rust-analyzer/crates/ra_hir_ty/src/lower.rs
2020-02-07 18:28:10 +01:00

769 lines
30 KiB
Rust

//! Methods for lowering the HIR to types. There are two main cases here:
//!
//! - Lowering a type reference like `&usize` or `Option<foo::bar::Baz>` to a
//! type: The entry point for this is `Ty::from_hir`.
//! - Building the type for an item: This happens through the `type_for_def` query.
//!
//! This usually involves resolving names, collecting generic arguments etc.
use std::iter;
use std::sync::Arc;
use hir_def::{
builtin_type::BuiltinType,
generics::WherePredicate,
path::{GenericArg, Path, PathSegment, PathSegments},
resolver::{HasResolver, Resolver, TypeNs},
type_ref::{TypeBound, TypeRef},
AdtId, ConstId, EnumId, EnumVariantId, FunctionId, GenericDefId, HasModule, ImplId,
LocalStructFieldId, Lookup, StaticId, StructId, TraitId, TypeAliasId, UnionId, VariantId,
};
use ra_arena::map::ArenaMap;
use ra_db::CrateId;
use crate::{
db::HirDatabase,
primitive::{FloatTy, IntTy},
utils::{
all_super_traits, associated_type_by_name_including_super_traits, generics, make_mut_slice,
variant_data,
},
FnSig, GenericPredicate, ProjectionPredicate, ProjectionTy, Substs, TraitEnvironment, TraitRef,
Ty, TypeCtor, TypeWalk,
};
#[derive(Clone, Debug)]
pub struct TyLoweringContext<'a, DB: HirDatabase> {
pub db: &'a DB,
pub resolver: &'a Resolver,
}
impl Ty {
pub fn from_hir(ctx: &TyLoweringContext<'_, impl HirDatabase>, type_ref: &TypeRef) -> Self {
match type_ref {
TypeRef::Never => Ty::simple(TypeCtor::Never),
TypeRef::Tuple(inner) => {
let inner_tys: Arc<[Ty]> = inner.iter().map(|tr| Ty::from_hir(ctx, tr)).collect();
Ty::apply(
TypeCtor::Tuple { cardinality: inner_tys.len() as u16 },
Substs(inner_tys),
)
}
TypeRef::Path(path) => Ty::from_hir_path(ctx, path),
TypeRef::RawPtr(inner, mutability) => {
let inner_ty = Ty::from_hir(ctx, inner);
Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty)
}
TypeRef::Array(inner) => {
let inner_ty = Ty::from_hir(ctx, inner);
Ty::apply_one(TypeCtor::Array, inner_ty)
}
TypeRef::Slice(inner) => {
let inner_ty = Ty::from_hir(ctx, inner);
Ty::apply_one(TypeCtor::Slice, inner_ty)
}
TypeRef::Reference(inner, mutability) => {
let inner_ty = Ty::from_hir(ctx, inner);
Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty)
}
TypeRef::Placeholder => Ty::Unknown,
TypeRef::Fn(params) => {
let sig = Substs(params.iter().map(|tr| Ty::from_hir(ctx, tr)).collect());
Ty::apply(TypeCtor::FnPtr { num_args: sig.len() as u16 - 1 }, sig)
}
TypeRef::DynTrait(bounds) => {
let self_ty = Ty::Bound(0);
let predicates = bounds
.iter()
.flat_map(|b| GenericPredicate::from_type_bound(ctx, b, self_ty.clone()))
.collect();
Ty::Dyn(predicates)
}
TypeRef::ImplTrait(bounds) => {
let self_ty = Ty::Bound(0);
let predicates = bounds
.iter()
.flat_map(|b| GenericPredicate::from_type_bound(ctx, b, self_ty.clone()))
.collect();
Ty::Opaque(predicates)
}
TypeRef::Error => Ty::Unknown,
}
}
/// This is only for `generic_predicates_for_param`, where we can't just
/// lower the self types of the predicates since that could lead to cycles.
/// So we just check here if the `type_ref` resolves to a generic param, and which.
fn from_hir_only_param(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
type_ref: &TypeRef,
) -> Option<u32> {
let path = match type_ref {
TypeRef::Path(path) => path,
_ => return None,
};
if path.type_anchor().is_some() {
return None;
}
if path.segments().len() > 1 {
return None;
}
let resolution = match ctx.resolver.resolve_path_in_type_ns(ctx.db, path.mod_path()) {
Some((it, None)) => it,
_ => return None,
};
if let TypeNs::GenericParam(param_id) = resolution {
let generics = generics(ctx.db, ctx.resolver.generic_def().expect("generics in scope"));
let idx = generics.param_idx(param_id);
Some(idx)
} else {
None
}
}
pub(crate) fn from_type_relative_path(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
ty: Ty,
remaining_segments: PathSegments<'_>,
) -> Ty {
if remaining_segments.len() == 1 {
// resolve unselected assoc types
let segment = remaining_segments.first().unwrap();
Ty::select_associated_type(ctx, ty, segment)
} else if remaining_segments.len() > 1 {
// FIXME report error (ambiguous associated type)
Ty::Unknown
} else {
ty
}
}
pub(crate) fn from_partly_resolved_hir_path(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
resolution: TypeNs,
resolved_segment: PathSegment<'_>,
remaining_segments: PathSegments<'_>,
) -> Ty {
let ty = match resolution {
TypeNs::TraitId(trait_) => {
let trait_ref = TraitRef::from_resolved_path(ctx, trait_, resolved_segment, None);
return if remaining_segments.len() == 1 {
let segment = remaining_segments.first().unwrap();
let associated_ty = associated_type_by_name_including_super_traits(
ctx.db,
trait_ref.trait_,
&segment.name,
);
match associated_ty {
Some(associated_ty) => {
// FIXME handle type parameters on the segment
Ty::Projection(ProjectionTy {
associated_ty,
parameters: trait_ref.substs,
})
}
None => {
// FIXME: report error (associated type not found)
Ty::Unknown
}
}
} else if remaining_segments.len() > 1 {
// FIXME report error (ambiguous associated type)
Ty::Unknown
} else {
Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)]))
};
}
TypeNs::GenericParam(param_id) => {
let generics =
generics(ctx.db, ctx.resolver.generic_def().expect("generics in scope"));
let idx = generics.param_idx(param_id);
// FIXME: maybe return name in resolution?
let name = generics.param_name(param_id);
Ty::Param { idx, name }
}
TypeNs::SelfType(impl_id) => ctx.db.impl_self_ty(impl_id).clone(),
TypeNs::AdtSelfType(adt) => ctx.db.ty(adt.into()),
TypeNs::AdtId(it) => Ty::from_hir_path_inner(ctx, resolved_segment, it.into()),
TypeNs::BuiltinType(it) => Ty::from_hir_path_inner(ctx, resolved_segment, it.into()),
TypeNs::TypeAliasId(it) => Ty::from_hir_path_inner(ctx, resolved_segment, it.into()),
// FIXME: report error
TypeNs::EnumVariantId(_) => return Ty::Unknown,
};
Ty::from_type_relative_path(ctx, ty, remaining_segments)
}
pub(crate) fn from_hir_path(ctx: &TyLoweringContext<'_, impl HirDatabase>, path: &Path) -> Ty {
// Resolve the path (in type namespace)
if let Some(type_ref) = path.type_anchor() {
let ty = Ty::from_hir(ctx, &type_ref);
return Ty::from_type_relative_path(ctx, ty, path.segments());
}
let (resolution, remaining_index) =
match ctx.resolver.resolve_path_in_type_ns(ctx.db, path.mod_path()) {
Some(it) => it,
None => return Ty::Unknown,
};
let (resolved_segment, remaining_segments) = match remaining_index {
None => (
path.segments().last().expect("resolved path has at least one element"),
PathSegments::EMPTY,
),
Some(i) => (path.segments().get(i - 1).unwrap(), path.segments().skip(i)),
};
Ty::from_partly_resolved_hir_path(ctx, resolution, resolved_segment, remaining_segments)
}
fn select_associated_type(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
self_ty: Ty,
segment: PathSegment<'_>,
) -> Ty {
let param_idx = match self_ty {
Ty::Param { idx, .. } => idx,
_ => return Ty::Unknown, // Error: Ambiguous associated type
};
let def = match ctx.resolver.generic_def() {
Some(def) => def,
None => return Ty::Unknown, // this can't actually happen
};
let predicates = ctx.db.generic_predicates_for_param(def.into(), param_idx);
let traits_from_env = predicates.iter().filter_map(|pred| match pred {
GenericPredicate::Implemented(tr) if tr.self_ty() == &self_ty => Some(tr.trait_),
_ => None,
});
let traits = traits_from_env.flat_map(|t| all_super_traits(ctx.db, t));
for t in traits {
if let Some(associated_ty) = ctx.db.trait_data(t).associated_type_by_name(&segment.name)
{
let substs = Substs::build_for_def(ctx.db, t)
.push(self_ty.clone())
.fill_with_unknown()
.build();
// FIXME handle type parameters on the segment
return Ty::Projection(ProjectionTy { associated_ty, parameters: substs });
}
}
Ty::Unknown
}
fn from_hir_path_inner(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
segment: PathSegment<'_>,
typable: TyDefId,
) -> Ty {
let generic_def = match typable {
TyDefId::BuiltinType(_) => None,
TyDefId::AdtId(it) => Some(it.into()),
TyDefId::TypeAliasId(it) => Some(it.into()),
};
let substs = substs_from_path_segment(ctx, segment, generic_def, false);
ctx.db.ty(typable).subst(&substs)
}
/// Collect generic arguments from a path into a `Substs`. See also
/// `create_substs_for_ast_path` and `def_to_ty` in rustc.
pub(super) fn substs_from_path(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
path: &Path,
// Note that we don't call `db.value_type(resolved)` here,
// `ValueTyDefId` is just a convenient way to pass generics and
// special-case enum variants
resolved: ValueTyDefId,
) -> Substs {
let last = path.segments().last().expect("path should have at least one segment");
let (segment, generic_def) = match resolved {
ValueTyDefId::FunctionId(it) => (last, Some(it.into())),
ValueTyDefId::StructId(it) => (last, Some(it.into())),
ValueTyDefId::ConstId(it) => (last, Some(it.into())),
ValueTyDefId::StaticId(_) => (last, None),
ValueTyDefId::EnumVariantId(var) => {
// the generic args for an enum variant may be either specified
// on the segment referring to the enum, or on the segment
// referring to the variant. So `Option::<T>::None` and
// `Option::None::<T>` are both allowed (though the former is
// preferred). See also `def_ids_for_path_segments` in rustc.
let len = path.segments().len();
let penultimate = if len >= 2 { path.segments().get(len - 2) } else { None };
let segment = match penultimate {
Some(segment) if segment.args_and_bindings.is_some() => segment,
_ => last,
};
(segment, Some(var.parent.into()))
}
};
substs_from_path_segment(ctx, segment, generic_def, false)
}
}
pub(super) fn substs_from_path_segment(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
segment: PathSegment<'_>,
def_generic: Option<GenericDefId>,
add_self_param: bool,
) -> Substs {
let mut substs = Vec::new();
let def_generics = def_generic.map(|def| generics(ctx.db, def.into()));
let (total_len, parent_len, child_len) = def_generics.map_or((0, 0, 0), |g| g.len_split());
substs.extend(iter::repeat(Ty::Unknown).take(parent_len));
if add_self_param {
// FIXME this add_self_param argument is kind of a hack: Traits have the
// Self type as an implicit first type parameter, but it can't be
// actually provided in the type arguments
// (well, actually sometimes it can, in the form of type-relative paths: `<Foo as Default>::default()`)
substs.push(Ty::Unknown);
}
if let Some(generic_args) = &segment.args_and_bindings {
// if args are provided, it should be all of them, but we can't rely on that
let self_param_correction = if add_self_param { 1 } else { 0 };
let child_len = child_len - self_param_correction;
for arg in generic_args.args.iter().take(child_len) {
match arg {
GenericArg::Type(type_ref) => {
let ty = Ty::from_hir(ctx, type_ref);
substs.push(ty);
}
}
}
}
// add placeholders for args that were not provided
let supplied_params = substs.len();
for _ in supplied_params..total_len {
substs.push(Ty::Unknown);
}
assert_eq!(substs.len(), total_len);
// handle defaults
if let Some(def_generic) = def_generic {
let default_substs = ctx.db.generic_defaults(def_generic.into());
assert_eq!(substs.len(), default_substs.len());
for (i, default_ty) in default_substs.iter().enumerate() {
if substs[i] == Ty::Unknown {
substs[i] = default_ty.clone();
}
}
}
Substs(substs.into())
}
impl TraitRef {
fn from_path(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
path: &Path,
explicit_self_ty: Option<Ty>,
) -> Option<Self> {
let resolved = match ctx.resolver.resolve_path_in_type_ns_fully(ctx.db, path.mod_path())? {
TypeNs::TraitId(tr) => tr,
_ => return None,
};
let segment = path.segments().last().expect("path should have at least one segment");
Some(TraitRef::from_resolved_path(ctx, resolved.into(), segment, explicit_self_ty))
}
pub(crate) fn from_resolved_path(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
resolved: TraitId,
segment: PathSegment<'_>,
explicit_self_ty: Option<Ty>,
) -> Self {
let mut substs = TraitRef::substs_from_path(ctx, segment, resolved);
if let Some(self_ty) = explicit_self_ty {
make_mut_slice(&mut substs.0)[0] = self_ty;
}
TraitRef { trait_: resolved, substs }
}
fn from_hir(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
type_ref: &TypeRef,
explicit_self_ty: Option<Ty>,
) -> Option<Self> {
let path = match type_ref {
TypeRef::Path(path) => path,
_ => return None,
};
TraitRef::from_path(ctx, path, explicit_self_ty)
}
fn substs_from_path(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
segment: PathSegment<'_>,
resolved: TraitId,
) -> Substs {
let has_self_param =
segment.args_and_bindings.as_ref().map(|a| a.has_self_type).unwrap_or(false);
substs_from_path_segment(ctx, segment, Some(resolved.into()), !has_self_param)
}
pub(crate) fn from_type_bound(
ctx: &TyLoweringContext<'_, impl HirDatabase>,
bound: &TypeBound,
self_ty: Ty,
) -> Option<TraitRef> {
match bound {
TypeBound::Path(path) => TraitRef::from_path(ctx, path, Some(self_ty)),
TypeBound::Error => None,
}
}
}
impl GenericPredicate {
pub(crate) fn from_where_predicate<'a>(
ctx: &'a TyLoweringContext<'a, impl HirDatabase>,
where_predicate: &'a WherePredicate,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let self_ty = Ty::from_hir(ctx, &where_predicate.type_ref);
GenericPredicate::from_type_bound(ctx, &where_predicate.bound, self_ty)
}
pub(crate) fn from_type_bound<'a>(
ctx: &'a TyLoweringContext<'a, impl HirDatabase>,
bound: &'a TypeBound,
self_ty: Ty,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let trait_ref = TraitRef::from_type_bound(ctx, bound, self_ty);
iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented))
.chain(
trait_ref
.into_iter()
.flat_map(move |tr| assoc_type_bindings_from_type_bound(ctx, bound, tr)),
)
}
}
fn assoc_type_bindings_from_type_bound<'a>(
ctx: &'a TyLoweringContext<'a, impl HirDatabase>,
bound: &'a TypeBound,
trait_ref: TraitRef,
) -> impl Iterator<Item = GenericPredicate> + 'a {
let last_segment = match bound {
TypeBound::Path(path) => path.segments().last(),
TypeBound::Error => None,
};
last_segment
.into_iter()
.flat_map(|segment| segment.args_and_bindings.into_iter())
.flat_map(|args_and_bindings| args_and_bindings.bindings.iter())
.map(move |(name, type_ref)| {
let associated_ty =
associated_type_by_name_including_super_traits(ctx.db, trait_ref.trait_, &name);
let associated_ty = match associated_ty {
None => return GenericPredicate::Error,
Some(t) => t,
};
let projection_ty =
ProjectionTy { associated_ty, parameters: trait_ref.substs.clone() };
let ty = Ty::from_hir(ctx, type_ref);
let projection_predicate = ProjectionPredicate { projection_ty, ty };
GenericPredicate::Projection(projection_predicate)
})
}
/// Build the signature of a callable item (function, struct or enum variant).
pub fn callable_item_sig(db: &impl HirDatabase, def: CallableDef) -> FnSig {
match def {
CallableDef::FunctionId(f) => fn_sig_for_fn(db, f),
CallableDef::StructId(s) => fn_sig_for_struct_constructor(db, s),
CallableDef::EnumVariantId(e) => fn_sig_for_enum_variant_constructor(db, e),
}
}
/// Build the type of all specific fields of a struct or enum variant.
pub(crate) fn field_types_query(
db: &impl HirDatabase,
variant_id: VariantId,
) -> Arc<ArenaMap<LocalStructFieldId, Ty>> {
let var_data = variant_data(db, variant_id);
let resolver = match variant_id {
VariantId::StructId(it) => it.resolver(db),
VariantId::UnionId(it) => it.resolver(db),
VariantId::EnumVariantId(it) => it.parent.resolver(db),
};
let mut res = ArenaMap::default();
let ctx = TyLoweringContext { db, resolver: &resolver };
for (field_id, field_data) in var_data.fields().iter() {
res.insert(field_id, Ty::from_hir(&ctx, &field_data.type_ref))
}
Arc::new(res)
}
/// This query exists only to be used when resolving short-hand associated types
/// like `T::Item`.
///
/// See the analogous query in rustc and its comment:
/// https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46
/// This is a query mostly to handle cycles somewhat gracefully; e.g. the
/// following bounds are disallowed: `T: Foo<U::Item>, U: Foo<T::Item>`, but
/// these are fine: `T: Foo<U::Item>, U: Foo<()>`.
pub(crate) fn generic_predicates_for_param_query(
db: &impl HirDatabase,
def: GenericDefId,
param_idx: u32,
) -> Arc<[GenericPredicate]> {
let resolver = def.resolver(db);
let ctx = TyLoweringContext { db, resolver: &resolver };
resolver
.where_predicates_in_scope()
// we have to filter out all other predicates *first*, before attempting to lower them
.filter(|pred| Ty::from_hir_only_param(&ctx, &pred.type_ref) == Some(param_idx))
.flat_map(|pred| GenericPredicate::from_where_predicate(&ctx, pred))
.collect()
}
pub(crate) fn generic_predicates_for_param_recover(
_db: &impl HirDatabase,
_cycle: &[String],
_def: &GenericDefId,
_param_idx: &u32,
) -> Arc<[GenericPredicate]> {
Arc::new([])
}
impl TraitEnvironment {
pub fn lower(ctx: &TyLoweringContext<'_, impl HirDatabase>) -> Arc<TraitEnvironment> {
let predicates = ctx
.resolver
.where_predicates_in_scope()
.flat_map(|pred| GenericPredicate::from_where_predicate(ctx, pred))
.collect::<Vec<_>>();
Arc::new(TraitEnvironment { predicates })
}
}
/// Resolve the where clause(s) of an item with generics.
pub(crate) fn generic_predicates_query(
db: &impl HirDatabase,
def: GenericDefId,
) -> Arc<[GenericPredicate]> {
let resolver = def.resolver(db);
let ctx = TyLoweringContext { db, resolver: &resolver };
resolver
.where_predicates_in_scope()
.flat_map(|pred| GenericPredicate::from_where_predicate(&ctx, pred))
.collect()
}
/// Resolve the default type params from generics
pub(crate) fn generic_defaults_query(db: &impl HirDatabase, def: GenericDefId) -> Substs {
let resolver = def.resolver(db);
let ctx = TyLoweringContext { db, resolver: &resolver };
let generic_params = generics(db, def.into());
let defaults = generic_params
.iter()
.map(|(_idx, p)| p.default.as_ref().map_or(Ty::Unknown, |t| Ty::from_hir(&ctx, t)))
.collect();
Substs(defaults)
}
fn fn_sig_for_fn(db: &impl HirDatabase, def: FunctionId) -> FnSig {
let data = db.function_data(def);
let resolver = def.resolver(db);
let ctx = TyLoweringContext { db, resolver: &resolver };
let params = data.params.iter().map(|tr| Ty::from_hir(&ctx, tr)).collect::<Vec<_>>();
let ret = Ty::from_hir(&ctx, &data.ret_type);
FnSig::from_params_and_return(params, ret)
}
/// Build the declared type of a function. This should not need to look at the
/// function body.
fn type_for_fn(db: &impl HirDatabase, def: FunctionId) -> Ty {
let generics = generics(db, def.into());
let substs = Substs::identity(&generics);
Ty::apply(TypeCtor::FnDef(def.into()), substs)
}
/// Build the declared type of a const.
fn type_for_const(db: &impl HirDatabase, def: ConstId) -> Ty {
let data = db.const_data(def);
let resolver = def.resolver(db);
let ctx = TyLoweringContext { db, resolver: &resolver };
Ty::from_hir(&ctx, &data.type_ref)
}
/// Build the declared type of a static.
fn type_for_static(db: &impl HirDatabase, def: StaticId) -> Ty {
let data = db.static_data(def);
let resolver = def.resolver(db);
let ctx = TyLoweringContext { db, resolver: &resolver };
Ty::from_hir(&ctx, &data.type_ref)
}
/// Build the declared type of a static.
fn type_for_builtin(def: BuiltinType) -> Ty {
Ty::simple(match def {
BuiltinType::Char => TypeCtor::Char,
BuiltinType::Bool => TypeCtor::Bool,
BuiltinType::Str => TypeCtor::Str,
BuiltinType::Int(t) => TypeCtor::Int(IntTy::from(t).into()),
BuiltinType::Float(t) => TypeCtor::Float(FloatTy::from(t).into()),
})
}
fn fn_sig_for_struct_constructor(db: &impl HirDatabase, def: StructId) -> FnSig {
let struct_data = db.struct_data(def.into());
let fields = struct_data.variant_data.fields();
let resolver = def.resolver(db);
let ctx = TyLoweringContext { db, resolver: &resolver };
let params =
fields.iter().map(|(_, field)| Ty::from_hir(&ctx, &field.type_ref)).collect::<Vec<_>>();
let ret = type_for_adt(db, def.into());
FnSig::from_params_and_return(params, ret)
}
/// Build the type of a tuple struct constructor.
fn type_for_struct_constructor(db: &impl HirDatabase, def: StructId) -> Ty {
let struct_data = db.struct_data(def.into());
if struct_data.variant_data.is_unit() {
return type_for_adt(db, def.into()); // Unit struct
}
let generics = generics(db, def.into());
let substs = Substs::identity(&generics);
Ty::apply(TypeCtor::FnDef(def.into()), substs)
}
fn fn_sig_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariantId) -> FnSig {
let enum_data = db.enum_data(def.parent);
let var_data = &enum_data.variants[def.local_id];
let fields = var_data.variant_data.fields();
let resolver = def.parent.resolver(db);
let ctx = TyLoweringContext { db, resolver: &resolver };
let params =
fields.iter().map(|(_, field)| Ty::from_hir(&ctx, &field.type_ref)).collect::<Vec<_>>();
let generics = generics(db, def.parent.into());
let substs = Substs::identity(&generics);
let ret = type_for_adt(db, def.parent.into()).subst(&substs);
FnSig::from_params_and_return(params, ret)
}
/// Build the type of a tuple enum variant constructor.
fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariantId) -> Ty {
let enum_data = db.enum_data(def.parent);
let var_data = &enum_data.variants[def.local_id].variant_data;
if var_data.is_unit() {
return type_for_adt(db, def.parent.into()); // Unit variant
}
let generics = generics(db, def.parent.into());
let substs = Substs::identity(&generics);
Ty::apply(TypeCtor::FnDef(EnumVariantId::from(def).into()), substs)
}
fn type_for_adt(db: &impl HirDatabase, adt: AdtId) -> Ty {
let generics = generics(db, adt.into());
Ty::apply(TypeCtor::Adt(adt), Substs::identity(&generics))
}
fn type_for_type_alias(db: &impl HirDatabase, t: TypeAliasId) -> Ty {
let generics = generics(db, t.into());
let resolver = t.resolver(db);
let ctx = TyLoweringContext { db, resolver: &resolver };
let type_ref = &db.type_alias_data(t).type_ref;
let substs = Substs::identity(&generics);
let inner = Ty::from_hir(&ctx, type_ref.as_ref().unwrap_or(&TypeRef::Error));
inner.subst(&substs)
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub enum CallableDef {
FunctionId(FunctionId),
StructId(StructId),
EnumVariantId(EnumVariantId),
}
impl_froms!(CallableDef: FunctionId, StructId, EnumVariantId);
impl CallableDef {
pub fn krate(self, db: &impl HirDatabase) -> CrateId {
match self {
CallableDef::FunctionId(f) => f.lookup(db).module(db),
CallableDef::StructId(s) => s.lookup(db).container.module(db),
CallableDef::EnumVariantId(e) => e.parent.lookup(db).container.module(db),
}
.krate
}
}
impl From<CallableDef> for GenericDefId {
fn from(def: CallableDef) -> GenericDefId {
match def {
CallableDef::FunctionId(f) => f.into(),
CallableDef::StructId(s) => s.into(),
CallableDef::EnumVariantId(e) => e.into(),
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum TyDefId {
BuiltinType(BuiltinType),
AdtId(AdtId),
TypeAliasId(TypeAliasId),
}
impl_froms!(TyDefId: BuiltinType, AdtId(StructId, EnumId, UnionId), TypeAliasId);
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
pub enum ValueTyDefId {
FunctionId(FunctionId),
StructId(StructId),
EnumVariantId(EnumVariantId),
ConstId(ConstId),
StaticId(StaticId),
}
impl_froms!(ValueTyDefId: FunctionId, StructId, EnumVariantId, ConstId, StaticId);
/// Build the declared type of an item. This depends on the namespace; e.g. for
/// `struct Foo(usize)`, we have two types: The type of the struct itself, and
/// the constructor function `(usize) -> Foo` which lives in the values
/// namespace.
pub(crate) fn ty_query(db: &impl HirDatabase, def: TyDefId) -> Ty {
match def {
TyDefId::BuiltinType(it) => type_for_builtin(it),
TyDefId::AdtId(it) => type_for_adt(db, it),
TyDefId::TypeAliasId(it) => type_for_type_alias(db, it),
}
}
pub(crate) fn ty_recover(_db: &impl HirDatabase, _cycle: &[String], _def: &TyDefId) -> Ty {
Ty::Unknown
}
pub(crate) fn value_ty_query(db: &impl HirDatabase, def: ValueTyDefId) -> Ty {
match def {
ValueTyDefId::FunctionId(it) => type_for_fn(db, it),
ValueTyDefId::StructId(it) => type_for_struct_constructor(db, it),
ValueTyDefId::EnumVariantId(it) => type_for_enum_variant_constructor(db, it),
ValueTyDefId::ConstId(it) => type_for_const(db, it),
ValueTyDefId::StaticId(it) => type_for_static(db, it),
}
}
pub(crate) fn impl_self_ty_query(db: &impl HirDatabase, impl_id: ImplId) -> Ty {
let impl_data = db.impl_data(impl_id);
let resolver = impl_id.resolver(db);
let ctx = TyLoweringContext { db, resolver: &resolver };
Ty::from_hir(&ctx, &impl_data.target_type)
}
pub(crate) fn impl_self_ty_recover(
_db: &impl HirDatabase,
_cycle: &[String],
_impl_id: &ImplId,
) -> Ty {
Ty::Unknown
}
pub(crate) fn impl_trait_query(db: &impl HirDatabase, impl_id: ImplId) -> Option<TraitRef> {
let impl_data = db.impl_data(impl_id);
let resolver = impl_id.resolver(db);
let ctx = TyLoweringContext { db, resolver: &resolver };
let self_ty = db.impl_self_ty(impl_id);
let target_trait = impl_data.target_trait.as_ref()?;
TraitRef::from_hir(&ctx, target_trait, Some(self_ty.clone()))
}