rust-analyzer/crates/ra_assists/src/assist_context.rs
Aleksey Kladov 1e790ea314 Simplify
2020-05-07 17:32:01 +02:00

233 lines
8.4 KiB
Rust

//! See `AssistContext`
use algo::find_covering_element;
use hir::Semantics;
use ra_db::{FileId, FileRange};
use ra_fmt::{leading_indent, reindent};
use ra_ide_db::{
source_change::{SingleFileChange, SourceChange},
RootDatabase,
};
use ra_syntax::{
algo::{self, find_node_at_offset, SyntaxRewriter},
AstNode, SourceFile, SyntaxElement, SyntaxKind, SyntaxNode, SyntaxToken, TextRange, TextSize,
TokenAtOffset,
};
use ra_text_edit::TextEditBuilder;
use crate::{Assist, AssistId, GroupLabel, ResolvedAssist};
/// `AssistContext` allows to apply an assist or check if it could be applied.
///
/// Assists use a somewhat over-engineered approach, given the current needs.
/// The assists workflow consists of two phases. In the first phase, a user asks
/// for the list of available assists. In the second phase, the user picks a
/// particular assist and it gets applied.
///
/// There are two peculiarities here:
///
/// * first, we ideally avoid computing more things then necessary to answer "is
/// assist applicable" in the first phase.
/// * second, when we are applying assist, we don't have a guarantee that there
/// weren't any changes between the point when user asked for assists and when
/// they applied a particular assist. So, when applying assist, we need to do
/// all the checks from scratch.
///
/// To avoid repeating the same code twice for both "check" and "apply"
/// functions, we use an approach reminiscent of that of Django's function based
/// views dealing with forms. Each assist receives a runtime parameter,
/// `resolve`. It first check if an edit is applicable (potentially computing
/// info required to compute the actual edit). If it is applicable, and
/// `resolve` is `true`, it then computes the actual edit.
///
/// So, to implement the original assists workflow, we can first apply each edit
/// with `resolve = false`, and then applying the selected edit again, with
/// `resolve = true` this time.
///
/// Note, however, that we don't actually use such two-phase logic at the
/// moment, because the LSP API is pretty awkward in this place, and it's much
/// easier to just compute the edit eagerly :-)
pub(crate) struct AssistContext<'a> {
pub(crate) sema: Semantics<'a, RootDatabase>,
pub(super) db: &'a RootDatabase,
pub(crate) frange: FileRange,
source_file: SourceFile,
}
impl<'a> AssistContext<'a> {
pub fn new(sema: Semantics<'a, RootDatabase>, frange: FileRange) -> AssistContext<'a> {
let source_file = sema.parse(frange.file_id);
let db = sema.db;
AssistContext { sema, db, frange, source_file }
}
// NB, this ignores active selection.
pub(crate) fn offset(&self) -> TextSize {
self.frange.range.start()
}
pub(crate) fn token_at_offset(&self) -> TokenAtOffset<SyntaxToken> {
self.source_file.syntax().token_at_offset(self.offset())
}
pub(crate) fn find_token_at_offset(&self, kind: SyntaxKind) -> Option<SyntaxToken> {
self.token_at_offset().find(|it| it.kind() == kind)
}
pub(crate) fn find_node_at_offset<N: AstNode>(&self) -> Option<N> {
find_node_at_offset(self.source_file.syntax(), self.offset())
}
pub(crate) fn find_node_at_offset_with_descend<N: AstNode>(&self) -> Option<N> {
self.sema.find_node_at_offset_with_descend(self.source_file.syntax(), self.offset())
}
pub(crate) fn covering_element(&self) -> SyntaxElement {
find_covering_element(self.source_file.syntax(), self.frange.range)
}
// FIXME: remove
pub(crate) fn covering_node_for_range(&self, range: TextRange) -> SyntaxElement {
find_covering_element(self.source_file.syntax(), range)
}
}
pub(crate) struct Assists {
resolve: bool,
file: FileId,
buf: Vec<(Assist, Option<SourceChange>)>,
}
impl Assists {
pub(crate) fn new_resolved(ctx: &AssistContext) -> Assists {
Assists { resolve: true, file: ctx.frange.file_id, buf: Vec::new() }
}
pub(crate) fn new_unresolved(ctx: &AssistContext) -> Assists {
Assists { resolve: false, file: ctx.frange.file_id, buf: Vec::new() }
}
pub(crate) fn finish_unresolved(self) -> Vec<Assist> {
assert!(!self.resolve);
self.finish()
.into_iter()
.map(|(label, edit)| {
assert!(edit.is_none());
label
})
.collect()
}
pub(crate) fn finish_resolved(self) -> Vec<ResolvedAssist> {
assert!(self.resolve);
self.finish()
.into_iter()
.map(|(label, edit)| ResolvedAssist { assist: label, source_change: edit.unwrap() })
.collect()
}
pub(crate) fn add(
&mut self,
id: AssistId,
label: impl Into<String>,
target: TextRange,
f: impl FnOnce(&mut AssistBuilder),
) -> Option<()> {
let label = Assist::new(id, label.into(), None, target);
self.add_impl(label, f)
}
pub(crate) fn add_group(
&mut self,
group: &GroupLabel,
id: AssistId,
label: impl Into<String>,
target: TextRange,
f: impl FnOnce(&mut AssistBuilder),
) -> Option<()> {
let label = Assist::new(id, label.into(), Some(group.clone()), target);
self.add_impl(label, f)
}
fn add_impl(&mut self, label: Assist, f: impl FnOnce(&mut AssistBuilder)) -> Option<()> {
let change_label = label.label.clone();
let source_change = if self.resolve {
let mut builder = AssistBuilder::new(self.file);
f(&mut builder);
Some(builder.finish(change_label))
} else {
None
};
self.buf.push((label, source_change));
Some(())
}
fn finish(mut self) -> Vec<(Assist, Option<SourceChange>)> {
self.buf.sort_by_key(|(label, _edit)| label.target.len());
self.buf
}
}
pub(crate) struct AssistBuilder {
edit: TextEditBuilder,
cursor_position: Option<TextSize>,
file: FileId,
}
impl AssistBuilder {
pub(crate) fn new(file: FileId) -> AssistBuilder {
AssistBuilder { edit: TextEditBuilder::default(), cursor_position: None, file }
}
/// Remove specified `range` of text.
pub(crate) fn delete(&mut self, range: TextRange) {
self.edit.delete(range)
}
/// Append specified `text` at the given `offset`
pub(crate) fn insert(&mut self, offset: TextSize, text: impl Into<String>) {
self.edit.insert(offset, text.into())
}
/// Replaces specified `range` of text with a given string.
pub(crate) fn replace(&mut self, range: TextRange, replace_with: impl Into<String>) {
self.edit.replace(range, replace_with.into())
}
pub(crate) fn replace_ast<N: AstNode>(&mut self, old: N, new: N) {
algo::diff(old.syntax(), new.syntax()).into_text_edit(&mut self.edit)
}
/// Replaces specified `node` of text with a given string, reindenting the
/// string to maintain `node`'s existing indent.
// FIXME: remove in favor of ra_syntax::edit::IndentLevel::increase_indent
pub(crate) fn replace_node_and_indent(
&mut self,
node: &SyntaxNode,
replace_with: impl Into<String>,
) {
let mut replace_with = replace_with.into();
if let Some(indent) = leading_indent(node) {
replace_with = reindent(&replace_with, &indent)
}
self.replace(node.text_range(), replace_with)
}
pub(crate) fn rewrite(&mut self, rewriter: SyntaxRewriter) {
let node = rewriter.rewrite_root().unwrap();
let new = rewriter.rewrite(&node);
algo::diff(&node, &new).into_text_edit(&mut self.edit)
}
/// Specify desired position of the cursor after the assist is applied.
pub(crate) fn set_cursor(&mut self, offset: TextSize) {
self.cursor_position = Some(offset)
}
// FIXME: better API
pub(crate) fn set_file(&mut self, assist_file: FileId) {
self.file = assist_file;
}
// FIXME: kill this API
/// Get access to the raw `TextEditBuilder`.
pub(crate) fn text_edit_builder(&mut self) -> &mut TextEditBuilder {
&mut self.edit
}
fn finish(self, change_label: String) -> SourceChange {
let edit = self.edit.finish();
if edit.is_empty() && self.cursor_position.is_none() {
panic!("Only call `add_assist` if the assist can be applied")
}
SingleFileChange { label: change_label, edit, cursor_position: self.cursor_position }
.into_source_change(self.file)
}
}