rust-analyzer/crates/hir_ty/src/display.rs
2020-12-12 00:56:52 +01:00

743 lines
27 KiB
Rust

//! FIXME: write short doc here
use std::fmt;
use crate::{
db::HirDatabase, utils::generics, ApplicationTy, CallableDefId, FnSig, GenericPredicate,
Lifetime, Obligation, OpaqueTyId, ProjectionTy, Substs, TraitRef, Ty, TypeCtor,
};
use hir_def::{
find_path, generics::TypeParamProvenance, item_scope::ItemInNs, AdtId, AssocContainerId,
Lookup, ModuleId,
};
use hir_expand::name::Name;
pub struct HirFormatter<'a> {
pub db: &'a dyn HirDatabase,
fmt: &'a mut dyn fmt::Write,
buf: String,
curr_size: usize,
pub(crate) max_size: Option<usize>,
omit_verbose_types: bool,
display_target: DisplayTarget,
}
pub trait HirDisplay {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError>;
/// Returns a `Display`able type that is human-readable.
fn into_displayable<'a>(
&'a self,
db: &'a dyn HirDatabase,
max_size: Option<usize>,
omit_verbose_types: bool,
display_target: DisplayTarget,
) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
HirDisplayWrapper { db, t: self, max_size, omit_verbose_types, display_target }
}
/// Returns a `Display`able type that is human-readable.
/// Use this for showing types to the user (e.g. diagnostics)
fn display<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
HirDisplayWrapper {
db,
t: self,
max_size: None,
omit_verbose_types: false,
display_target: DisplayTarget::Diagnostics,
}
}
/// Returns a `Display`able type that is human-readable and tries to be succinct.
/// Use this for showing types to the user where space is constrained (e.g. doc popups)
fn display_truncated<'a>(
&'a self,
db: &'a dyn HirDatabase,
max_size: Option<usize>,
) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
HirDisplayWrapper {
db,
t: self,
max_size,
omit_verbose_types: true,
display_target: DisplayTarget::Diagnostics,
}
}
/// Returns a String representation of `self` that can be inserted into the given module.
/// Use this when generating code (e.g. assists)
fn display_source_code<'a>(
&'a self,
db: &'a dyn HirDatabase,
module_id: ModuleId,
) -> Result<String, DisplaySourceCodeError> {
let mut result = String::new();
match self.hir_fmt(&mut HirFormatter {
db,
fmt: &mut result,
buf: String::with_capacity(20),
curr_size: 0,
max_size: None,
omit_verbose_types: false,
display_target: DisplayTarget::SourceCode { module_id },
}) {
Ok(()) => {}
Err(HirDisplayError::FmtError) => panic!("Writing to String can't fail!"),
Err(HirDisplayError::DisplaySourceCodeError(e)) => return Err(e),
};
Ok(result)
}
/// Returns a String representation of `self` for test purposes
fn display_test<'a>(&'a self, db: &'a dyn HirDatabase) -> HirDisplayWrapper<'a, Self>
where
Self: Sized,
{
HirDisplayWrapper {
db,
t: self,
max_size: None,
omit_verbose_types: false,
display_target: DisplayTarget::Test,
}
}
}
impl<'a> HirFormatter<'a> {
pub fn write_joined<T: HirDisplay>(
&mut self,
iter: impl IntoIterator<Item = T>,
sep: &str,
) -> Result<(), HirDisplayError> {
let mut first = true;
for e in iter {
if !first {
write!(self, "{}", sep)?;
}
first = false;
e.hir_fmt(self)?;
}
Ok(())
}
/// This allows using the `write!` macro directly with a `HirFormatter`.
pub fn write_fmt(&mut self, args: fmt::Arguments) -> Result<(), HirDisplayError> {
// We write to a buffer first to track output size
self.buf.clear();
fmt::write(&mut self.buf, args)?;
self.curr_size += self.buf.len();
// Then we write to the internal formatter from the buffer
self.fmt.write_str(&self.buf).map_err(HirDisplayError::from)
}
pub fn should_truncate(&self) -> bool {
if let Some(max_size) = self.max_size {
self.curr_size >= max_size
} else {
false
}
}
pub fn omit_verbose_types(&self) -> bool {
self.omit_verbose_types
}
}
#[derive(Clone, Copy)]
pub enum DisplayTarget {
/// Display types for inlays, doc popups, autocompletion, etc...
/// Showing `{unknown}` or not qualifying paths is fine here.
/// There's no reason for this to fail.
Diagnostics,
/// Display types for inserting them in source files.
/// The generated code should compile, so paths need to be qualified.
SourceCode { module_id: ModuleId },
/// Only for test purpose to keep real types
Test,
}
impl DisplayTarget {
fn is_source_code(&self) -> bool {
matches!(self, Self::SourceCode {..})
}
fn is_test(&self) -> bool {
matches!(self, Self::Test)
}
}
#[derive(Debug)]
pub enum DisplaySourceCodeError {
PathNotFound,
}
pub enum HirDisplayError {
/// Errors that can occur when generating source code
DisplaySourceCodeError(DisplaySourceCodeError),
/// `FmtError` is required to be compatible with std::fmt::Display
FmtError,
}
impl From<fmt::Error> for HirDisplayError {
fn from(_: fmt::Error) -> Self {
Self::FmtError
}
}
pub struct HirDisplayWrapper<'a, T> {
db: &'a dyn HirDatabase,
t: &'a T,
max_size: Option<usize>,
omit_verbose_types: bool,
display_target: DisplayTarget,
}
impl<'a, T> fmt::Display for HirDisplayWrapper<'a, T>
where
T: HirDisplay,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self.t.hir_fmt(&mut HirFormatter {
db: self.db,
fmt: f,
buf: String::with_capacity(20),
curr_size: 0,
max_size: self.max_size,
omit_verbose_types: self.omit_verbose_types,
display_target: self.display_target,
}) {
Ok(()) => Ok(()),
Err(HirDisplayError::FmtError) => Err(fmt::Error),
Err(HirDisplayError::DisplaySourceCodeError(_)) => {
// This should never happen
panic!("HirDisplay failed when calling Display::fmt!")
}
}
}
}
const TYPE_HINT_TRUNCATION: &str = "";
impl HirDisplay for &Ty {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
HirDisplay::hir_fmt(*self, f)
}
}
impl HirDisplay for ApplicationTy {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
match self.ctor {
TypeCtor::Bool => write!(f, "bool")?,
TypeCtor::Char => write!(f, "char")?,
TypeCtor::Int(t) => write!(f, "{}", t)?,
TypeCtor::Float(t) => write!(f, "{}", t)?,
TypeCtor::Str => write!(f, "str")?,
TypeCtor::Slice => {
let t = self.parameters.as_single();
write!(f, "[")?;
t.hir_fmt(f)?;
write!(f, "]")?;
}
TypeCtor::Array => {
let t = self.parameters.as_single();
write!(f, "[")?;
t.hir_fmt(f)?;
write!(f, "; _]")?;
}
TypeCtor::RawPtr(m) => {
let t = self.parameters.as_single();
write!(f, "*{}", m.as_keyword_for_ptr())?;
if matches!(t, Ty::Dyn(predicates) if predicates.len() > 1) {
write!(f, "(")?;
t.hir_fmt(f)?;
write!(f, ")")?;
} else {
t.hir_fmt(f)?;
}
}
TypeCtor::Ref(m) => {
let t = self.parameters.as_single();
let ty_display =
t.into_displayable(f.db, f.max_size, f.omit_verbose_types, f.display_target);
write!(f, "&{}", m.as_keyword_for_ref())?;
if matches!(t, Ty::Dyn(predicates) if predicates.len() > 1) {
write!(f, "(")?;
write!(f, "{}", ty_display)?;
write!(f, ")")?;
} else {
write!(f, "{}", ty_display)?;
}
}
TypeCtor::Never => write!(f, "!")?,
TypeCtor::Tuple { .. } => {
let ts = &self.parameters;
if ts.len() == 1 {
write!(f, "(")?;
ts[0].hir_fmt(f)?;
write!(f, ",)")?;
} else {
write!(f, "(")?;
f.write_joined(&*ts.0, ", ")?;
write!(f, ")")?;
}
}
TypeCtor::FnPtr { is_varargs, .. } => {
let sig = FnSig::from_fn_ptr_substs(&self.parameters, is_varargs);
sig.hir_fmt(f)?;
}
TypeCtor::FnDef(def) => {
let sig = f.db.callable_item_signature(def).subst(&self.parameters);
match def {
CallableDefId::FunctionId(ff) => {
write!(f, "fn {}", f.db.function_data(ff).name)?
}
CallableDefId::StructId(s) => write!(f, "{}", f.db.struct_data(s).name)?,
CallableDefId::EnumVariantId(e) => {
write!(f, "{}", f.db.enum_data(e.parent).variants[e.local_id].name)?
}
};
if self.parameters.len() > 0 {
let generics = generics(f.db.upcast(), def.into());
let (parent_params, self_param, type_params, _impl_trait_params) =
generics.provenance_split();
let total_len = parent_params + self_param + type_params;
// We print all params except implicit impl Trait params. Still a bit weird; should we leave out parent and self?
if total_len > 0 {
write!(f, "<")?;
f.write_joined(&self.parameters.0[..total_len], ", ")?;
write!(f, ">")?;
}
}
write!(f, "(")?;
f.write_joined(sig.params(), ", ")?;
write!(f, ")")?;
let ret = sig.ret();
if *ret != Ty::unit() {
let ret_display = ret.into_displayable(
f.db,
f.max_size,
f.omit_verbose_types,
f.display_target,
);
write!(f, " -> {}", ret_display)?;
}
}
TypeCtor::Adt(def_id) => {
match f.display_target {
DisplayTarget::Diagnostics | DisplayTarget::Test => {
let name = match def_id {
AdtId::StructId(it) => f.db.struct_data(it).name.clone(),
AdtId::UnionId(it) => f.db.union_data(it).name.clone(),
AdtId::EnumId(it) => f.db.enum_data(it).name.clone(),
};
write!(f, "{}", name)?;
}
DisplayTarget::SourceCode { module_id } => {
if let Some(path) = find_path::find_path(
f.db.upcast(),
ItemInNs::Types(def_id.into()),
module_id,
) {
write!(f, "{}", path)?;
} else {
return Err(HirDisplayError::DisplaySourceCodeError(
DisplaySourceCodeError::PathNotFound,
));
}
}
}
if self.parameters.len() > 0 {
let parameters_to_write =
if f.display_target.is_source_code() || f.omit_verbose_types() {
match self
.ctor
.as_generic_def()
.map(|generic_def_id| f.db.generic_defaults(generic_def_id))
.filter(|defaults| !defaults.is_empty())
{
None => self.parameters.0.as_ref(),
Some(default_parameters) => {
let mut default_from = 0;
for (i, parameter) in self.parameters.iter().enumerate() {
match (parameter, default_parameters.get(i)) {
(&Ty::Unknown, _) | (_, None) => {
default_from = i + 1;
}
(_, Some(default_parameter)) => {
let actual_default = default_parameter
.clone()
.subst(&self.parameters.prefix(i));
if parameter != &actual_default {
default_from = i + 1;
}
}
}
}
&self.parameters.0[0..default_from]
}
}
} else {
self.parameters.0.as_ref()
};
if !parameters_to_write.is_empty() {
write!(f, "<")?;
f.write_joined(parameters_to_write, ", ")?;
write!(f, ">")?;
}
}
}
TypeCtor::AssociatedType(type_alias) => {
let trait_ = match type_alias.lookup(f.db.upcast()).container {
AssocContainerId::TraitId(it) => it,
_ => panic!("not an associated type"),
};
let trait_ = f.db.trait_data(trait_);
let type_alias_data = f.db.type_alias_data(type_alias);
// Use placeholder associated types when the target is test (https://rust-lang.github.io/chalk/book/clauses/type_equality.html#placeholder-associated-types)
if f.display_target.is_test() {
write!(f, "{}::{}", trait_.name, type_alias_data.name)?;
if self.parameters.len() > 0 {
write!(f, "<")?;
f.write_joined(&*self.parameters.0, ", ")?;
write!(f, ">")?;
}
} else {
let projection_ty = ProjectionTy {
associated_ty: type_alias,
parameters: self.parameters.clone(),
};
projection_ty.hir_fmt(f)?;
}
}
TypeCtor::ForeignType(type_alias) => {
let type_alias = f.db.type_alias_data(type_alias);
write!(f, "{}", type_alias.name)?;
if self.parameters.len() > 0 {
write!(f, "<")?;
f.write_joined(&*self.parameters.0, ", ")?;
write!(f, ">")?;
}
}
TypeCtor::OpaqueType(opaque_ty_id) => {
match opaque_ty_id {
OpaqueTyId::ReturnTypeImplTrait(func, idx) => {
let datas =
f.db.return_type_impl_traits(func).expect("impl trait id without data");
let data = (*datas)
.as_ref()
.map(|rpit| rpit.impl_traits[idx as usize].bounds.clone());
let bounds = data.subst(&self.parameters);
write!(f, "impl ")?;
write_bounds_like_dyn_trait(&bounds.value, f)?;
// FIXME: it would maybe be good to distinguish this from the alias type (when debug printing), and to show the substitution
}
OpaqueTyId::AsyncBlockTypeImplTrait(..) => {
write!(f, "impl Future<Output = ")?;
self.parameters[0].hir_fmt(f)?;
write!(f, ">")?;
}
}
}
TypeCtor::Closure { .. } => {
let sig = self.parameters[0].callable_sig(f.db);
if let Some(sig) = sig {
if sig.params().is_empty() {
write!(f, "||")?;
} else if f.omit_verbose_types() {
write!(f, "|{}|", TYPE_HINT_TRUNCATION)?;
} else {
write!(f, "|")?;
f.write_joined(sig.params(), ", ")?;
write!(f, "|")?;
};
let ret_display = sig.ret().into_displayable(
f.db,
f.max_size,
f.omit_verbose_types,
f.display_target,
);
write!(f, " -> {}", ret_display)?;
} else {
write!(f, "{{closure}}")?;
}
}
}
Ok(())
}
}
impl HirDisplay for ProjectionTy {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
let trait_ = f.db.trait_data(self.trait_(f.db));
let first_parameter = self.parameters[0].into_displayable(
f.db,
f.max_size,
f.omit_verbose_types,
f.display_target,
);
write!(f, "<{} as {}", first_parameter, trait_.name)?;
if self.parameters.len() > 1 {
write!(f, "<")?;
f.write_joined(&self.parameters[1..], ", ")?;
write!(f, ">")?;
}
write!(f, ">::{}", f.db.type_alias_data(self.associated_ty).name)?;
Ok(())
}
}
impl HirDisplay for Ty {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
match self {
Ty::Apply(a_ty) => a_ty.hir_fmt(f)?,
Ty::Projection(p_ty) => p_ty.hir_fmt(f)?,
Ty::Placeholder(id) => {
let generics = generics(f.db.upcast(), id.parent);
let param_data = &generics.params.types[id.local_id];
match param_data.provenance {
TypeParamProvenance::TypeParamList | TypeParamProvenance::TraitSelf => {
write!(f, "{}", param_data.name.clone().unwrap_or_else(Name::missing))?
}
TypeParamProvenance::ArgumentImplTrait => {
write!(f, "impl ")?;
let bounds = f.db.generic_predicates_for_param(*id);
let substs = Substs::type_params_for_generics(&generics);
write_bounds_like_dyn_trait(
&bounds.iter().map(|b| b.clone().subst(&substs)).collect::<Vec<_>>(),
f,
)?;
}
}
}
Ty::Bound(idx) => write!(f, "?{}.{}", idx.debruijn.depth(), idx.index)?,
Ty::Dyn(predicates) => {
write!(f, "dyn ")?;
write_bounds_like_dyn_trait(predicates, f)?;
}
Ty::Opaque(opaque_ty) => {
match opaque_ty.opaque_ty_id {
OpaqueTyId::ReturnTypeImplTrait(func, idx) => {
let datas =
f.db.return_type_impl_traits(func).expect("impl trait id without data");
let data = (*datas)
.as_ref()
.map(|rpit| rpit.impl_traits[idx as usize].bounds.clone());
let bounds = data.subst(&opaque_ty.parameters);
write!(f, "impl ")?;
write_bounds_like_dyn_trait(&bounds.value, f)?;
}
OpaqueTyId::AsyncBlockTypeImplTrait(..) => {
write!(f, "{{async block}}")?;
}
};
}
Ty::Unknown => write!(f, "{{unknown}}")?,
Ty::Infer(..) => write!(f, "_")?,
}
Ok(())
}
}
impl HirDisplay for FnSig {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
write!(f, "fn(")?;
f.write_joined(self.params(), ", ")?;
if self.is_varargs {
if self.params().is_empty() {
write!(f, "...")?;
} else {
write!(f, ", ...")?;
}
}
write!(f, ")")?;
let ret = self.ret();
if *ret != Ty::unit() {
let ret_display =
ret.into_displayable(f.db, f.max_size, f.omit_verbose_types, f.display_target);
write!(f, " -> {}", ret_display)?;
}
Ok(())
}
}
fn write_bounds_like_dyn_trait(
predicates: &[GenericPredicate],
f: &mut HirFormatter,
) -> Result<(), HirDisplayError> {
// Note: This code is written to produce nice results (i.e.
// corresponding to surface Rust) for types that can occur in
// actual Rust. It will have weird results if the predicates
// aren't as expected (i.e. self types = $0, projection
// predicates for a certain trait come after the Implemented
// predicate for that trait).
let mut first = true;
let mut angle_open = false;
for p in predicates.iter() {
match p {
GenericPredicate::Implemented(trait_ref) => {
if angle_open {
write!(f, ">")?;
angle_open = false;
}
if !first {
write!(f, " + ")?;
}
// We assume that the self type is $0 (i.e. the
// existential) here, which is the only thing that's
// possible in actual Rust, and hence don't print it
write!(f, "{}", f.db.trait_data(trait_ref.trait_).name)?;
if trait_ref.substs.len() > 1 {
write!(f, "<")?;
f.write_joined(&trait_ref.substs[1..], ", ")?;
// there might be assoc type bindings, so we leave the angle brackets open
angle_open = true;
}
}
GenericPredicate::Projection(projection_pred) => {
// in types in actual Rust, these will always come
// after the corresponding Implemented predicate
if angle_open {
write!(f, ", ")?;
} else {
write!(f, "<")?;
angle_open = true;
}
let type_alias = f.db.type_alias_data(projection_pred.projection_ty.associated_ty);
write!(f, "{} = ", type_alias.name)?;
projection_pred.ty.hir_fmt(f)?;
}
GenericPredicate::Error => {
if angle_open {
// impl Trait<X, {error}>
write!(f, ", ")?;
} else if !first {
// impl Trait + {error}
write!(f, " + ")?;
}
p.hir_fmt(f)?;
}
}
first = false;
}
if angle_open {
write!(f, ">")?;
}
Ok(())
}
impl TraitRef {
fn hir_fmt_ext(&self, f: &mut HirFormatter, use_as: bool) -> Result<(), HirDisplayError> {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
self.substs[0].hir_fmt(f)?;
if use_as {
write!(f, " as ")?;
} else {
write!(f, ": ")?;
}
write!(f, "{}", f.db.trait_data(self.trait_).name)?;
if self.substs.len() > 1 {
write!(f, "<")?;
f.write_joined(&self.substs[1..], ", ")?;
write!(f, ">")?;
}
Ok(())
}
}
impl HirDisplay for TraitRef {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
self.hir_fmt_ext(f, false)
}
}
impl HirDisplay for &GenericPredicate {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
HirDisplay::hir_fmt(*self, f)
}
}
impl HirDisplay for GenericPredicate {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
if f.should_truncate() {
return write!(f, "{}", TYPE_HINT_TRUNCATION);
}
match self {
GenericPredicate::Implemented(trait_ref) => trait_ref.hir_fmt(f)?,
GenericPredicate::Projection(projection_pred) => {
write!(f, "<")?;
projection_pred.projection_ty.trait_ref(f.db).hir_fmt_ext(f, true)?;
write!(
f,
">::{} = ",
f.db.type_alias_data(projection_pred.projection_ty.associated_ty).name,
)?;
projection_pred.ty.hir_fmt(f)?;
}
GenericPredicate::Error => write!(f, "{{error}}")?,
}
Ok(())
}
}
impl HirDisplay for Lifetime {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
match self {
Lifetime::Parameter(id) => {
let generics = generics(f.db.upcast(), id.parent);
let param_data = &generics.params.lifetimes[id.local_id];
write!(f, "{}", &param_data.name)
}
Lifetime::Static => write!(f, "'static"),
}
}
}
impl HirDisplay for Obligation {
fn hir_fmt(&self, f: &mut HirFormatter) -> Result<(), HirDisplayError> {
match self {
Obligation::Trait(tr) => {
write!(f, "Implements(")?;
tr.hir_fmt(f)?;
write!(f, ")")
}
Obligation::Projection(proj) => {
write!(f, "Normalize(")?;
proj.projection_ty.hir_fmt(f)?;
write!(f, " => ")?;
proj.ty.hir_fmt(f)?;
write!(f, ")")
}
}
}
}