rust-analyzer/xtask/src/codegen/grammar.rs
2024-09-04 14:09:03 +02:00

1023 lines
34 KiB
Rust

//! This module generates AST datatype used by rust-analyzer.
//!
//! Specifically, it generates the `SyntaxKind` enum and a number of newtype
//! wrappers around `SyntaxNode` which implement `syntax::AstNode`.
#![allow(clippy::disallowed_types)]
use std::{
collections::{BTreeSet, HashSet},
fmt::Write,
fs,
};
use either::Either;
use itertools::Itertools;
use proc_macro2::{Punct, Spacing};
use quote::{format_ident, quote};
use stdx::panic_context;
use ungrammar::{Grammar, Rule};
use crate::{
codegen::{add_preamble, ensure_file_contents, grammar::ast_src::generate_kind_src, reformat},
project_root,
};
mod ast_src;
use self::ast_src::{AstEnumSrc, AstNodeSrc, AstSrc, Cardinality, Field, KindsSrc};
pub(crate) fn generate(check: bool) {
let grammar = fs::read_to_string(project_root().join("crates/syntax/rust.ungram"))
.unwrap()
.parse()
.unwrap();
let ast = lower(&grammar);
let kinds_src = generate_kind_src(&ast.nodes, &ast.enums, &grammar);
let syntax_kinds = generate_syntax_kinds(kinds_src);
let syntax_kinds_file = project_root().join("crates/parser/src/syntax_kind/generated.rs");
ensure_file_contents(
crate::flags::CodegenType::Grammar,
syntax_kinds_file.as_path(),
&syntax_kinds,
check,
);
let ast_tokens = generate_tokens(&ast);
let ast_tokens_file = project_root().join("crates/syntax/src/ast/generated/tokens.rs");
ensure_file_contents(
crate::flags::CodegenType::Grammar,
ast_tokens_file.as_path(),
&ast_tokens,
check,
);
let ast_nodes = generate_nodes(kinds_src, &ast);
let ast_nodes_file = project_root().join("crates/syntax/src/ast/generated/nodes.rs");
ensure_file_contents(
crate::flags::CodegenType::Grammar,
ast_nodes_file.as_path(),
&ast_nodes,
check,
);
}
fn generate_tokens(grammar: &AstSrc) -> String {
let tokens = grammar.tokens.iter().map(|token| {
let name = format_ident!("{}", token);
let kind = format_ident!("{}", to_upper_snake_case(token));
quote! {
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct #name {
pub(crate) syntax: SyntaxToken,
}
impl std::fmt::Display for #name {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Display::fmt(&self.syntax, f)
}
}
impl AstToken for #name {
fn can_cast(kind: SyntaxKind) -> bool { kind == #kind }
fn cast(syntax: SyntaxToken) -> Option<Self> {
if Self::can_cast(syntax.kind()) { Some(Self { syntax }) } else { None }
}
fn syntax(&self) -> &SyntaxToken { &self.syntax }
}
}
});
add_preamble(
crate::flags::CodegenType::Grammar,
reformat(
quote! {
use crate::{SyntaxKind::{self, *}, SyntaxToken, ast::AstToken};
#(#tokens)*
}
.to_string(),
),
)
.replace("#[derive", "\n#[derive")
}
fn generate_nodes(kinds: KindsSrc, grammar: &AstSrc) -> String {
let (node_defs, node_boilerplate_impls): (Vec<_>, Vec<_>) = grammar
.nodes
.iter()
.map(|node| {
let name = format_ident!("{}", node.name);
let kind = format_ident!("{}", to_upper_snake_case(&node.name));
let traits = node
.traits
.iter()
.filter(|trait_name| {
// Loops have two expressions so this might collide, therefore manual impl it
node.name != "ForExpr" && node.name != "WhileExpr"
|| trait_name.as_str() != "HasLoopBody"
})
.map(|trait_name| {
let trait_name = format_ident!("{}", trait_name);
quote!(impl ast::#trait_name for #name {})
});
let methods = node.fields.iter().map(|field| {
let method_name = format_ident!("{}", field.method_name());
let ty = field.ty();
if field.is_many() {
quote! {
#[inline]
pub fn #method_name(&self) -> AstChildren<#ty> {
support::children(&self.syntax)
}
}
} else if let Some(token_kind) = field.token_kind() {
quote! {
#[inline]
pub fn #method_name(&self) -> Option<#ty> {
support::token(&self.syntax, #token_kind)
}
}
} else {
quote! {
#[inline]
pub fn #method_name(&self) -> Option<#ty> {
support::child(&self.syntax)
}
}
}
});
(
quote! {
#[pretty_doc_comment_placeholder_workaround]
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct #name {
pub(crate) syntax: SyntaxNode,
}
#(#traits)*
impl #name {
#(#methods)*
}
},
quote! {
impl AstNode for #name {
#[inline]
fn can_cast(kind: SyntaxKind) -> bool {
kind == #kind
}
#[inline]
fn cast(syntax: SyntaxNode) -> Option<Self> {
if Self::can_cast(syntax.kind()) { Some(Self { syntax }) } else { None }
}
#[inline]
fn syntax(&self) -> &SyntaxNode { &self.syntax }
}
},
)
})
.unzip();
let (enum_defs, enum_boilerplate_impls): (Vec<_>, Vec<_>) = grammar
.enums
.iter()
.map(|en| {
let variants: Vec<_> =
en.variants.iter().map(|var| format_ident!("{}", var)).sorted().collect();
let name = format_ident!("{}", en.name);
let kinds: Vec<_> = variants
.iter()
.map(|name| format_ident!("{}", to_upper_snake_case(&name.to_string())))
.collect();
let traits = en.traits.iter().sorted().map(|trait_name| {
let trait_name = format_ident!("{}", trait_name);
quote!(impl ast::#trait_name for #name {})
});
let ast_node = if en.name == "Stmt" {
quote! {}
} else {
quote! {
impl AstNode for #name {
#[inline]
fn can_cast(kind: SyntaxKind) -> bool {
matches!(kind, #(#kinds)|*)
}
#[inline]
fn cast(syntax: SyntaxNode) -> Option<Self> {
let res = match syntax.kind() {
#(
#kinds => #name::#variants(#variants { syntax }),
)*
_ => return None,
};
Some(res)
}
#[inline]
fn syntax(&self) -> &SyntaxNode {
match self {
#(
#name::#variants(it) => &it.syntax,
)*
}
}
}
}
};
(
quote! {
#[pretty_doc_comment_placeholder_workaround]
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub enum #name {
#(#variants(#variants),)*
}
#(#traits)*
},
quote! {
#(
impl From<#variants> for #name {
#[inline]
fn from(node: #variants) -> #name {
#name::#variants(node)
}
}
)*
#ast_node
},
)
})
.unzip();
let (any_node_defs, any_node_boilerplate_impls): (Vec<_>, Vec<_>) = grammar
.nodes
.iter()
.flat_map(|node| node.traits.iter().map(move |t| (t, node)))
.into_group_map()
.into_iter()
.sorted_by_key(|(name, _)| *name)
.map(|(trait_name, nodes)| {
let name = format_ident!("Any{}", trait_name);
let trait_name = format_ident!("{}", trait_name);
let kinds: Vec<_> = nodes
.iter()
.map(|name| format_ident!("{}", to_upper_snake_case(&name.name.to_string())))
.collect();
let nodes = nodes.iter().map(|node| format_ident!("{}", node.name));
(
quote! {
#[pretty_doc_comment_placeholder_workaround]
#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct #name {
pub(crate) syntax: SyntaxNode,
}
impl ast::#trait_name for #name {}
},
quote! {
impl #name {
#[inline]
pub fn new<T: ast::#trait_name>(node: T) -> #name {
#name {
syntax: node.syntax().clone()
}
}
}
impl AstNode for #name {
#[inline]
fn can_cast(kind: SyntaxKind) -> bool {
matches!(kind, #(#kinds)|*)
}
#[inline]
fn cast(syntax: SyntaxNode) -> Option<Self> {
Self::can_cast(syntax.kind()).then_some(#name { syntax })
}
#[inline]
fn syntax(&self) -> &SyntaxNode {
&self.syntax
}
}
#(
impl From<#nodes> for #name {
#[inline]
fn from(node: #nodes) -> #name {
#name { syntax: node.syntax }
}
}
)*
},
)
})
.unzip();
let enum_names = grammar.enums.iter().map(|it| &it.name);
let node_names = grammar.nodes.iter().map(|it| &it.name);
let display_impls =
enum_names.chain(node_names.clone()).map(|it| format_ident!("{}", it)).map(|name| {
quote! {
impl std::fmt::Display for #name {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Display::fmt(self.syntax(), f)
}
}
}
});
let defined_nodes: HashSet<_> = node_names.collect();
for node in kinds
.nodes
.iter()
.map(|kind| to_pascal_case(kind))
.filter(|name| !defined_nodes.iter().any(|&it| it == name))
{
drop(node)
// FIXME: restore this
// eprintln!("Warning: node {} not defined in ast source", node);
}
let ast = quote! {
#![allow(non_snake_case)]
use crate::{
SyntaxNode, SyntaxToken, SyntaxKind::{self, *},
ast::{self, AstNode, AstChildren, support},
T,
};
#(#node_defs)*
#(#enum_defs)*
#(#any_node_defs)*
#(#node_boilerplate_impls)*
#(#enum_boilerplate_impls)*
#(#any_node_boilerplate_impls)*
#(#display_impls)*
};
let ast = ast.to_string().replace("T ! [", "T![");
let mut res = String::with_capacity(ast.len() * 2);
let mut docs =
grammar.nodes.iter().map(|it| &it.doc).chain(grammar.enums.iter().map(|it| &it.doc));
for chunk in ast.split("# [pretty_doc_comment_placeholder_workaround] ") {
res.push_str(chunk);
if let Some(doc) = docs.next() {
write_doc_comment(doc, &mut res);
}
}
let res = add_preamble(crate::flags::CodegenType::Grammar, reformat(res));
res.replace("#[derive", "\n#[derive")
}
fn write_doc_comment(contents: &[String], dest: &mut String) {
for line in contents {
writeln!(dest, "///{line}").unwrap();
}
}
fn generate_syntax_kinds(grammar: KindsSrc) -> String {
let (single_byte_tokens_values, single_byte_tokens): (Vec<_>, Vec<_>) = grammar
.punct
.iter()
.filter(|(token, _name)| token.len() == 1)
.map(|(token, name)| (token.chars().next().unwrap(), format_ident!("{}", name)))
.unzip();
let punctuation_values = grammar.punct.iter().map(|(token, _name)| {
if "{}[]()".contains(token) {
let c = token.chars().next().unwrap();
quote! { #c }
} else {
let cs = token.chars().map(|c| Punct::new(c, Spacing::Joint));
quote! { #(#cs)* }
}
});
let punctuation =
grammar.punct.iter().map(|(_token, name)| format_ident!("{}", name)).collect::<Vec<_>>();
let fmt_kw_as_variant = |&name| match name {
"Self" => format_ident!("SELF_TYPE_KW"),
name => format_ident!("{}_KW", to_upper_snake_case(name)),
};
let strict_keywords = grammar.keywords;
let strict_keywords_variants =
strict_keywords.iter().map(fmt_kw_as_variant).collect::<Vec<_>>();
let strict_keywords_tokens = strict_keywords.iter().map(|it| format_ident!("{it}"));
let edition_dependent_keywords_variants_match_arm = grammar
.edition_dependent_keywords
.iter()
.map(|(kw, ed)| {
let kw = fmt_kw_as_variant(kw);
quote! { #kw if #ed <= edition }
})
.collect::<Vec<_>>();
let edition_dependent_keywords_str_match_arm = grammar
.edition_dependent_keywords
.iter()
.map(|(kw, ed)| {
quote! { #kw if #ed <= edition }
})
.collect::<Vec<_>>();
let edition_dependent_keywords_variants = grammar
.edition_dependent_keywords
.iter()
.map(|(kw, _)| fmt_kw_as_variant(kw))
.collect::<Vec<_>>();
let edition_dependent_keywords_tokens =
grammar.edition_dependent_keywords.iter().map(|(it, _)| format_ident!("{it}"));
let contextual_keywords = grammar.contextual_keywords;
let contextual_keywords_variants =
contextual_keywords.iter().map(fmt_kw_as_variant).collect::<Vec<_>>();
let contextual_keywords_tokens = contextual_keywords.iter().map(|it| format_ident!("{it}"));
let contextual_keywords_str_match_arm = grammar.contextual_keywords.iter().map(|kw| {
match grammar.edition_dependent_keywords.iter().find(|(ed_kw, _)| ed_kw == kw) {
Some((_, ed)) => quote! { #kw if edition < #ed },
None => quote! { #kw },
}
});
let contextual_keywords_variants_match_arm = grammar
.contextual_keywords
.iter()
.map(|kw_s| {
let kw = fmt_kw_as_variant(kw_s);
match grammar.edition_dependent_keywords.iter().find(|(ed_kw, _)| ed_kw == kw_s) {
Some((_, ed)) => quote! { #kw if edition < #ed },
None => quote! { #kw },
}
})
.collect::<Vec<_>>();
let non_strict_keyword_variants = contextual_keywords_variants
.iter()
.chain(edition_dependent_keywords_variants.iter())
.sorted()
.dedup()
.collect::<Vec<_>>();
let literals =
grammar.literals.iter().map(|name| format_ident!("{}", name)).collect::<Vec<_>>();
let tokens = grammar.tokens.iter().map(|name| format_ident!("{}", name)).collect::<Vec<_>>();
// FIXME: This generates enum kinds?
let nodes = grammar.nodes.iter().map(|name| format_ident!("{}", name)).collect::<Vec<_>>();
let ast = quote! {
#![allow(bad_style, missing_docs, unreachable_pub)]
use crate::Edition;
/// The kind of syntax node, e.g. `IDENT`, `USE_KW`, or `STRUCT`.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, Debug)]
#[repr(u16)]
pub enum SyntaxKind {
// Technical SyntaxKinds: they appear temporally during parsing,
// but never end up in the final tree
#[doc(hidden)]
TOMBSTONE,
#[doc(hidden)]
EOF,
#(#punctuation,)*
#(#strict_keywords_variants,)*
#(#non_strict_keyword_variants,)*
#(#literals,)*
#(#tokens,)*
#(#nodes,)*
// Technical kind so that we can cast from u16 safely
#[doc(hidden)]
__LAST,
}
use self::SyntaxKind::*;
impl SyntaxKind {
/// Checks whether this syntax kind is a strict keyword for the given edition.
/// Strict keywords are identifiers that are always considered keywords.
pub fn is_strict_keyword(self, edition: Edition) -> bool {
matches!(self, #(#strict_keywords_variants)|*)
|| match self {
#(#edition_dependent_keywords_variants_match_arm => true,)*
_ => false,
}
}
/// Checks whether this syntax kind is a weak keyword for the given edition.
/// Weak keywords are identifiers that are considered keywords only in certain contexts.
pub fn is_contextual_keyword(self, edition: Edition) -> bool {
match self {
#(#contextual_keywords_variants_match_arm => true,)*
_ => false,
}
}
/// Checks whether this syntax kind is a strict or weak keyword for the given edition.
pub fn is_keyword(self, edition: Edition) -> bool {
matches!(self, #(#strict_keywords_variants)|*)
|| match self {
#(#edition_dependent_keywords_variants_match_arm => true,)*
#(#contextual_keywords_variants_match_arm => true,)*
_ => false,
}
}
pub fn is_punct(self) -> bool {
matches!(self, #(#punctuation)|*)
}
pub fn is_literal(self) -> bool {
matches!(self, #(#literals)|*)
}
pub fn from_keyword(ident: &str, edition: Edition) -> Option<SyntaxKind> {
let kw = match ident {
#(#strict_keywords => #strict_keywords_variants,)*
#(#edition_dependent_keywords_str_match_arm => #edition_dependent_keywords_variants,)*
_ => return None,
};
Some(kw)
}
pub fn from_contextual_keyword(ident: &str, edition: Edition) -> Option<SyntaxKind> {
let kw = match ident {
#(#contextual_keywords_str_match_arm => #contextual_keywords_variants,)*
_ => return None,
};
Some(kw)
}
pub fn from_char(c: char) -> Option<SyntaxKind> {
let tok = match c {
#(#single_byte_tokens_values => #single_byte_tokens,)*
_ => return None,
};
Some(tok)
}
}
#[macro_export]
macro_rules! T {
#([#punctuation_values] => { $crate::SyntaxKind::#punctuation };)*
#([#strict_keywords_tokens] => { $crate::SyntaxKind::#strict_keywords_variants };)*
#([#contextual_keywords_tokens] => { $crate::SyntaxKind::#contextual_keywords_variants };)*
#([#edition_dependent_keywords_tokens] => { $crate::SyntaxKind::#edition_dependent_keywords_variants };)*
[lifetime_ident] => { $crate::SyntaxKind::LIFETIME_IDENT };
[int_number] => { $crate::SyntaxKind::INT_NUMBER };
[ident] => { $crate::SyntaxKind::IDENT };
[string] => { $crate::SyntaxKind::STRING };
[shebang] => { $crate::SyntaxKind::SHEBANG };
}
};
add_preamble(crate::flags::CodegenType::Grammar, reformat(ast.to_string()))
}
fn to_upper_snake_case(s: &str) -> String {
let mut buf = String::with_capacity(s.len());
let mut prev = false;
for c in s.chars() {
if c.is_ascii_uppercase() && prev {
buf.push('_')
}
prev = true;
buf.push(c.to_ascii_uppercase());
}
buf
}
fn to_lower_snake_case(s: &str) -> String {
let mut buf = String::with_capacity(s.len());
let mut prev = false;
for c in s.chars() {
if c.is_ascii_uppercase() && prev {
buf.push('_')
}
prev = true;
buf.push(c.to_ascii_lowercase());
}
buf
}
fn to_pascal_case(s: &str) -> String {
let mut buf = String::with_capacity(s.len());
let mut prev_is_underscore = true;
for c in s.chars() {
if c == '_' {
prev_is_underscore = true;
} else if prev_is_underscore {
buf.push(c.to_ascii_uppercase());
prev_is_underscore = false;
} else {
buf.push(c.to_ascii_lowercase());
}
}
buf
}
fn pluralize(s: &str) -> String {
format!("{s}s")
}
impl Field {
fn is_many(&self) -> bool {
matches!(self, Field::Node { cardinality: Cardinality::Many, .. })
}
fn token_kind(&self) -> Option<proc_macro2::TokenStream> {
match self {
Field::Token(token) => {
let token: proc_macro2::TokenStream = token.parse().unwrap();
Some(quote! { T![#token] })
}
_ => None,
}
}
fn method_name(&self) -> String {
match self {
Field::Token(name) => {
let name = match name.as_str() {
";" => "semicolon",
"->" => "thin_arrow",
"'{'" => "l_curly",
"'}'" => "r_curly",
"'('" => "l_paren",
"')'" => "r_paren",
"'['" => "l_brack",
"']'" => "r_brack",
"<" => "l_angle",
">" => "r_angle",
"=" => "eq",
"!" => "excl",
"*" => "star",
"&" => "amp",
"-" => "minus",
"_" => "underscore",
"." => "dot",
".." => "dotdot",
"..." => "dotdotdot",
"..=" => "dotdoteq",
"=>" => "fat_arrow",
"@" => "at",
":" => "colon",
"::" => "coloncolon",
"#" => "pound",
"?" => "question_mark",
"," => "comma",
"|" => "pipe",
"~" => "tilde",
_ => name,
};
format!("{name}_token",)
}
Field::Node { name, .. } => {
if name == "type" {
String::from("ty")
} else {
name.to_owned()
}
}
}
}
fn ty(&self) -> proc_macro2::Ident {
match self {
Field::Token(_) => format_ident!("SyntaxToken"),
Field::Node { ty, .. } => format_ident!("{}", ty),
}
}
}
fn clean_token_name(name: &str) -> String {
let cleaned = name.trim_start_matches(['@', '#', '?']);
if cleaned.is_empty() {
name.to_owned()
} else {
cleaned.to_owned()
}
}
fn lower(grammar: &Grammar) -> AstSrc {
let mut res = AstSrc {
tokens:
"Whitespace Comment String ByteString CString IntNumber FloatNumber Char Byte Ident"
.split_ascii_whitespace()
.map(|it| it.to_owned())
.collect::<Vec<_>>(),
..Default::default()
};
let nodes = grammar.iter().collect::<Vec<_>>();
for &node in &nodes {
let name = grammar[node].name.clone();
let rule = &grammar[node].rule;
let _g = panic_context::enter(name.clone());
match lower_enum(grammar, rule) {
Some(variants) => {
let enum_src = AstEnumSrc { doc: Vec::new(), name, traits: Vec::new(), variants };
res.enums.push(enum_src);
}
None => {
let mut fields = Vec::new();
lower_rule(&mut fields, grammar, None, rule);
res.nodes.push(AstNodeSrc { doc: Vec::new(), name, traits: Vec::new(), fields });
}
}
}
deduplicate_fields(&mut res);
extract_enums(&mut res);
extract_struct_traits(&mut res);
extract_enum_traits(&mut res);
res.nodes.sort_by_key(|it| it.name.clone());
res.enums.sort_by_key(|it| it.name.clone());
res.tokens.sort();
res.nodes.iter_mut().for_each(|it| {
it.traits.sort();
it.fields.sort_by_key(|it| match it {
Field::Token(name) => (true, name.clone()),
Field::Node { name, .. } => (false, name.clone()),
});
});
res.enums.iter_mut().for_each(|it| {
it.traits.sort();
it.variants.sort();
});
res
}
fn lower_enum(grammar: &Grammar, rule: &Rule) -> Option<Vec<String>> {
let alternatives = match rule {
Rule::Alt(it) => it,
_ => return None,
};
let mut variants = Vec::new();
for alternative in alternatives {
match alternative {
Rule::Node(it) => variants.push(grammar[*it].name.clone()),
Rule::Token(it) if grammar[*it].name == ";" => (),
_ => return None,
}
}
Some(variants)
}
fn lower_rule(acc: &mut Vec<Field>, grammar: &Grammar, label: Option<&String>, rule: &Rule) {
if lower_separated_list(acc, grammar, label, rule) {
return;
}
match rule {
Rule::Node(node) => {
let ty = grammar[*node].name.clone();
let name = label.cloned().unwrap_or_else(|| to_lower_snake_case(&ty));
let field = Field::Node { name, ty, cardinality: Cardinality::Optional };
acc.push(field);
}
Rule::Token(token) => {
assert!(label.is_none());
let mut name = clean_token_name(&grammar[*token].name);
if "[]{}()".contains(&name) {
name = format!("'{name}'");
}
let field = Field::Token(name);
acc.push(field);
}
Rule::Rep(inner) => {
if let Rule::Node(node) = &**inner {
let ty = grammar[*node].name.clone();
let name = label.cloned().unwrap_or_else(|| pluralize(&to_lower_snake_case(&ty)));
let field = Field::Node { name, ty, cardinality: Cardinality::Many };
acc.push(field);
return;
}
panic!("unhandled rule: {rule:?}")
}
Rule::Labeled { label: l, rule } => {
assert!(label.is_none());
let manually_implemented = matches!(
l.as_str(),
"lhs"
| "rhs"
| "then_branch"
| "else_branch"
| "start"
| "end"
| "op"
| "index"
| "base"
| "value"
| "trait"
| "self_ty"
| "iterable"
| "condition"
| "args"
| "body"
);
if manually_implemented {
return;
}
lower_rule(acc, grammar, Some(l), rule);
}
Rule::Seq(rules) | Rule::Alt(rules) => {
for rule in rules {
lower_rule(acc, grammar, label, rule)
}
}
Rule::Opt(rule) => lower_rule(acc, grammar, label, rule),
}
}
// (T (',' T)* ','?)
fn lower_separated_list(
acc: &mut Vec<Field>,
grammar: &Grammar,
label: Option<&String>,
rule: &Rule,
) -> bool {
let rule = match rule {
Rule::Seq(it) => it,
_ => return false,
};
let (nt, repeat, trailing_sep) = match rule.as_slice() {
[Rule::Node(node), Rule::Rep(repeat), Rule::Opt(trailing_sep)] => {
(Either::Left(node), repeat, Some(trailing_sep))
}
[Rule::Node(node), Rule::Rep(repeat)] => (Either::Left(node), repeat, None),
[Rule::Token(token), Rule::Rep(repeat), Rule::Opt(trailing_sep)] => {
(Either::Right(token), repeat, Some(trailing_sep))
}
[Rule::Token(token), Rule::Rep(repeat)] => (Either::Right(token), repeat, None),
_ => return false,
};
let repeat = match &**repeat {
Rule::Seq(it) => it,
_ => return false,
};
if !matches!(
repeat.as_slice(),
[comma, nt_]
if trailing_sep.map_or(true, |it| comma == &**it) && match (nt, nt_) {
(Either::Left(node), Rule::Node(nt_)) => node == nt_,
(Either::Right(token), Rule::Token(nt_)) => token == nt_,
_ => false,
}
) {
return false;
}
match nt {
Either::Right(token) => {
let name = clean_token_name(&grammar[*token].name);
let field = Field::Token(name);
acc.push(field);
}
Either::Left(node) => {
let ty = grammar[*node].name.clone();
let name = label.cloned().unwrap_or_else(|| pluralize(&to_lower_snake_case(&ty)));
let field = Field::Node { name, ty, cardinality: Cardinality::Many };
acc.push(field);
}
}
true
}
fn deduplicate_fields(ast: &mut AstSrc) {
for node in &mut ast.nodes {
let mut i = 0;
'outer: while i < node.fields.len() {
for j in 0..i {
let f1 = &node.fields[i];
let f2 = &node.fields[j];
if f1 == f2 {
node.fields.remove(i);
continue 'outer;
}
}
i += 1;
}
}
}
fn extract_enums(ast: &mut AstSrc) {
for node in &mut ast.nodes {
for enm in &ast.enums {
let mut to_remove = Vec::new();
for (i, field) in node.fields.iter().enumerate() {
let ty = field.ty().to_string();
if enm.variants.iter().any(|it| it == &ty) {
to_remove.push(i);
}
}
if to_remove.len() == enm.variants.len() {
node.remove_field(to_remove);
let ty = enm.name.clone();
let name = to_lower_snake_case(&ty);
node.fields.push(Field::Node { name, ty, cardinality: Cardinality::Optional });
}
}
}
}
const TRAITS: &[(&str, &[&str])] = &[
("HasAttrs", &["attrs"]),
("HasName", &["name"]),
("HasVisibility", &["visibility"]),
("HasGenericParams", &["generic_param_list", "where_clause"]),
("HasGenericArgs", &["generic_arg_list"]),
("HasTypeBounds", &["type_bound_list", "colon_token"]),
("HasModuleItem", &["items"]),
("HasLoopBody", &["label", "loop_body"]),
("HasArgList", &["arg_list"]),
];
fn extract_struct_traits(ast: &mut AstSrc) {
for node in &mut ast.nodes {
for (name, methods) in TRAITS {
extract_struct_trait(node, name, methods);
}
}
let nodes_with_doc_comments = [
"SourceFile",
"Fn",
"Struct",
"Union",
"RecordField",
"TupleField",
"Enum",
"Variant",
"Trait",
"TraitAlias",
"Module",
"Static",
"Const",
"TypeAlias",
"Impl",
"ExternBlock",
"ExternCrate",
"MacroCall",
"MacroRules",
"MacroDef",
"Use",
];
for node in &mut ast.nodes {
if nodes_with_doc_comments.contains(&&*node.name) {
node.traits.push("HasDocComments".into());
}
}
}
fn extract_struct_trait(node: &mut AstNodeSrc, trait_name: &str, methods: &[&str]) {
let mut to_remove = Vec::new();
for (i, field) in node.fields.iter().enumerate() {
let method_name = field.method_name();
if methods.iter().any(|&it| it == method_name) {
to_remove.push(i);
}
}
if to_remove.len() == methods.len() {
node.traits.push(trait_name.to_owned());
node.remove_field(to_remove);
}
}
fn extract_enum_traits(ast: &mut AstSrc) {
for enm in &mut ast.enums {
if enm.name == "Stmt" {
continue;
}
let nodes = &ast.nodes;
let mut variant_traits = enm
.variants
.iter()
.map(|var| nodes.iter().find(|it| &it.name == var).unwrap())
.map(|node| node.traits.iter().cloned().collect::<BTreeSet<_>>());
let mut enum_traits = match variant_traits.next() {
Some(it) => it,
None => continue,
};
for traits in variant_traits {
enum_traits = enum_traits.intersection(&traits).cloned().collect();
}
enm.traits = enum_traits.into_iter().collect();
}
}
impl AstNodeSrc {
fn remove_field(&mut self, to_remove: Vec<usize>) {
to_remove.into_iter().rev().for_each(|idx| {
self.fields.remove(idx);
});
}
}
#[test]
fn test() {
generate(true);
}