rust-analyzer/crates/hir-ty/src/method_resolution.rs
2022-06-26 23:09:06 +08:00

1187 lines
41 KiB
Rust

//! This module is concerned with finding methods that a given type provides.
//! For details about how this works in rustc, see the method lookup page in the
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
use std::{iter, ops::ControlFlow, sync::Arc};
use arrayvec::ArrayVec;
use base_db::{CrateId, Edition};
use chalk_ir::{cast::Cast, Mutability, UniverseIndex};
use hir_def::{
data::ImplData, item_scope::ItemScope, nameres::DefMap, AssocItemId, BlockId, ConstId,
FunctionId, GenericDefId, HasModule, ImplId, ItemContainerId, Lookup, ModuleDefId, ModuleId,
TraitId,
};
use hir_expand::name::Name;
use rustc_hash::{FxHashMap, FxHashSet};
use stdx::never;
use crate::{
autoderef::{self, AutoderefKind},
db::HirDatabase,
from_foreign_def_id,
infer::{unify::InferenceTable, Adjust, Adjustment, AutoBorrow, OverloadedDeref, PointerCast},
primitive::{FloatTy, IntTy, UintTy},
static_lifetime,
utils::all_super_traits,
AdtId, Canonical, CanonicalVarKinds, DebruijnIndex, ForeignDefId, InEnvironment, Interner,
Scalar, TraitEnvironment, TraitRefExt, Ty, TyBuilder, TyExt, TyKind,
};
/// This is used as a key for indexing impls.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TyFingerprint {
// These are lang item impls:
Str,
Slice,
Array,
Never,
RawPtr(Mutability),
Scalar(Scalar),
// These can have user-defined impls:
Adt(hir_def::AdtId),
Dyn(TraitId),
ForeignType(ForeignDefId),
// These only exist for trait impls
Unit,
Unnameable,
Function(u32),
}
impl TyFingerprint {
/// Creates a TyFingerprint for looking up an inherent impl. Only certain
/// types can have inherent impls: if we have some `struct S`, we can have
/// an `impl S`, but not `impl &S`. Hence, this will return `None` for
/// reference types and such.
pub fn for_inherent_impl(ty: &Ty) -> Option<TyFingerprint> {
let fp = match ty.kind(Interner) {
TyKind::Str => TyFingerprint::Str,
TyKind::Never => TyFingerprint::Never,
TyKind::Slice(..) => TyFingerprint::Slice,
TyKind::Array(..) => TyFingerprint::Array,
TyKind::Scalar(scalar) => TyFingerprint::Scalar(*scalar),
TyKind::Adt(AdtId(adt), _) => TyFingerprint::Adt(*adt),
TyKind::Raw(mutability, ..) => TyFingerprint::RawPtr(*mutability),
TyKind::Foreign(alias_id, ..) => TyFingerprint::ForeignType(*alias_id),
TyKind::Dyn(_) => ty.dyn_trait().map(TyFingerprint::Dyn)?,
_ => return None,
};
Some(fp)
}
/// Creates a TyFingerprint for looking up a trait impl.
pub fn for_trait_impl(ty: &Ty) -> Option<TyFingerprint> {
let fp = match ty.kind(Interner) {
TyKind::Str => TyFingerprint::Str,
TyKind::Never => TyFingerprint::Never,
TyKind::Slice(..) => TyFingerprint::Slice,
TyKind::Array(..) => TyFingerprint::Array,
TyKind::Scalar(scalar) => TyFingerprint::Scalar(*scalar),
TyKind::Adt(AdtId(adt), _) => TyFingerprint::Adt(*adt),
TyKind::Raw(mutability, ..) => TyFingerprint::RawPtr(*mutability),
TyKind::Foreign(alias_id, ..) => TyFingerprint::ForeignType(*alias_id),
TyKind::Dyn(_) => ty.dyn_trait().map(TyFingerprint::Dyn)?,
TyKind::Ref(_, _, ty) => return TyFingerprint::for_trait_impl(ty),
TyKind::Tuple(_, subst) => {
let first_ty = subst.interned().get(0).map(|arg| arg.assert_ty_ref(Interner));
match first_ty {
Some(ty) => return TyFingerprint::for_trait_impl(ty),
None => TyFingerprint::Unit,
}
}
TyKind::AssociatedType(_, _)
| TyKind::OpaqueType(_, _)
| TyKind::FnDef(_, _)
| TyKind::Closure(_, _)
| TyKind::Generator(..)
| TyKind::GeneratorWitness(..) => TyFingerprint::Unnameable,
TyKind::Function(fn_ptr) => {
TyFingerprint::Function(fn_ptr.substitution.0.len(Interner) as u32)
}
TyKind::Alias(_)
| TyKind::Placeholder(_)
| TyKind::BoundVar(_)
| TyKind::InferenceVar(_, _)
| TyKind::Error => return None,
};
Some(fp)
}
}
pub(crate) const ALL_INT_FPS: [TyFingerprint; 12] = [
TyFingerprint::Scalar(Scalar::Int(IntTy::I8)),
TyFingerprint::Scalar(Scalar::Int(IntTy::I16)),
TyFingerprint::Scalar(Scalar::Int(IntTy::I32)),
TyFingerprint::Scalar(Scalar::Int(IntTy::I64)),
TyFingerprint::Scalar(Scalar::Int(IntTy::I128)),
TyFingerprint::Scalar(Scalar::Int(IntTy::Isize)),
TyFingerprint::Scalar(Scalar::Uint(UintTy::U8)),
TyFingerprint::Scalar(Scalar::Uint(UintTy::U16)),
TyFingerprint::Scalar(Scalar::Uint(UintTy::U32)),
TyFingerprint::Scalar(Scalar::Uint(UintTy::U64)),
TyFingerprint::Scalar(Scalar::Uint(UintTy::U128)),
TyFingerprint::Scalar(Scalar::Uint(UintTy::Usize)),
];
pub(crate) const ALL_FLOAT_FPS: [TyFingerprint; 2] = [
TyFingerprint::Scalar(Scalar::Float(FloatTy::F32)),
TyFingerprint::Scalar(Scalar::Float(FloatTy::F64)),
];
/// Trait impls defined or available in some crate.
#[derive(Debug, Eq, PartialEq)]
pub struct TraitImpls {
// If the `Option<TyFingerprint>` is `None`, the impl may apply to any self type.
map: FxHashMap<TraitId, FxHashMap<Option<TyFingerprint>, Vec<ImplId>>>,
}
impl TraitImpls {
pub(crate) fn trait_impls_in_crate_query(db: &dyn HirDatabase, krate: CrateId) -> Arc<Self> {
let _p = profile::span("trait_impls_in_crate_query");
let mut impls = Self { map: FxHashMap::default() };
let crate_def_map = db.crate_def_map(krate);
impls.collect_def_map(db, &crate_def_map);
impls.shrink_to_fit();
Arc::new(impls)
}
pub(crate) fn trait_impls_in_block_query(
db: &dyn HirDatabase,
block: BlockId,
) -> Option<Arc<Self>> {
let _p = profile::span("trait_impls_in_block_query");
let mut impls = Self { map: FxHashMap::default() };
let block_def_map = db.block_def_map(block)?;
impls.collect_def_map(db, &block_def_map);
impls.shrink_to_fit();
Some(Arc::new(impls))
}
pub(crate) fn trait_impls_in_deps_query(db: &dyn HirDatabase, krate: CrateId) -> Arc<Self> {
let _p = profile::span("trait_impls_in_deps_query");
let crate_graph = db.crate_graph();
let mut res = Self { map: FxHashMap::default() };
for krate in crate_graph.transitive_deps(krate) {
res.merge(&db.trait_impls_in_crate(krate));
}
res.shrink_to_fit();
Arc::new(res)
}
fn shrink_to_fit(&mut self) {
self.map.shrink_to_fit();
self.map.values_mut().for_each(|map| {
map.shrink_to_fit();
map.values_mut().for_each(Vec::shrink_to_fit);
});
}
fn collect_def_map(&mut self, db: &dyn HirDatabase, def_map: &DefMap) {
for (_module_id, module_data) in def_map.modules() {
for impl_id in module_data.scope.impls() {
let target_trait = match db.impl_trait(impl_id) {
Some(tr) => tr.skip_binders().hir_trait_id(),
None => continue,
};
let self_ty = db.impl_self_ty(impl_id);
let self_ty_fp = TyFingerprint::for_trait_impl(self_ty.skip_binders());
self.map
.entry(target_trait)
.or_default()
.entry(self_ty_fp)
.or_default()
.push(impl_id);
}
// To better support custom derives, collect impls in all unnamed const items.
// const _: () = { ... };
for konst in collect_unnamed_consts(db, &module_data.scope) {
let body = db.body(konst.into());
for (_, block_def_map) in body.blocks(db.upcast()) {
self.collect_def_map(db, &block_def_map);
}
}
}
}
fn merge(&mut self, other: &Self) {
for (trait_, other_map) in &other.map {
let map = self.map.entry(*trait_).or_default();
for (fp, impls) in other_map {
let vec = map.entry(*fp).or_default();
vec.extend(impls);
}
}
}
/// Queries all trait impls for the given type.
pub fn for_self_ty_without_blanket_impls(
&self,
fp: TyFingerprint,
) -> impl Iterator<Item = ImplId> + '_ {
self.map
.values()
.flat_map(move |impls| impls.get(&Some(fp)).into_iter())
.flat_map(|it| it.iter().copied())
}
/// Queries all impls of the given trait.
pub fn for_trait(&self, trait_: TraitId) -> impl Iterator<Item = ImplId> + '_ {
self.map
.get(&trait_)
.into_iter()
.flat_map(|map| map.values().flat_map(|v| v.iter().copied()))
}
/// Queries all impls of `trait_` that may apply to `self_ty`.
pub fn for_trait_and_self_ty(
&self,
trait_: TraitId,
self_ty: TyFingerprint,
) -> impl Iterator<Item = ImplId> + '_ {
self.map
.get(&trait_)
.into_iter()
.flat_map(move |map| map.get(&Some(self_ty)).into_iter().chain(map.get(&None)))
.flat_map(|v| v.iter().copied())
}
pub fn all_impls(&self) -> impl Iterator<Item = ImplId> + '_ {
self.map.values().flat_map(|map| map.values().flat_map(|v| v.iter().copied()))
}
}
/// Inherent impls defined in some crate.
///
/// Inherent impls can only be defined in the crate that also defines the self type of the impl
/// (note that some primitives are considered to be defined by both libcore and liballoc).
///
/// This makes inherent impl lookup easier than trait impl lookup since we only have to consider a
/// single crate.
#[derive(Debug, Eq, PartialEq)]
pub struct InherentImpls {
map: FxHashMap<TyFingerprint, Vec<ImplId>>,
}
impl InherentImpls {
pub(crate) fn inherent_impls_in_crate_query(db: &dyn HirDatabase, krate: CrateId) -> Arc<Self> {
let mut impls = Self { map: FxHashMap::default() };
let crate_def_map = db.crate_def_map(krate);
impls.collect_def_map(db, &crate_def_map);
impls.shrink_to_fit();
Arc::new(impls)
}
pub(crate) fn inherent_impls_in_block_query(
db: &dyn HirDatabase,
block: BlockId,
) -> Option<Arc<Self>> {
let mut impls = Self { map: FxHashMap::default() };
if let Some(block_def_map) = db.block_def_map(block) {
impls.collect_def_map(db, &block_def_map);
impls.shrink_to_fit();
return Some(Arc::new(impls));
}
None
}
fn shrink_to_fit(&mut self) {
self.map.values_mut().for_each(Vec::shrink_to_fit);
self.map.shrink_to_fit();
}
fn collect_def_map(&mut self, db: &dyn HirDatabase, def_map: &DefMap) {
for (_module_id, module_data) in def_map.modules() {
for impl_id in module_data.scope.impls() {
let data = db.impl_data(impl_id);
if data.target_trait.is_some() {
continue;
}
let self_ty = db.impl_self_ty(impl_id);
let fp = TyFingerprint::for_inherent_impl(self_ty.skip_binders());
if let Some(fp) = fp {
self.map.entry(fp).or_default().push(impl_id);
}
// `fp` should only be `None` in error cases (either erroneous code or incomplete name resolution)
}
// To better support custom derives, collect impls in all unnamed const items.
// const _: () = { ... };
for konst in collect_unnamed_consts(db, &module_data.scope) {
let body = db.body(konst.into());
for (_, block_def_map) in body.blocks(db.upcast()) {
self.collect_def_map(db, &block_def_map);
}
}
}
}
pub fn for_self_ty(&self, self_ty: &Ty) -> &[ImplId] {
match TyFingerprint::for_inherent_impl(self_ty) {
Some(fp) => self.map.get(&fp).map(|vec| vec.as_ref()).unwrap_or(&[]),
None => &[],
}
}
pub fn all_impls(&self) -> impl Iterator<Item = ImplId> + '_ {
self.map.values().flat_map(|v| v.iter().copied())
}
}
pub fn inherent_impl_crates_query(
db: &dyn HirDatabase,
krate: CrateId,
fp: TyFingerprint,
) -> ArrayVec<CrateId, 2> {
let _p = profile::span("inherent_impl_crates_query");
let mut res = ArrayVec::new();
let crate_graph = db.crate_graph();
for krate in crate_graph.transitive_deps(krate) {
if res.is_full() {
// we don't currently look for or store more than two crates here,
// so don't needlessly look at more crates than necessary.
break;
}
let impls = db.inherent_impls_in_crate(krate);
if impls.map.get(&fp).map_or(false, |v| !v.is_empty()) {
res.push(krate);
}
}
res
}
fn collect_unnamed_consts<'a>(
db: &'a dyn HirDatabase,
scope: &'a ItemScope,
) -> impl Iterator<Item = ConstId> + 'a {
let unnamed_consts = scope.unnamed_consts();
// FIXME: Also treat consts named `_DERIVE_*` as unnamed, since synstructure generates those.
// Should be removed once synstructure stops doing that.
let synstructure_hack_consts = scope.values().filter_map(|(item, _)| match item {
ModuleDefId::ConstId(id) => {
let loc = id.lookup(db.upcast());
let item_tree = loc.id.item_tree(db.upcast());
if item_tree[loc.id.value]
.name
.as_ref()
.map_or(false, |n| n.to_smol_str().starts_with("_DERIVE_"))
{
Some(id)
} else {
None
}
}
_ => None,
});
unnamed_consts.chain(synstructure_hack_consts)
}
pub fn def_crates(
db: &dyn HirDatabase,
ty: &Ty,
cur_crate: CrateId,
) -> Option<ArrayVec<CrateId, 2>> {
let mod_to_crate_ids = |module: ModuleId| Some(iter::once(module.krate()).collect());
let fp = TyFingerprint::for_inherent_impl(ty);
match ty.kind(Interner) {
TyKind::Adt(AdtId(def_id), _) => mod_to_crate_ids(def_id.module(db.upcast())),
TyKind::Foreign(id) => {
mod_to_crate_ids(from_foreign_def_id(*id).lookup(db.upcast()).module(db.upcast()))
}
TyKind::Dyn(_) => ty
.dyn_trait()
.and_then(|trait_| mod_to_crate_ids(GenericDefId::TraitId(trait_).module(db.upcast()))),
// for primitives, there may be impls in various places (core and alloc
// mostly). We just check the whole crate graph for crates with impls
// (cached behind a query).
TyKind::Scalar(_)
| TyKind::Str
| TyKind::Slice(_)
| TyKind::Array(..)
| TyKind::Raw(..) => {
Some(db.inherent_impl_crates(cur_crate, fp.expect("fingerprint for primitive")))
}
_ => return None,
}
}
/// Look up the method with the given name.
pub(crate) fn lookup_method(
ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
traits_in_scope: &FxHashSet<TraitId>,
visible_from_module: VisibleFromModule,
name: &Name,
) -> Option<(ReceiverAdjustments, FunctionId)> {
iterate_method_candidates(
ty,
db,
env,
traits_in_scope,
visible_from_module,
Some(name),
LookupMode::MethodCall,
|adjustments, f| match f {
AssocItemId::FunctionId(f) => Some((adjustments, f)),
_ => None,
},
)
}
/// Whether we're looking up a dotted method call (like `v.len()`) or a path
/// (like `Vec::new`).
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum LookupMode {
/// Looking up a method call like `v.len()`: We only consider candidates
/// that have a `self` parameter, and do autoderef.
MethodCall,
/// Looking up a path like `Vec::new` or `Vec::default`: We consider all
/// candidates including associated constants, but don't do autoderef.
Path,
}
#[derive(Clone, Copy)]
pub enum VisibleFromModule {
/// Filter for results that are visible from the given module
Filter(ModuleId),
/// Include impls from the given block.
IncludeBlock(BlockId),
/// Do nothing special in regards visibility
None,
}
impl From<Option<ModuleId>> for VisibleFromModule {
fn from(module: Option<ModuleId>) -> Self {
match module {
Some(module) => Self::Filter(module),
None => Self::None,
}
}
}
impl From<Option<BlockId>> for VisibleFromModule {
fn from(block: Option<BlockId>) -> Self {
match block {
Some(block) => Self::IncludeBlock(block),
None => Self::None,
}
}
}
#[derive(Debug, Clone, Default)]
pub struct ReceiverAdjustments {
autoref: Option<Mutability>,
autoderefs: usize,
unsize_array: bool,
}
impl ReceiverAdjustments {
pub(crate) fn apply(&self, table: &mut InferenceTable, ty: Ty) -> (Ty, Vec<Adjustment>) {
let mut ty = ty;
let mut adjust = Vec::new();
for _ in 0..self.autoderefs {
match autoderef::autoderef_step(table, ty.clone()) {
None => {
never!("autoderef not possible for {:?}", ty);
ty = TyKind::Error.intern(Interner);
break;
}
Some((kind, new_ty)) => {
ty = new_ty.clone();
adjust.push(Adjustment {
kind: Adjust::Deref(match kind {
// FIXME should we know the mutability here?
AutoderefKind::Overloaded => Some(OverloadedDeref(Mutability::Not)),
AutoderefKind::Builtin => None,
}),
target: new_ty,
});
}
}
}
if self.unsize_array {
ty = match ty.kind(Interner) {
TyKind::Array(inner, _) => TyKind::Slice(inner.clone()).intern(Interner),
_ => {
never!("unsize_array with non-array {:?}", ty);
ty
}
};
// FIXME this is kind of wrong since the unsize needs to happen to a pointer/reference
adjust.push(Adjustment {
kind: Adjust::Pointer(PointerCast::Unsize),
target: ty.clone(),
});
}
if let Some(m) = self.autoref {
ty = TyKind::Ref(m, static_lifetime(), ty).intern(Interner);
adjust
.push(Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(m)), target: ty.clone() });
}
(ty, adjust)
}
fn with_autoref(&self, m: Mutability) -> ReceiverAdjustments {
Self { autoref: Some(m), ..*self }
}
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplDefs`.
// FIXME add a context type here?
pub(crate) fn iterate_method_candidates<T>(
ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
traits_in_scope: &FxHashSet<TraitId>,
visible_from_module: VisibleFromModule,
name: Option<&Name>,
mode: LookupMode,
mut callback: impl FnMut(ReceiverAdjustments, AssocItemId) -> Option<T>,
) -> Option<T> {
let mut slot = None;
iterate_method_candidates_dyn(
ty,
db,
env,
traits_in_scope,
visible_from_module,
name,
mode,
&mut |adj, item| {
assert!(slot.is_none());
if let Some(it) = callback(adj, item) {
slot = Some(it);
return ControlFlow::Break(());
}
ControlFlow::Continue(())
},
);
slot
}
pub fn lookup_impl_method(
self_ty: &Ty,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
trait_: TraitId,
name: &Name,
) -> Option<FunctionId> {
let self_ty_fp = TyFingerprint::for_trait_impl(self_ty)?;
let trait_impls = TraitImpls::trait_impls_in_deps_query(db, env.krate);
let impls = trait_impls.for_trait_and_self_ty(trait_, self_ty_fp);
let mut table = InferenceTable::new(db, env.clone());
find_matching_impl(impls, &mut table, &self_ty).and_then(|data| {
data.items.iter().find_map(|it| match it {
AssocItemId::FunctionId(f) => (db.function_data(*f).name == *name).then(|| *f),
_ => None,
})
})
}
fn find_matching_impl(
mut impls: impl Iterator<Item = ImplId>,
table: &mut InferenceTable,
self_ty: &Ty,
) -> Option<Arc<ImplData>> {
let db = table.db;
loop {
let impl_ = impls.next()?;
let r = table.run_in_snapshot(|table| {
let impl_data = db.impl_data(impl_);
let substs =
TyBuilder::subst_for_def(db, impl_).fill_with_inference_vars(table).build();
let impl_ty = db.impl_self_ty(impl_).substitute(Interner, &substs);
table
.unify(self_ty, &impl_ty)
.then(|| {
let wh_goals =
crate::chalk_db::convert_where_clauses(db, impl_.into(), &substs)
.into_iter()
.map(|b| b.cast(Interner));
let goal = crate::Goal::all(Interner, wh_goals);
table.try_obligation(goal).map(|_| impl_data)
})
.flatten()
});
if r.is_some() {
break r;
}
}
}
pub fn iterate_path_candidates(
ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
traits_in_scope: &FxHashSet<TraitId>,
visible_from_module: VisibleFromModule,
name: Option<&Name>,
callback: &mut dyn FnMut(AssocItemId) -> ControlFlow<()>,
) -> ControlFlow<()> {
iterate_method_candidates_dyn(
ty,
db,
env,
traits_in_scope,
visible_from_module,
name,
LookupMode::Path,
// the adjustments are not relevant for path lookup
&mut |_, id| callback(id),
)
}
pub fn iterate_method_candidates_dyn(
ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
traits_in_scope: &FxHashSet<TraitId>,
visible_from_module: VisibleFromModule,
name: Option<&Name>,
mode: LookupMode,
callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId) -> ControlFlow<()>,
) -> ControlFlow<()> {
match mode {
LookupMode::MethodCall => {
// For method calls, rust first does any number of autoderef, and
// then one autoref (i.e. when the method takes &self or &mut self).
// Note that when we've got a receiver like &S, even if the method
// we find in the end takes &self, we still do the autoderef step
// (just as rustc does an autoderef and then autoref again).
// We have to be careful about the order we're looking at candidates
// in here. Consider the case where we're resolving `x.clone()`
// where `x: &Vec<_>`. This resolves to the clone method with self
// type `Vec<_>`, *not* `&_`. I.e. we need to consider methods where
// the receiver type exactly matches before cases where we have to
// do autoref. But in the autoderef steps, the `&_` self type comes
// up *before* the `Vec<_>` self type.
//
// On the other hand, we don't want to just pick any by-value method
// before any by-autoref method; it's just that we need to consider
// the methods by autoderef order of *receiver types*, not *self
// types*.
let mut table = InferenceTable::new(db, env.clone());
let ty = table.instantiate_canonical(ty.clone());
let (deref_chain, adj) = autoderef_method_receiver(&mut table, ty);
let result = deref_chain.into_iter().zip(adj).try_for_each(|(receiver_ty, adj)| {
iterate_method_candidates_with_autoref(
&receiver_ty,
adj,
db,
env.clone(),
traits_in_scope,
visible_from_module,
name,
callback,
)
});
result
}
LookupMode::Path => {
// No autoderef for path lookups
iterate_method_candidates_for_self_ty(
ty,
db,
env,
traits_in_scope,
visible_from_module,
name,
callback,
)
}
}
}
fn iterate_method_candidates_with_autoref(
receiver_ty: &Canonical<Ty>,
first_adjustment: ReceiverAdjustments,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
traits_in_scope: &FxHashSet<TraitId>,
visible_from_module: VisibleFromModule,
name: Option<&Name>,
mut callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId) -> ControlFlow<()>,
) -> ControlFlow<()> {
if receiver_ty.value.is_general_var(Interner, &receiver_ty.binders) {
// don't try to resolve methods on unknown types
return ControlFlow::Continue(());
}
iterate_method_candidates_by_receiver(
receiver_ty,
first_adjustment.clone(),
db,
env.clone(),
traits_in_scope,
visible_from_module,
name,
&mut callback,
)?;
let refed = Canonical {
value: TyKind::Ref(Mutability::Not, static_lifetime(), receiver_ty.value.clone())
.intern(Interner),
binders: receiver_ty.binders.clone(),
};
iterate_method_candidates_by_receiver(
&refed,
first_adjustment.with_autoref(Mutability::Not),
db,
env.clone(),
traits_in_scope,
visible_from_module,
name,
&mut callback,
)?;
let ref_muted = Canonical {
value: TyKind::Ref(Mutability::Mut, static_lifetime(), receiver_ty.value.clone())
.intern(Interner),
binders: receiver_ty.binders.clone(),
};
iterate_method_candidates_by_receiver(
&ref_muted,
first_adjustment.with_autoref(Mutability::Mut),
db,
env,
traits_in_scope,
visible_from_module,
name,
&mut callback,
)
}
fn iterate_method_candidates_by_receiver(
receiver_ty: &Canonical<Ty>,
receiver_adjustments: ReceiverAdjustments,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
traits_in_scope: &FxHashSet<TraitId>,
visible_from_module: VisibleFromModule,
name: Option<&Name>,
mut callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId) -> ControlFlow<()>,
) -> ControlFlow<()> {
let mut table = InferenceTable::new(db, env);
let receiver_ty = table.instantiate_canonical(receiver_ty.clone());
let snapshot = table.snapshot();
// We're looking for methods with *receiver* type receiver_ty. These could
// be found in any of the derefs of receiver_ty, so we have to go through
// that.
let mut autoderef = autoderef::Autoderef::new(&mut table, receiver_ty.clone());
while let Some((self_ty, _)) = autoderef.next() {
iterate_inherent_methods(
&self_ty,
&mut autoderef.table,
name,
Some(&receiver_ty),
Some(receiver_adjustments.clone()),
visible_from_module,
&mut callback,
)?
}
table.rollback_to(snapshot);
let mut autoderef = autoderef::Autoderef::new(&mut table, receiver_ty.clone());
while let Some((self_ty, _)) = autoderef.next() {
iterate_trait_method_candidates(
&self_ty,
&mut autoderef.table,
traits_in_scope,
name,
Some(&receiver_ty),
Some(receiver_adjustments.clone()),
&mut callback,
)?
}
ControlFlow::Continue(())
}
fn iterate_method_candidates_for_self_ty(
self_ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
traits_in_scope: &FxHashSet<TraitId>,
visible_from_module: VisibleFromModule,
name: Option<&Name>,
mut callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId) -> ControlFlow<()>,
) -> ControlFlow<()> {
let mut table = InferenceTable::new(db, env);
let self_ty = table.instantiate_canonical(self_ty.clone());
iterate_inherent_methods(
&self_ty,
&mut table,
name,
None,
None,
visible_from_module,
&mut callback,
)?;
iterate_trait_method_candidates(
&self_ty,
&mut table,
traits_in_scope,
name,
None,
None,
callback,
)
}
fn iterate_trait_method_candidates(
self_ty: &Ty,
table: &mut InferenceTable,
traits_in_scope: &FxHashSet<TraitId>,
name: Option<&Name>,
receiver_ty: Option<&Ty>,
receiver_adjustments: Option<ReceiverAdjustments>,
callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId) -> ControlFlow<()>,
) -> ControlFlow<()> {
let db = table.db;
let env = table.trait_env.clone();
let self_is_array = matches!(self_ty.kind(Interner), chalk_ir::TyKind::Array(..));
// if ty is `dyn Trait`, the trait doesn't need to be in scope
let inherent_trait =
self_ty.dyn_trait().into_iter().flat_map(|t| all_super_traits(db.upcast(), t));
let env_traits = matches!(self_ty.kind(Interner), TyKind::Placeholder(_))
// if we have `T: Trait` in the param env, the trait doesn't need to be in scope
.then(|| {
env.traits_in_scope_from_clauses(self_ty.clone())
.flat_map(|t| all_super_traits(db.upcast(), t))
})
.into_iter()
.flatten();
let traits = inherent_trait.chain(env_traits).chain(traits_in_scope.iter().copied());
let canonical_self_ty = table.canonicalize(self_ty.clone()).value;
'traits: for t in traits {
let data = db.trait_data(t);
// Traits annotated with `#[rustc_skip_array_during_method_dispatch]` are skipped during
// method resolution, if the receiver is an array, and we're compiling for editions before
// 2021.
// This is to make `[a].into_iter()` not break code with the new `IntoIterator` impl for
// arrays.
if data.skip_array_during_method_dispatch && self_is_array {
// FIXME: this should really be using the edition of the method name's span, in case it
// comes from a macro
if db.crate_graph()[env.krate].edition < Edition::Edition2021 {
continue;
}
}
// we'll be lazy about checking whether the type implements the
// trait, but if we find out it doesn't, we'll skip the rest of the
// iteration
let mut known_implemented = false;
for &(_, item) in data.items.iter() {
// Don't pass a `visible_from_module` down to `is_valid_candidate`,
// since only inherent methods should be included into visibility checking.
if !is_valid_candidate(table, name, receiver_ty, item, self_ty, None) {
continue;
}
if !known_implemented {
let goal = generic_implements_goal(db, env.clone(), t, &canonical_self_ty);
if db.trait_solve(env.krate, goal.cast(Interner)).is_none() {
continue 'traits;
}
}
known_implemented = true;
callback(receiver_adjustments.clone().unwrap_or_default(), item)?;
}
}
ControlFlow::Continue(())
}
fn iterate_inherent_methods(
self_ty: &Ty,
table: &mut InferenceTable,
name: Option<&Name>,
receiver_ty: Option<&Ty>,
receiver_adjustments: Option<ReceiverAdjustments>,
visible_from_module: VisibleFromModule,
callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId) -> ControlFlow<()>,
) -> ControlFlow<()> {
let db = table.db;
let env = table.trait_env.clone();
let def_crates = match def_crates(db, self_ty, env.krate) {
Some(k) => k,
None => return ControlFlow::Continue(()),
};
let (module, block) = match visible_from_module {
VisibleFromModule::Filter(module) => (Some(module), module.containing_block()),
VisibleFromModule::IncludeBlock(block) => (None, Some(block)),
VisibleFromModule::None => (None, None),
};
if let Some(block_id) = block {
if let Some(impls) = db.inherent_impls_in_block(block_id) {
impls_for_self_ty(
&impls,
self_ty,
table,
name,
receiver_ty,
receiver_adjustments.clone(),
module,
callback,
)?;
}
}
for krate in def_crates {
let impls = db.inherent_impls_in_crate(krate);
impls_for_self_ty(
&impls,
self_ty,
table,
name,
receiver_ty,
receiver_adjustments.clone(),
module,
callback,
)?;
}
return ControlFlow::Continue(());
fn impls_for_self_ty(
impls: &InherentImpls,
self_ty: &Ty,
table: &mut InferenceTable,
name: Option<&Name>,
receiver_ty: Option<&Ty>,
receiver_adjustments: Option<ReceiverAdjustments>,
visible_from_module: Option<ModuleId>,
callback: &mut dyn FnMut(ReceiverAdjustments, AssocItemId) -> ControlFlow<()>,
) -> ControlFlow<()> {
let db = table.db;
let impls_for_self_ty = impls.for_self_ty(self_ty);
for &impl_def in impls_for_self_ty {
for &item in &db.impl_data(impl_def).items {
if !is_valid_candidate(table, name, receiver_ty, item, self_ty, visible_from_module)
{
continue;
}
callback(receiver_adjustments.clone().unwrap_or_default(), item)?;
}
}
ControlFlow::Continue(())
}
}
/// Returns the receiver type for the index trait call.
pub fn resolve_indexing_op(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
ty: Canonical<Ty>,
index_trait: TraitId,
) -> Option<ReceiverAdjustments> {
let mut table = InferenceTable::new(db, env.clone());
let ty = table.instantiate_canonical(ty);
let (deref_chain, adj) = autoderef_method_receiver(&mut table, ty);
for (ty, adj) in deref_chain.into_iter().zip(adj) {
let goal = generic_implements_goal(db, env.clone(), index_trait, &ty);
if db.trait_solve(env.krate, goal.cast(Interner)).is_some() {
return Some(adj);
}
}
None
}
fn is_valid_candidate(
table: &mut InferenceTable,
name: Option<&Name>,
receiver_ty: Option<&Ty>,
item: AssocItemId,
self_ty: &Ty,
visible_from_module: Option<ModuleId>,
) -> bool {
macro_rules! check_that {
($cond:expr) => {
if !$cond {
return false;
}
};
}
let db = table.db;
match item {
AssocItemId::FunctionId(m) => {
let data = db.function_data(m);
check_that!(name.map_or(true, |n| n == &data.name));
check_that!(visible_from_module.map_or(true, |from_module| {
let v = db.function_visibility(m).is_visible_from(db.upcast(), from_module);
if !v {
cov_mark::hit!(autoderef_candidate_not_visible);
}
v
}));
table.run_in_snapshot(|table| {
let subst = TyBuilder::subst_for_def(db, m).fill_with_inference_vars(table).build();
let expect_self_ty = match m.lookup(db.upcast()).container {
ItemContainerId::TraitId(_) => {
subst.at(Interner, 0).assert_ty_ref(Interner).clone()
}
ItemContainerId::ImplId(impl_id) => {
subst.apply(db.impl_self_ty(impl_id).skip_binders().clone(), Interner)
}
// We should only get called for associated items (impl/trait)
ItemContainerId::ModuleId(_) | ItemContainerId::ExternBlockId(_) => {
unreachable!()
}
};
check_that!(table.unify(&expect_self_ty, self_ty));
if let Some(receiver_ty) = receiver_ty {
check_that!(data.has_self_param());
let sig = db.callable_item_signature(m.into());
let expected_receiver =
sig.map(|s| s.params()[0].clone()).substitute(Interner, &subst);
check_that!(table.unify(&receiver_ty, &expected_receiver));
}
true
})
}
AssocItemId::ConstId(c) => {
let data = db.const_data(c);
check_that!(receiver_ty.is_none());
check_that!(name.map_or(true, |n| data.name.as_ref() == Some(n)));
check_that!(visible_from_module.map_or(true, |from_module| {
let v = db.const_visibility(c).is_visible_from(db.upcast(), from_module);
if !v {
cov_mark::hit!(const_candidate_not_visible);
}
v
}));
if let ItemContainerId::ImplId(impl_id) = c.lookup(db.upcast()).container {
let self_ty_matches = table.run_in_snapshot(|table| {
let subst =
TyBuilder::subst_for_def(db, c).fill_with_inference_vars(table).build();
let expected_self_ty =
subst.apply(db.impl_self_ty(impl_id).skip_binders().clone(), Interner);
table.unify(&expected_self_ty, &self_ty)
});
if !self_ty_matches {
cov_mark::hit!(const_candidate_self_type_mismatch);
return false;
}
}
true
}
_ => false,
}
}
pub fn implements_trait(
ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
trait_: TraitId,
) -> bool {
let goal = generic_implements_goal(db, env.clone(), trait_, ty);
let solution = db.trait_solve(env.krate, goal.cast(Interner));
solution.is_some()
}
pub fn implements_trait_unique(
ty: &Canonical<Ty>,
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
trait_: TraitId,
) -> bool {
let goal = generic_implements_goal(db, env.clone(), trait_, ty);
let solution = db.trait_solve(env.krate, goal.cast(Interner));
matches!(solution, Some(crate::Solution::Unique(_)))
}
/// This creates Substs for a trait with the given Self type and type variables
/// for all other parameters, to query Chalk with it.
fn generic_implements_goal(
db: &dyn HirDatabase,
env: Arc<TraitEnvironment>,
trait_: TraitId,
self_ty: &Canonical<Ty>,
) -> Canonical<InEnvironment<super::DomainGoal>> {
let mut kinds = self_ty.binders.interned().to_vec();
let trait_ref = TyBuilder::trait_ref(db, trait_)
.push(self_ty.value.clone())
.fill_with_bound_vars(DebruijnIndex::INNERMOST, kinds.len())
.build();
kinds.extend(trait_ref.substitution.iter(Interner).skip(1).map(|x| {
let vk = match x.data(Interner) {
chalk_ir::GenericArgData::Ty(_) => {
chalk_ir::VariableKind::Ty(chalk_ir::TyVariableKind::General)
}
chalk_ir::GenericArgData::Lifetime(_) => chalk_ir::VariableKind::Lifetime,
chalk_ir::GenericArgData::Const(c) => {
chalk_ir::VariableKind::Const(c.data(Interner).ty.clone())
}
};
chalk_ir::WithKind::new(vk, UniverseIndex::ROOT)
}));
let obligation = trait_ref.cast(Interner);
Canonical {
binders: CanonicalVarKinds::from_iter(Interner, kinds),
value: InEnvironment::new(&env.env, obligation),
}
}
fn autoderef_method_receiver(
table: &mut InferenceTable,
ty: Ty,
) -> (Vec<Canonical<Ty>>, Vec<ReceiverAdjustments>) {
let (mut deref_chain, mut adjustments): (Vec<_>, Vec<_>) = (Vec::new(), Vec::new());
let mut autoderef = autoderef::Autoderef::new(table, ty);
while let Some((ty, derefs)) = autoderef.next() {
deref_chain.push(autoderef.table.canonicalize(ty).value);
adjustments.push(ReceiverAdjustments {
autoref: None,
autoderefs: derefs,
unsize_array: false,
});
}
// As a last step, we can do array unsizing (that's the only unsizing that rustc does for method receivers!)
if let (Some((TyKind::Array(parameters, _), binders)), Some(adj)) = (
deref_chain.last().map(|ty| (ty.value.kind(Interner), ty.binders.clone())),
adjustments.last().cloned(),
) {
let unsized_ty = TyKind::Slice(parameters.clone()).intern(Interner);
deref_chain.push(Canonical { value: unsized_ty, binders });
adjustments.push(ReceiverAdjustments { unsize_array: true, ..adj });
}
(deref_chain, adjustments)
}