rust-analyzer/crates/ra_hir/src/ty/method_resolution.rs
Aleksey Kladov 1834bae5b8 allow rustfmt to reorder imports
This wasn't a right decision in the first place, the feature flag was
broken in the last rustfmt release, and syntax highlighting of imports
is more important anyway
2019-07-04 23:09:09 +03:00

301 lines
10 KiB
Rust

//! This module is concerned with finding methods that a given type provides.
//! For details about how this works in rustc, see the method lookup page in the
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
use std::sync::Arc;
use arrayvec::ArrayVec;
use rustc_hash::FxHashMap;
use super::{autoderef, Canonical, TraitRef};
use crate::{
generics::HasGenericParams,
impl_block::{ImplBlock, ImplId, ImplItem},
nameres::CrateModuleId,
resolve::Resolver,
traits::TraitItem,
ty::primitive::{UncertainFloatTy, UncertainIntTy},
ty::{Ty, TypeCtor},
Crate, Function, HirDatabase, Module, Name, Trait,
};
/// This is used as a key for indexing impls.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub enum TyFingerprint {
Apply(TypeCtor),
}
impl TyFingerprint {
/// Creates a TyFingerprint for looking up an impl. Only certain types can
/// have impls: if we have some `struct S`, we can have an `impl S`, but not
/// `impl &S`. Hence, this will return `None` for reference types and such.
fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
match ty {
Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
_ => None,
}
}
}
#[derive(Debug, PartialEq, Eq)]
pub struct CrateImplBlocks {
/// To make sense of the CrateModuleIds, we need the source root.
krate: Crate,
impls: FxHashMap<TyFingerprint, Vec<(CrateModuleId, ImplId)>>,
impls_by_trait: FxHashMap<Trait, Vec<(CrateModuleId, ImplId)>>,
}
impl CrateImplBlocks {
pub fn lookup_impl_blocks<'a>(&'a self, ty: &Ty) -> impl Iterator<Item = ImplBlock> + 'a {
let fingerprint = TyFingerprint::for_impl(ty);
fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flat_map(|i| i.iter()).map(
move |(module_id, impl_id)| {
let module = Module { krate: self.krate, module_id: *module_id };
ImplBlock::from_id(module, *impl_id)
},
)
}
pub fn lookup_impl_blocks_for_trait<'a>(
&'a self,
tr: &Trait,
) -> impl Iterator<Item = ImplBlock> + 'a {
self.impls_by_trait.get(&tr).into_iter().flat_map(|i| i.iter()).map(
move |(module_id, impl_id)| {
let module = Module { krate: self.krate, module_id: *module_id };
ImplBlock::from_id(module, *impl_id)
},
)
}
fn collect_recursive(&mut self, db: &impl HirDatabase, module: &Module) {
let module_impl_blocks = db.impls_in_module(module.clone());
for (impl_id, _) in module_impl_blocks.impls.iter() {
let impl_block = ImplBlock::from_id(module_impl_blocks.module, impl_id);
let target_ty = impl_block.target_ty(db);
if impl_block.target_trait(db).is_some() {
if let Some(tr) = impl_block.target_trait_ref(db) {
self.impls_by_trait
.entry(tr.trait_)
.or_insert_with(Vec::new)
.push((module.module_id, impl_id));
}
} else {
if let Some(target_ty_fp) = TyFingerprint::for_impl(&target_ty) {
self.impls
.entry(target_ty_fp)
.or_insert_with(Vec::new)
.push((module.module_id, impl_id));
}
}
}
for child in module.children(db) {
self.collect_recursive(db, &child);
}
}
pub(crate) fn impls_in_crate_query(
db: &impl HirDatabase,
krate: Crate,
) -> Arc<CrateImplBlocks> {
let mut crate_impl_blocks = CrateImplBlocks {
krate,
impls: FxHashMap::default(),
impls_by_trait: FxHashMap::default(),
};
if let Some(module) = krate.root_module(db) {
crate_impl_blocks.collect_recursive(db, &module);
}
Arc::new(crate_impl_blocks)
}
}
fn def_crates(db: &impl HirDatabase, cur_crate: Crate, ty: &Ty) -> Option<ArrayVec<[Crate; 2]>> {
// Types like slice can have inherent impls in several crates, (core and alloc).
// The correspoinding impls are marked with lang items, so we can use them to find the required crates.
macro_rules! lang_item_crate {
($db:expr, $cur_crate:expr, $($name:expr),+ $(,)?) => {{
let mut v = ArrayVec::<[Crate; 2]>::new();
$(
v.push($db.lang_item($cur_crate, $name.into())?.krate($db)?);
)+
Some(v)
}};
}
match ty {
Ty::Apply(a_ty) => match a_ty.ctor {
TypeCtor::Adt(def_id) => Some(std::iter::once(def_id.krate(db)?).collect()),
TypeCtor::Bool => lang_item_crate!(db, cur_crate, "bool"),
TypeCtor::Char => lang_item_crate!(db, cur_crate, "char"),
TypeCtor::Float(UncertainFloatTy::Known(f)) => {
lang_item_crate!(db, cur_crate, f.ty_to_string())
}
TypeCtor::Int(UncertainIntTy::Known(i)) => {
lang_item_crate!(db, cur_crate, i.ty_to_string())
}
TypeCtor::Str => lang_item_crate!(db, cur_crate, "str"),
TypeCtor::Slice => lang_item_crate!(db, cur_crate, "slice_alloc", "slice"),
_ => None,
},
_ => None,
}
}
/// Look up the method with the given name, returning the actual autoderefed
/// receiver type (but without autoref applied yet).
pub(crate) fn lookup_method(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
name: &Name,
resolver: &Resolver,
) -> Option<(Ty, Function)> {
iterate_method_candidates(ty, db, resolver, Some(name), |ty, f| Some((ty.clone(), f)))
}
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub(crate) fn iterate_method_candidates<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
// For method calls, rust first does any number of autoderef, and then one
// autoref (i.e. when the method takes &self or &mut self). We just ignore
// the autoref currently -- when we find a method matching the given name,
// we assume it fits.
// Also note that when we've got a receiver like &S, even if the method we
// find in the end takes &self, we still do the autoderef step (just as
// rustc does an autoderef and then autoref again).
let krate = resolver.krate()?;
for derefed_ty in autoderef::autoderef(db, resolver, ty.clone()) {
if let Some(result) = iterate_inherent_methods(&derefed_ty, db, name, krate, &mut callback)
{
return Some(result);
}
if let Some(result) =
iterate_trait_method_candidates(&derefed_ty, db, resolver, name, &mut callback)
{
return Some(result);
}
}
None
}
fn iterate_trait_method_candidates<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
resolver: &Resolver,
name: Option<&Name>,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
let krate = resolver.krate()?;
'traits: for t in resolver.traits_in_scope(db) {
let data = t.trait_data(db);
// we'll be lazy about checking whether the type implements the
// trait, but if we find out it doesn't, we'll skip the rest of the
// iteration
let mut known_implemented = false;
for item in data.items() {
if let TraitItem::Function(m) = *item {
let data = m.data(db);
if name.map_or(true, |name| data.name() == name) && data.has_self_param() {
if !known_implemented {
let trait_ref = canonical_trait_ref(db, t, ty.clone());
if db.implements(krate, trait_ref).is_none() {
continue 'traits;
}
}
known_implemented = true;
if let Some(result) = callback(&ty.value, m) {
return Some(result);
}
}
}
}
}
None
}
fn iterate_inherent_methods<T>(
ty: &Canonical<Ty>,
db: &impl HirDatabase,
name: Option<&Name>,
krate: Crate,
mut callback: impl FnMut(&Ty, Function) -> Option<T>,
) -> Option<T> {
for krate in def_crates(db, krate, &ty.value)? {
let impls = db.impls_in_crate(krate);
for impl_block in impls.lookup_impl_blocks(&ty.value) {
for item in impl_block.items(db) {
if let ImplItem::Method(f) = item {
let data = f.data(db);
if name.map_or(true, |name| data.name() == name) && data.has_self_param() {
if let Some(result) = callback(&ty.value, f) {
return Some(result);
}
}
}
}
}
}
None
}
impl Ty {
// This would be nicer if it just returned an iterator, but that runs into
// lifetime problems, because we need to borrow temp `CrateImplBlocks`.
pub fn iterate_impl_items<T>(
self,
db: &impl HirDatabase,
krate: Crate,
mut callback: impl FnMut(ImplItem) -> Option<T>,
) -> Option<T> {
for krate in def_crates(db, krate, &self)? {
let impls = db.impls_in_crate(krate);
for impl_block in impls.lookup_impl_blocks(&self) {
for item in impl_block.items(db) {
if let Some(result) = callback(item) {
return Some(result);
}
}
}
}
None
}
}
/// This creates Substs for a trait with the given Self type and type variables
/// for all other parameters, to query Chalk with it.
fn canonical_trait_ref(
db: &impl HirDatabase,
trait_: Trait,
self_ty: Canonical<Ty>,
) -> Canonical<TraitRef> {
let mut substs = Vec::new();
let generics = trait_.generic_params(db);
let num_vars = self_ty.num_vars;
substs.push(self_ty.value);
substs.extend(
generics
.params_including_parent()
.into_iter()
.skip(1)
.enumerate()
.map(|(i, _p)| Ty::Bound((i + num_vars) as u32)),
);
Canonical {
num_vars: substs.len() - 1 + self_ty.num_vars,
value: TraitRef { trait_, substs: substs.into() },
}
}