.field_types(field_id.parent)[field_id.local_id]
|
|
.clone()
|
|
.substitute(Interner, ¶meters);
|
|
Some((Some(field_id), ty))
|
|
});
|
|
|
|
Some(match res {
|
|
Some((field_id, ty)) => {
|
|
let adjustments = auto_deref_adjust_steps(&autoderef);
|
|
let ty = self.insert_type_vars(ty);
|
|
let ty = self.normalize_associated_types_in(ty);
|
|
|
|
(ty, field_id, adjustments, true)
|
|
}
|
|
None => {
|
|
let (field_id, subst) = private_field?;
|
|
let adjustments = auto_deref_adjust_steps(&autoderef);
|
|
let ty = self.db.field_types(field_id.parent)[field_id.local_id]
|
|
.clone()
|
|
.substitute(Interner, &subst);
|
|
let ty = self.insert_type_vars(ty);
|
|
let ty = self.normalize_associated_types_in(ty);
|
|
|
|
(ty, Some(field_id), adjustments, false)
|
|
}
|
|
})
|
|
}
|
|
|
|
fn infer_field_access(&mut self, tgt_expr: ExprId, receiver: ExprId, name: &Name) -> Ty {
|
|
let receiver_ty = self.infer_expr_inner(receiver, &Expectation::none());
|
|
match self.lookup_field(&receiver_ty, name) {
|
|
Some((ty, field_id, adjustments, is_public)) => {
|
|
self.write_expr_adj(receiver, adjustments);
|
|
if let Some(field_id) = field_id {
|
|
self.result.field_resolutions.insert(tgt_expr, field_id);
|
|
}
|
|
if !is_public {
|
|
if let Some(field) = field_id {
|
|
// FIXME: Merge this diagnostic into UnresolvedField?
|
|
self.result
|
|
.diagnostics
|
|
.push(InferenceDiagnostic::PrivateField { expr: tgt_expr, field });
|
|
}
|
|
}
|
|
ty
|
|
}
|
|
None => {
|
|
// no field found,
|
|
let method_with_same_name_exists = {
|
|
let canonicalized_receiver = self.canonicalize(receiver_ty.clone());
|
|
let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());
|
|
|
|
method_resolution::lookup_method(
|
|
self.db,
|
|
&canonicalized_receiver.value,
|
|
self.trait_env.clone(),
|
|
&traits_in_scope,
|
|
VisibleFromModule::Filter(self.resolver.module()),
|
|
name,
|
|
)
|
|
.is_some()
|
|
};
|
|
self.result.diagnostics.push(InferenceDiagnostic::UnresolvedField {
|
|
expr: tgt_expr,
|
|
receiver: receiver_ty,
|
|
name: name.clone(),
|
|
method_with_same_name_exists,
|
|
});
|
|
self.err_ty()
|
|
}
|
|
}
|
|
}
|
|
|
|
fn infer_method_call(
|
|
&mut self,
|
|
tgt_expr: ExprId,
|
|
receiver: ExprId,
|
|
args: &[ExprId],
|
|
method_name: &Name,
|
|
generic_args: Option<&GenericArgs>,
|
|
expected: &Expectation,
|
|
) -> Ty {
|
|
let receiver_ty = self.infer_expr(receiver, &Expectation::none());
|
|
let canonicalized_receiver = self.canonicalize(receiver_ty.clone());
|
|
|
|
let traits_in_scope = self.resolver.traits_in_scope(self.db.upcast());
|
|
|
|
let resolved = method_resolution::lookup_method(
|
|
self.db,
|
|
&canonicalized_receiver.value,
|
|
self.trait_env.clone(),
|
|
&traits_in_scope,
|
|
VisibleFromModule::Filter(self.resolver.module()),
|
|
method_name,
|
|
);
|
|
let (receiver_ty, method_ty, substs) = match resolved {
|
|
Some((adjust, func, visible)) => {
|
|
let (ty, adjustments) = adjust.apply(&mut self.table, receiver_ty);
|
|
let generics = generics(self.db.upcast(), func.into());
|
|
let substs = self.substs_for_method_call(generics, generic_args);
|
|
self.write_expr_adj(receiver, adjustments);
|
|
self.write_method_resolution(tgt_expr, func, substs.clone());
|
|
if !visible {
|
|
self.push_diagnostic(InferenceDiagnostic::PrivateAssocItem {
|
|
id: tgt_expr.into(),
|
|
item: func.into(),
|
|
})
|
|
}
|
|
(ty, self.db.value_ty(func.into()), substs)
|
|
}
|
|
None => {
|
|
let field_with_same_name_exists = match self.lookup_field(&receiver_ty, method_name)
|
|
{
|
|
Some((ty, field_id, adjustments, _public)) => {
|
|
self.write_expr_adj(receiver, adjustments);
|
|
if let Some(field_id) = field_id {
|
|
self.result.field_resolutions.insert(tgt_expr, field_id);
|
|
}
|
|
Some(ty)
|
|
}
|
|
None => None,
|
|
};
|
|
self.result.diagnostics.push(InferenceDiagnostic::UnresolvedMethodCall {
|
|
expr: tgt_expr,
|
|
receiver: receiver_ty.clone(),
|
|
name: method_name.clone(),
|
|
field_with_same_name: field_with_same_name_exists,
|
|
});
|
|
(
|
|
receiver_ty,
|
|
Binders::empty(Interner, self.err_ty()),
|
|
Substitution::empty(Interner),
|
|
)
|
|
}
|
|
};
|
|
let method_ty = method_ty.substitute(Interner, &substs);
|
|
self.register_obligations_for_call(&method_ty);
|
|
let (formal_receiver_ty, param_tys, ret_ty, is_varargs) =
|
|
match method_ty.callable_sig(self.db) {
|
|
Some(sig) => {
|
|
if !sig.params().is_empty() {
|
|
(
|
|
sig.params()[0].clone(),
|
|
sig.params()[1..].to_vec(),
|
|
sig.ret().clone(),
|
|
sig.is_varargs,
|
|
)
|
|
} else {
|
|
(self.err_ty(), Vec::new(), sig.ret().clone(), sig.is_varargs)
|
|
}
|
|
}
|
|
None => (self.err_ty(), Vec::new(), self.err_ty(), true),
|
|
};
|
|
self.unify(&formal_receiver_ty, &receiver_ty);
|
|
|
|
let expected_inputs =
|
|
self.expected_inputs_for_expected_output(expected, ret_ty.clone(), param_tys.clone());
|
|
|
|
self.check_call_arguments(tgt_expr, args, &expected_inputs, ¶m_tys, &[], is_varargs);
|
|
self.normalize_associated_types_in(ret_ty)
|
|
}
|
|
|
|
fn expected_inputs_for_expected_output(
|
|
&mut self,
|
|
expected_output: &Expectation,
|
|
output: Ty,
|
|
inputs: Vec<Ty>,
|
|
) -> Vec<Ty> {
|
|
if let Some(expected_ty) = expected_output.to_option(&mut self.table) {
|
|
self.table.fudge_inference(|table| {
|
|
if table.try_unify(&expected_ty, &output).is_ok() {
|
|
table.resolve_with_fallback(inputs, &|var, kind, _, _| match kind {
|
|
chalk_ir::VariableKind::Ty(tk) => var.to_ty(Interner, tk).cast(Interner),
|
|
chalk_ir::VariableKind::Lifetime => {
|
|
var.to_lifetime(Interner).cast(Interner)
|
|
}
|
|
chalk_ir::VariableKind::Const(ty) => {
|
|
var.to_const(Interner, ty).cast(Interner)
|
|
}
|
|
})
|
|
} else {
|
|
Vec::new()
|
|
}
|
|
})
|
|
} else {
|
|
Vec::new()
|
|
}
|
|
}
|
|
|
|
fn check_call_arguments(
|
|
&mut self,
|
|
expr: ExprId,
|
|
args: &[ExprId],
|
|
expected_inputs: &[Ty],
|
|
param_tys: &[Ty],
|
|
skip_indices: &[u32],
|
|
is_varargs: bool,
|
|
) {
|
|
if args.len() != param_tys.len() + skip_indices.len() && !is_varargs {
|
|
self.push_diagnostic(InferenceDiagnostic::MismatchedArgCount {
|
|
call_expr: expr,
|
|
expected: param_tys.len() + skip_indices.len(),
|
|
found: args.len(),
|
|
});
|
|
}
|
|
|
|
// Quoting https://github.com/rust-lang/rust/blob/6ef275e6c3cb1384ec78128eceeb4963ff788dca/src/librustc_typeck/check/mod.rs#L3325 --
|
|
// We do this in a pretty awful way: first we type-check any arguments
|
|
// that are not closures, then we type-check the closures. This is so
|
|
// that we have more information about the types of arguments when we
|
|
// type-check the functions. This isn't really the right way to do this.
|
|
for check_closures in [false, true] {
|
|
let mut skip_indices = skip_indices.into_iter().copied().fuse().peekable();
|
|
let param_iter = param_tys.iter().cloned().chain(repeat(self.err_ty()));
|
|
let expected_iter = expected_inputs
|
|
.iter()
|
|
.cloned()
|
|
.chain(param_iter.clone().skip(expected_inputs.len()));
|
|
for (idx, ((&arg, param_ty), expected_ty)) in
|
|
args.iter().zip(param_iter).zip(expected_iter).enumerate()
|
|
{
|
|
let is_closure = matches!(&self.body[arg], Expr::Closure { .. });
|
|
if is_closure != check_closures {
|
|
continue;
|
|
}
|
|
|
|
while skip_indices.peek().map_or(false, |i| *i < idx as u32) {
|
|
skip_indices.next();
|
|
}
|
|
if skip_indices.peek().copied() == Some(idx as u32) {
|
|
continue;
|
|
}
|
|
|
|
// the difference between param_ty and expected here is that
|
|
// expected is the parameter when the expected *return* type is
|
|
// taken into account. So in `let _: &[i32] = identity(&[1, 2])`
|
|
// the expected type is already `&[i32]`, whereas param_ty is
|
|
// still an unbound type variable. We don't always want to force
|
|
// the parameter to coerce to the expected type (for example in
|
|
// `coerce_unsize_expected_type_4`).
|
|
let param_ty = self.normalize_associated_types_in(param_ty);
|
|
let expected = Expectation::rvalue_hint(&mut self.table, expected_ty);
|
|
// infer with the expected type we have...
|
|
let ty = self.infer_expr_inner(arg, &expected);
|
|
|
|
// then coerce to either the expected type or just the formal parameter type
|
|
let coercion_target = if let Some(ty) = expected.only_has_type(&mut self.table) {
|
|
// if we are coercing to the expectation, unify with the
|
|
// formal parameter type to connect everything
|
|
self.unify(&ty, ¶m_ty);
|
|
ty
|
|
} else {
|
|
param_ty
|
|
};
|
|
if !coercion_target.is_unknown()
|
|
&& self.coerce(Some(arg), &ty, &coercion_target).is_err()
|
|
{
|
|
self.result.type_mismatches.insert(
|
|
arg.into(),
|
|
TypeMismatch { expected: coercion_target, actual: ty.clone() },
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn substs_for_method_call(
|
|
&mut self,
|
|
def_generics: Generics,
|
|
generic_args: Option<&GenericArgs>,
|
|
) -> Substitution {
|
|
let (parent_params, self_params, type_params, const_params, impl_trait_params) =
|
|
def_generics.provenance_split();
|
|
assert_eq!(self_params, 0); // method shouldn't have another Self param
|
|
let total_len = parent_params + type_params + const_params + impl_trait_params;
|
|
let mut substs = Vec::with_capacity(total_len);
|
|
|
|
// handle provided arguments
|
|
if let Some(generic_args) = generic_args {
|
|
// if args are provided, it should be all of them, but we can't rely on that
|
|
for (arg, kind_id) in generic_args
|
|
.args
|
|
.iter()
|
|
.filter(|arg| !matches!(arg, GenericArg::Lifetime(_)))
|
|
.take(type_params + const_params)
|
|
.zip(def_generics.iter_id())
|
|
{
|
|
if let Some(g) = generic_arg_to_chalk(
|
|
self.db,
|
|
kind_id,
|
|
arg,
|
|
self,
|
|
|this, type_ref| this.make_ty(type_ref),
|
|
|this, c, ty| {
|
|
const_or_path_to_chalk(
|
|
this.db,
|
|
&this.resolver,
|
|
ty,
|
|
c,
|
|
ParamLoweringMode::Placeholder,
|
|
|| generics(this.db.upcast(), this.resolver.generic_def().unwrap()),
|
|
DebruijnIndex::INNERMOST,
|
|
)
|
|
},
|
|
) {
|
|
substs.push(g);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Handle everything else as unknown. This also handles generic arguments for the method's
|
|
// parent (impl or trait), which should come after those for the method.
|
|
for (id, data) in def_generics.iter().skip(substs.len()) {
|
|
match data {
|
|
TypeOrConstParamData::TypeParamData(_) => {
|
|
substs.push(GenericArgData::Ty(self.table.new_type_var()).intern(Interner))
|
|
}
|
|
TypeOrConstParamData::ConstParamData(_) => {
|
|
substs.push(
|
|
GenericArgData::Const(self.table.new_const_var(
|
|
self.db.const_param_ty(ConstParamId::from_unchecked(id)),
|
|
))
|
|
.intern(Interner),
|
|
)
|
|
}
|
|
}
|
|
}
|
|
assert_eq!(substs.len(), total_len);
|
|
Substitution::from_iter(Interner, substs)
|
|
}
|
|
|
|
fn register_obligations_for_call(&mut self, callable_ty: &Ty) {
|
|
let callable_ty = self.resolve_ty_shallow(callable_ty);
|
|
if let TyKind::FnDef(fn_def, parameters) = callable_ty.kind(Interner) {
|
|
let def: CallableDefId = from_chalk(self.db, *fn_def);
|
|
let generic_predicates = self.db.generic_predicates(def.into());
|
|
for predicate in generic_predicates.iter() {
|
|
let (predicate, binders) = predicate
|
|
.clone()
|
|
.substitute(Interner, parameters)
|
|
.into_value_and_skipped_binders();
|
|
always!(binders.len(Interner) == 0); // quantified where clauses not yet handled
|
|
self.push_obligation(predicate.cast(Interner));
|
|
}
|
|
// add obligation for trait implementation, if this is a trait method
|
|
match def {
|
|
CallableDefId::FunctionId(f) => {
|
|
if let ItemContainerId::TraitId(trait_) = f.lookup(self.db.upcast()).container {
|
|
// construct a TraitRef
|
|
let params_len = parameters.len(Interner);
|
|
let trait_params_len = generics(self.db.upcast(), trait_.into()).len();
|
|
let substs = Substitution::from_iter(
|
|
Interner,
|
|
// The generic parameters for the trait come after those for the
|
|
// function.
|
|
¶meters.as_slice(Interner)[params_len - trait_params_len..],
|
|
);
|
|
self.push_obligation(
|
|
TraitRef { trait_id: to_chalk_trait_id(trait_), substitution: substs }
|
|
.cast(Interner),
|
|
);
|
|
}
|
|
}
|
|
CallableDefId::StructId(_) | CallableDefId::EnumVariantId(_) => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the argument indices to skip.
|
|
fn check_legacy_const_generics(&mut self, callee: Ty, args: &[ExprId]) -> Box<[u32]> {
|
|
let (func, subst) = match callee.kind(Interner) {
|
|
TyKind::FnDef(fn_id, subst) => {
|
|
let callable = CallableDefId::from_chalk(self.db, *fn_id);
|
|
let func = match callable {
|
|
CallableDefId::FunctionId(f) => f,
|
|
_ => return Default::default(),
|
|
};
|
|
(func, subst)
|
|
}
|
|
_ => return Default::default(),
|
|
};
|
|
|
|
let data = self.db.function_data(func);
|
|
if data.legacy_const_generics_indices.is_empty() {
|
|
return Default::default();
|
|
}
|
|
|
|
// only use legacy const generics if the param count matches with them
|
|
if data.params.len() + data.legacy_const_generics_indices.len() != args.len() {
|
|
if args.len() <= data.params.len() {
|
|
return Default::default();
|
|
} else {
|
|
// there are more parameters than there should be without legacy
|
|
// const params; use them
|
|
let mut indices = data.legacy_const_generics_indices.clone();
|
|
indices.sort();
|
|
return indices;
|
|
}
|
|
}
|
|
|
|
// check legacy const parameters
|
|
for (subst_idx, arg_idx) in data.legacy_const_generics_indices.iter().copied().enumerate() {
|
|
let arg = match subst.at(Interner, subst_idx).constant(Interner) {
|
|
Some(c) => c,
|
|
None => continue, // not a const parameter?
|
|
};
|
|
if arg_idx >= args.len() as u32 {
|
|
continue;
|
|
}
|
|
let _ty = arg.data(Interner).ty.clone();
|
|
let expected = Expectation::none(); // FIXME use actual const ty, when that is lowered correctly
|
|
self.infer_expr(args[arg_idx as usize], &expected);
|
|
// FIXME: evaluate and unify with the const
|
|
}
|
|
let mut indices = data.legacy_const_generics_indices.clone();
|
|
indices.sort();
|
|
indices
|
|
}
|
|
|
|
/// Dereferences a single level of immutable referencing.
|
|
fn deref_ty_if_possible(&mut self, ty: &Ty) -> Ty {
|
|
let ty = self.resolve_ty_shallow(ty);
|
|
match ty.kind(Interner) {
|
|
TyKind::Ref(Mutability::Not, _, inner) => self.resolve_ty_shallow(inner),
|
|
_ => ty,
|
|
}
|
|
}
|
|
|
|
/// Enforces expectations on lhs type and rhs type depending on the operator and returns the
|
|
/// output type of the binary op.
|
|
fn enforce_builtin_binop_types(&mut self, lhs: &Ty, rhs: &Ty, op: BinaryOp) -> Ty {
|
|
// Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work (See rust-lang/rust#57447).
|
|
let lhs = self.deref_ty_if_possible(lhs);
|
|
let rhs = self.deref_ty_if_possible(rhs);
|
|
|
|
let (op, is_assign) = match op {
|
|
BinaryOp::Assignment { op: Some(inner) } => (BinaryOp::ArithOp(inner), true),
|
|
_ => (op, false),
|
|
};
|
|
|
|
let output_ty = match op {
|
|
BinaryOp::LogicOp(_) => {
|
|
let bool_ = self.result.standard_types.bool_.clone();
|
|
self.unify(&lhs, &bool_);
|
|
self.unify(&rhs, &bool_);
|
|
bool_
|
|
}
|
|
|
|
BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
|
|
// result type is same as LHS always
|
|
lhs
|
|
}
|
|
|
|
BinaryOp::ArithOp(_) => {
|
|
// LHS, RHS, and result will have the same type
|
|
self.unify(&lhs, &rhs);
|
|
lhs
|
|
}
|
|
|
|
BinaryOp::CmpOp(_) => {
|
|
// LHS and RHS will have the same type
|
|
self.unify(&lhs, &rhs);
|
|
self.result.standard_types.bool_.clone()
|
|
}
|
|
|
|
BinaryOp::Assignment { op: None } => {
|
|
stdx::never!("Simple assignment operator is not binary op.");
|
|
lhs
|
|
}
|
|
|
|
BinaryOp::Assignment { .. } => unreachable!("handled above"),
|
|
};
|
|
|
|
if is_assign {
|
|
self.result.standard_types.unit.clone()
|
|
} else {
|
|
output_ty
|
|
}
|
|
}
|
|
|
|
fn is_builtin_binop(&mut self, lhs: &Ty, rhs: &Ty, op: BinaryOp) -> bool {
|
|
// Special-case a single layer of referencing, so that things like `5.0 + &6.0f32` work (See rust-lang/rust#57447).
|
|
let lhs = self.deref_ty_if_possible(lhs);
|
|
let rhs = self.deref_ty_if_possible(rhs);
|
|
|
|
let op = match op {
|
|
BinaryOp::Assignment { op: Some(inner) } => BinaryOp::ArithOp(inner),
|
|
_ => op,
|
|
};
|
|
|
|
match op {
|
|
BinaryOp::LogicOp(_) => true,
|
|
|
|
BinaryOp::ArithOp(ArithOp::Shl | ArithOp::Shr) => {
|
|
lhs.is_integral() && rhs.is_integral()
|
|
}
|
|
|
|
BinaryOp::ArithOp(
|
|
ArithOp::Add | ArithOp::Sub | ArithOp::Mul | ArithOp::Div | ArithOp::Rem,
|
|
) => {
|
|
lhs.is_integral() && rhs.is_integral()
|
|
|| lhs.is_floating_point() && rhs.is_floating_point()
|
|
}
|
|
|
|
BinaryOp::ArithOp(ArithOp::BitAnd | ArithOp::BitOr | ArithOp::BitXor) => {
|
|
lhs.is_integral() && rhs.is_integral()
|
|
|| lhs.is_floating_point() && rhs.is_floating_point()
|
|
|| matches!(
|
|
(lhs.kind(Interner), rhs.kind(Interner)),
|
|
(TyKind::Scalar(Scalar::Bool), TyKind::Scalar(Scalar::Bool))
|
|
)
|
|
}
|
|
|
|
BinaryOp::CmpOp(_) => {
|
|
let is_scalar = |kind| {
|
|
matches!(
|
|
kind,
|
|
&TyKind::Scalar(_)
|
|
| TyKind::FnDef(..)
|
|
| TyKind::Function(_)
|
|
| TyKind::Raw(..)
|
|
| TyKind::InferenceVar(
|
|
_,
|
|
TyVariableKind::Integer | TyVariableKind::Float
|
|
)
|
|
)
|
|
};
|
|
is_scalar(lhs.kind(Interner)) && is_scalar(rhs.kind(Interner))
|
|
}
|
|
|
|
BinaryOp::Assignment { op: None } => {
|
|
stdx::never!("Simple assignment operator is not binary op.");
|
|
false
|
|
}
|
|
|
|
BinaryOp::Assignment { .. } => unreachable!("handled above"),
|
|
}
|
|
}
|
|
|
|
fn with_breakable_ctx<T>(
|
|
&mut self,
|
|
kind: BreakableKind,
|
|
ty: Option<Ty>,
|
|
label: Option<LabelId>,
|
|
cb: impl FnOnce(&mut Self) -> T,
|
|
) -> (Option<Ty>, T) {
|
|
self.breakables.push({
|
|
let label = label.map(|label| self.body[label].name.clone());
|
|
BreakableContext { kind, may_break: false, coerce: ty.map(CoerceMany::new), label }
|
|
});
|
|
let res = cb(self);
|
|
let ctx = self.breakables.pop().expect("breakable stack broken");
|
|
(if ctx.may_break { ctx.coerce.map(|ctx| ctx.complete(self)) } else { None }, res)
|
|
}
|
|
}
|