mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-11 04:38:49 +00:00
426d2842c1
add unresolved-assoc-item assist I tried to copy from private-assoc-item for this
1489 lines
57 KiB
Rust
1489 lines
57 KiB
Rust
//! Type inference, i.e. the process of walking through the code and determining
|
|
//! the type of each expression and pattern.
|
|
//!
|
|
//! For type inference, compare the implementations in rustc (the various
|
|
//! check_* methods in rustc_hir_analysis/check/mod.rs are a good entry point) and
|
|
//! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for
|
|
//! inference here is the `infer` function, which infers the types of all
|
|
//! expressions in a given function.
|
|
//!
|
|
//! During inference, types (i.e. the `Ty` struct) can contain type 'variables'
|
|
//! which represent currently unknown types; as we walk through the expressions,
|
|
//! we might determine that certain variables need to be equal to each other, or
|
|
//! to certain types. To record this, we use the union-find implementation from
|
|
//! the `ena` crate, which is extracted from rustc.
|
|
|
|
mod cast;
|
|
pub(crate) mod closure;
|
|
mod coerce;
|
|
mod expr;
|
|
mod mutability;
|
|
mod pat;
|
|
mod path;
|
|
pub(crate) mod unify;
|
|
|
|
use std::{convert::identity, ops::Index};
|
|
|
|
use chalk_ir::{
|
|
cast::Cast, fold::TypeFoldable, interner::HasInterner, DebruijnIndex, Mutability, Safety,
|
|
Scalar, TyKind, TypeFlags,
|
|
};
|
|
use either::Either;
|
|
use hir_def::{
|
|
body::Body,
|
|
builtin_type::{BuiltinInt, BuiltinType, BuiltinUint},
|
|
data::{ConstData, StaticData},
|
|
hir::LabelId,
|
|
hir::{BindingAnnotation, BindingId, ExprId, ExprOrPatId, PatId},
|
|
lang_item::{LangItem, LangItemTarget},
|
|
layout::Integer,
|
|
path::{ModPath, Path},
|
|
resolver::{HasResolver, ResolveValueResult, Resolver, TypeNs, ValueNs},
|
|
type_ref::TypeRef,
|
|
AdtId, AssocItemId, DefWithBodyId, EnumVariantId, FieldId, FunctionId, ItemContainerId, Lookup,
|
|
TraitId, TypeAliasId, VariantId,
|
|
};
|
|
use hir_expand::name::{name, Name};
|
|
use la_arena::{ArenaMap, Entry};
|
|
use rustc_hash::{FxHashMap, FxHashSet};
|
|
use stdx::{always, never};
|
|
use triomphe::Arc;
|
|
|
|
use crate::{
|
|
db::HirDatabase,
|
|
fold_tys,
|
|
infer::coerce::CoerceMany,
|
|
lower::ImplTraitLoweringMode,
|
|
static_lifetime, to_assoc_type_id,
|
|
traits::FnTrait,
|
|
utils::{InTypeConstIdMetadata, UnevaluatedConstEvaluatorFolder},
|
|
AliasEq, AliasTy, ClosureId, DomainGoal, GenericArg, Goal, ImplTraitId, InEnvironment,
|
|
Interner, ProjectionTy, RpitId, Substitution, TraitEnvironment, TraitRef, Ty, TyBuilder, TyExt,
|
|
};
|
|
|
|
// This lint has a false positive here. See the link below for details.
|
|
//
|
|
// https://github.com/rust-lang/rust/issues/57411
|
|
#[allow(unreachable_pub)]
|
|
pub use coerce::could_coerce;
|
|
#[allow(unreachable_pub)]
|
|
pub use unify::could_unify;
|
|
|
|
use cast::CastCheck;
|
|
pub(crate) use closure::{CaptureKind, CapturedItem, CapturedItemWithoutTy};
|
|
|
|
/// The entry point of type inference.
|
|
pub(crate) fn infer_query(db: &dyn HirDatabase, def: DefWithBodyId) -> Arc<InferenceResult> {
|
|
let _p = profile::span("infer_query");
|
|
let resolver = def.resolver(db.upcast());
|
|
let body = db.body(def);
|
|
let mut ctx = InferenceContext::new(db, def, &body, resolver);
|
|
|
|
match def {
|
|
DefWithBodyId::FunctionId(f) => {
|
|
ctx.collect_fn(f);
|
|
}
|
|
DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)),
|
|
DefWithBodyId::StaticId(s) => ctx.collect_static(&db.static_data(s)),
|
|
DefWithBodyId::VariantId(v) => {
|
|
ctx.return_ty = TyBuilder::builtin(match db.enum_data(v.parent).variant_body_type() {
|
|
hir_def::layout::IntegerType::Pointer(signed) => match signed {
|
|
true => BuiltinType::Int(BuiltinInt::Isize),
|
|
false => BuiltinType::Uint(BuiltinUint::Usize),
|
|
},
|
|
hir_def::layout::IntegerType::Fixed(size, signed) => match signed {
|
|
true => BuiltinType::Int(match size {
|
|
Integer::I8 => BuiltinInt::I8,
|
|
Integer::I16 => BuiltinInt::I16,
|
|
Integer::I32 => BuiltinInt::I32,
|
|
Integer::I64 => BuiltinInt::I64,
|
|
Integer::I128 => BuiltinInt::I128,
|
|
}),
|
|
false => BuiltinType::Uint(match size {
|
|
Integer::I8 => BuiltinUint::U8,
|
|
Integer::I16 => BuiltinUint::U16,
|
|
Integer::I32 => BuiltinUint::U32,
|
|
Integer::I64 => BuiltinUint::U64,
|
|
Integer::I128 => BuiltinUint::U128,
|
|
}),
|
|
},
|
|
});
|
|
}
|
|
DefWithBodyId::InTypeConstId(c) => {
|
|
// FIXME(const-generic-body): We should not get the return type in this way.
|
|
ctx.return_ty = c
|
|
.lookup(db.upcast())
|
|
.expected_ty
|
|
.box_any()
|
|
.downcast::<InTypeConstIdMetadata>()
|
|
.unwrap()
|
|
.0;
|
|
}
|
|
}
|
|
|
|
ctx.infer_body();
|
|
|
|
ctx.infer_mut_body();
|
|
|
|
ctx.infer_closures();
|
|
|
|
Arc::new(ctx.resolve_all())
|
|
}
|
|
|
|
/// Fully normalize all the types found within `ty` in context of `owner` body definition.
|
|
///
|
|
/// This is appropriate to use only after type-check: it assumes
|
|
/// that normalization will succeed, for example.
|
|
pub(crate) fn normalize(db: &dyn HirDatabase, trait_env: Arc<TraitEnvironment>, ty: Ty) -> Ty {
|
|
// FIXME: TypeFlags::HAS_CT_PROJECTION is not implemented in chalk, so TypeFlags::HAS_PROJECTION only
|
|
// works for the type case, so we check array unconditionally. Remove the array part
|
|
// when the bug in chalk becomes fixed.
|
|
if !ty.data(Interner).flags.intersects(TypeFlags::HAS_PROJECTION)
|
|
&& !matches!(ty.kind(Interner), TyKind::Array(..))
|
|
{
|
|
return ty;
|
|
}
|
|
let mut table = unify::InferenceTable::new(db, trait_env);
|
|
|
|
let ty_with_vars = table.normalize_associated_types_in(ty);
|
|
table.resolve_obligations_as_possible();
|
|
table.propagate_diverging_flag();
|
|
table.resolve_completely(ty_with_vars)
|
|
}
|
|
|
|
/// Binding modes inferred for patterns.
|
|
/// <https://doc.rust-lang.org/reference/patterns.html#binding-modes>
|
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
|
pub enum BindingMode {
|
|
Move,
|
|
Ref(Mutability),
|
|
}
|
|
|
|
impl BindingMode {
|
|
fn convert(annotation: BindingAnnotation) -> BindingMode {
|
|
match annotation {
|
|
BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move,
|
|
BindingAnnotation::Ref => BindingMode::Ref(Mutability::Not),
|
|
BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Default for BindingMode {
|
|
fn default() -> Self {
|
|
BindingMode::Move
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) struct InferOk<T> {
|
|
value: T,
|
|
goals: Vec<InEnvironment<Goal>>,
|
|
}
|
|
|
|
impl<T> InferOk<T> {
|
|
fn map<U>(self, f: impl FnOnce(T) -> U) -> InferOk<U> {
|
|
InferOk { value: f(self.value), goals: self.goals }
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub(crate) struct TypeError;
|
|
pub(crate) type InferResult<T> = Result<InferOk<T>, TypeError>;
|
|
|
|
#[derive(Debug, PartialEq, Eq, Clone)]
|
|
pub enum InferenceDiagnostic {
|
|
NoSuchField {
|
|
field: ExprOrPatId,
|
|
private: bool,
|
|
},
|
|
PrivateField {
|
|
expr: ExprId,
|
|
field: FieldId,
|
|
},
|
|
PrivateAssocItem {
|
|
id: ExprOrPatId,
|
|
item: AssocItemId,
|
|
},
|
|
UnresolvedField {
|
|
expr: ExprId,
|
|
receiver: Ty,
|
|
name: Name,
|
|
method_with_same_name_exists: bool,
|
|
},
|
|
UnresolvedMethodCall {
|
|
expr: ExprId,
|
|
receiver: Ty,
|
|
name: Name,
|
|
/// Contains the type the field resolves to
|
|
field_with_same_name: Option<Ty>,
|
|
assoc_func_with_same_name: Option<AssocItemId>,
|
|
},
|
|
UnresolvedAssocItem {
|
|
id: ExprOrPatId,
|
|
},
|
|
// FIXME: This should be emitted in body lowering
|
|
BreakOutsideOfLoop {
|
|
expr: ExprId,
|
|
is_break: bool,
|
|
bad_value_break: bool,
|
|
},
|
|
MismatchedArgCount {
|
|
call_expr: ExprId,
|
|
expected: usize,
|
|
found: usize,
|
|
},
|
|
MismatchedTupleStructPatArgCount {
|
|
pat: ExprOrPatId,
|
|
expected: usize,
|
|
found: usize,
|
|
},
|
|
ExpectedFunction {
|
|
call_expr: ExprId,
|
|
found: Ty,
|
|
},
|
|
TypedHole {
|
|
expr: ExprId,
|
|
expected: Ty,
|
|
},
|
|
}
|
|
|
|
/// A mismatch between an expected and an inferred type.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
|
|
pub struct TypeMismatch {
|
|
pub expected: Ty,
|
|
pub actual: Ty,
|
|
}
|
|
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
struct InternedStandardTypes {
|
|
unknown: Ty,
|
|
bool_: Ty,
|
|
unit: Ty,
|
|
never: Ty,
|
|
}
|
|
|
|
impl Default for InternedStandardTypes {
|
|
fn default() -> Self {
|
|
InternedStandardTypes {
|
|
unknown: TyKind::Error.intern(Interner),
|
|
bool_: TyKind::Scalar(Scalar::Bool).intern(Interner),
|
|
unit: TyKind::Tuple(0, Substitution::empty(Interner)).intern(Interner),
|
|
never: TyKind::Never.intern(Interner),
|
|
}
|
|
}
|
|
}
|
|
/// Represents coercing a value to a different type of value.
|
|
///
|
|
/// We transform values by following a number of `Adjust` steps in order.
|
|
/// See the documentation on variants of `Adjust` for more details.
|
|
///
|
|
/// Here are some common scenarios:
|
|
///
|
|
/// 1. The simplest cases are where a pointer is not adjusted fat vs thin.
|
|
/// Here the pointer will be dereferenced N times (where a dereference can
|
|
/// happen to raw or borrowed pointers or any smart pointer which implements
|
|
/// Deref, including Box<_>). The types of dereferences is given by
|
|
/// `autoderefs`. It can then be auto-referenced zero or one times, indicated
|
|
/// by `autoref`, to either a raw or borrowed pointer. In these cases unsize is
|
|
/// `false`.
|
|
///
|
|
/// 2. A thin-to-fat coercion involves unsizing the underlying data. We start
|
|
/// with a thin pointer, deref a number of times, unsize the underlying data,
|
|
/// then autoref. The 'unsize' phase may change a fixed length array to a
|
|
/// dynamically sized one, a concrete object to a trait object, or statically
|
|
/// sized struct to a dynamically sized one. E.g., &[i32; 4] -> &[i32] is
|
|
/// represented by:
|
|
///
|
|
/// ```
|
|
/// Deref(None) -> [i32; 4],
|
|
/// Borrow(AutoBorrow::Ref) -> &[i32; 4],
|
|
/// Unsize -> &[i32],
|
|
/// ```
|
|
///
|
|
/// Note that for a struct, the 'deep' unsizing of the struct is not recorded.
|
|
/// E.g., `struct Foo<T> { it: T }` we can coerce &Foo<[i32; 4]> to &Foo<[i32]>
|
|
/// The autoderef and -ref are the same as in the above example, but the type
|
|
/// stored in `unsize` is `Foo<[i32]>`, we don't store any further detail about
|
|
/// the underlying conversions from `[i32; 4]` to `[i32]`.
|
|
///
|
|
/// 3. Coercing a `Box<T>` to `Box<dyn Trait>` is an interesting special case. In
|
|
/// that case, we have the pointer we need coming in, so there are no
|
|
/// autoderefs, and no autoref. Instead we just do the `Unsize` transformation.
|
|
/// At some point, of course, `Box` should move out of the compiler, in which
|
|
/// case this is analogous to transforming a struct. E.g., Box<[i32; 4]> ->
|
|
/// Box<[i32]> is an `Adjust::Unsize` with the target `Box<[i32]>`.
|
|
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
|
|
pub struct Adjustment {
|
|
pub kind: Adjust,
|
|
pub target: Ty,
|
|
}
|
|
|
|
impl Adjustment {
|
|
pub fn borrow(m: Mutability, ty: Ty) -> Self {
|
|
let ty = TyKind::Ref(m, static_lifetime(), ty).intern(Interner);
|
|
Adjustment { kind: Adjust::Borrow(AutoBorrow::Ref(m)), target: ty }
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
pub enum Adjust {
|
|
/// Go from ! to any type.
|
|
NeverToAny,
|
|
/// Dereference once, producing a place.
|
|
Deref(Option<OverloadedDeref>),
|
|
/// Take the address and produce either a `&` or `*` pointer.
|
|
Borrow(AutoBorrow),
|
|
Pointer(PointerCast),
|
|
}
|
|
|
|
/// An overloaded autoderef step, representing a `Deref(Mut)::deref(_mut)`
|
|
/// call, with the signature `&'a T -> &'a U` or `&'a mut T -> &'a mut U`.
|
|
/// The target type is `U` in both cases, with the region and mutability
|
|
/// being those shared by both the receiver and the returned reference.
|
|
///
|
|
/// Mutability is `None` when we are not sure.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
pub struct OverloadedDeref(pub Option<Mutability>);
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
pub enum AutoBorrow {
|
|
/// Converts from T to &T.
|
|
Ref(Mutability),
|
|
/// Converts from T to *T.
|
|
RawPtr(Mutability),
|
|
}
|
|
|
|
impl AutoBorrow {
|
|
fn mutability(self) -> Mutability {
|
|
let (AutoBorrow::Ref(m) | AutoBorrow::RawPtr(m)) = self;
|
|
m
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
|
|
pub enum PointerCast {
|
|
/// Go from a fn-item type to a fn-pointer type.
|
|
ReifyFnPointer,
|
|
|
|
/// Go from a safe fn pointer to an unsafe fn pointer.
|
|
UnsafeFnPointer,
|
|
|
|
/// Go from a non-capturing closure to an fn pointer or an unsafe fn pointer.
|
|
/// It cannot convert a closure that requires unsafe.
|
|
ClosureFnPointer(Safety),
|
|
|
|
/// Go from a mut raw pointer to a const raw pointer.
|
|
MutToConstPointer,
|
|
|
|
#[allow(dead_code)]
|
|
/// Go from `*const [T; N]` to `*const T`
|
|
ArrayToPointer,
|
|
|
|
/// Unsize a pointer/reference value, e.g., `&[T; n]` to
|
|
/// `&[T]`. Note that the source could be a thin or fat pointer.
|
|
/// This will do things like convert thin pointers to fat
|
|
/// pointers, or convert structs containing thin pointers to
|
|
/// structs containing fat pointers, or convert between fat
|
|
/// pointers. We don't store the details of how the transform is
|
|
/// done (in fact, we don't know that, because it might depend on
|
|
/// the precise type parameters). We just store the target
|
|
/// type. Codegen backends and miri figure out what has to be done
|
|
/// based on the precise source/target type at hand.
|
|
Unsize,
|
|
}
|
|
|
|
/// The result of type inference: A mapping from expressions and patterns to types.
|
|
///
|
|
/// When you add a field that stores types (including `Substitution` and the like), don't forget
|
|
/// `resolve_completely()`'ing them in `InferenceContext::resolve_all()`. Inference variables must
|
|
/// not appear in the final inference result.
|
|
#[derive(Clone, PartialEq, Eq, Debug, Default)]
|
|
pub struct InferenceResult {
|
|
/// For each method call expr, records the function it resolves to.
|
|
method_resolutions: FxHashMap<ExprId, (FunctionId, Substitution)>,
|
|
/// For each field access expr, records the field it resolves to.
|
|
field_resolutions: FxHashMap<ExprId, FieldId>,
|
|
/// For each struct literal or pattern, records the variant it resolves to.
|
|
variant_resolutions: FxHashMap<ExprOrPatId, VariantId>,
|
|
/// For each associated item record what it resolves to
|
|
assoc_resolutions: FxHashMap<ExprOrPatId, (AssocItemId, Substitution)>,
|
|
pub diagnostics: Vec<InferenceDiagnostic>,
|
|
pub type_of_expr: ArenaMap<ExprId, Ty>,
|
|
/// For each pattern record the type it resolves to.
|
|
///
|
|
/// **Note**: When a pattern type is resolved it may still contain
|
|
/// unresolved or missing subpatterns or subpatterns of mismatched types.
|
|
pub type_of_pat: ArenaMap<PatId, Ty>,
|
|
pub type_of_binding: ArenaMap<BindingId, Ty>,
|
|
pub type_of_rpit: ArenaMap<RpitId, Ty>,
|
|
/// Type of the result of `.into_iter()` on the for. `ExprId` is the one of the whole for loop.
|
|
pub type_of_for_iterator: FxHashMap<ExprId, Ty>,
|
|
type_mismatches: FxHashMap<ExprOrPatId, TypeMismatch>,
|
|
/// Interned common types to return references to.
|
|
standard_types: InternedStandardTypes,
|
|
/// Stores the types which were implicitly dereferenced in pattern binding modes.
|
|
pub pat_adjustments: FxHashMap<PatId, Vec<Ty>>,
|
|
/// Stores the binding mode (`ref` in `let ref x = 2`) of bindings.
|
|
///
|
|
/// This one is tied to the `PatId` instead of `BindingId`, because in some rare cases, a binding in an
|
|
/// or pattern can have multiple binding modes. For example:
|
|
/// ```
|
|
/// fn foo(mut slice: &[u32]) -> usize {
|
|
/// slice = match slice {
|
|
/// [0, rest @ ..] | rest => rest,
|
|
/// };
|
|
/// }
|
|
/// ```
|
|
/// the first `rest` has implicit `ref` binding mode, but the second `rest` binding mode is `move`.
|
|
pub binding_modes: ArenaMap<PatId, BindingMode>,
|
|
pub expr_adjustments: FxHashMap<ExprId, Vec<Adjustment>>,
|
|
pub(crate) closure_info: FxHashMap<ClosureId, (Vec<CapturedItem>, FnTrait)>,
|
|
// FIXME: remove this field
|
|
pub mutated_bindings_in_closure: FxHashSet<BindingId>,
|
|
}
|
|
|
|
impl InferenceResult {
|
|
pub fn method_resolution(&self, expr: ExprId) -> Option<(FunctionId, Substitution)> {
|
|
self.method_resolutions.get(&expr).cloned()
|
|
}
|
|
pub fn field_resolution(&self, expr: ExprId) -> Option<FieldId> {
|
|
self.field_resolutions.get(&expr).copied()
|
|
}
|
|
pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option<VariantId> {
|
|
self.variant_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn variant_resolution_for_pat(&self, id: PatId) -> Option<VariantId> {
|
|
self.variant_resolutions.get(&id.into()).copied()
|
|
}
|
|
pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option<(AssocItemId, Substitution)> {
|
|
self.assoc_resolutions.get(&id.into()).cloned()
|
|
}
|
|
pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option<(AssocItemId, Substitution)> {
|
|
self.assoc_resolutions.get(&id.into()).cloned()
|
|
}
|
|
pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> {
|
|
self.type_mismatches.get(&expr.into())
|
|
}
|
|
pub fn type_mismatch_for_pat(&self, pat: PatId) -> Option<&TypeMismatch> {
|
|
self.type_mismatches.get(&pat.into())
|
|
}
|
|
pub fn type_mismatches(&self) -> impl Iterator<Item = (ExprOrPatId, &TypeMismatch)> {
|
|
self.type_mismatches.iter().map(|(expr_or_pat, mismatch)| (*expr_or_pat, mismatch))
|
|
}
|
|
pub fn expr_type_mismatches(&self) -> impl Iterator<Item = (ExprId, &TypeMismatch)> {
|
|
self.type_mismatches.iter().filter_map(|(expr_or_pat, mismatch)| match *expr_or_pat {
|
|
ExprOrPatId::ExprId(expr) => Some((expr, mismatch)),
|
|
_ => None,
|
|
})
|
|
}
|
|
pub fn closure_info(&self, closure: &ClosureId) -> &(Vec<CapturedItem>, FnTrait) {
|
|
self.closure_info.get(closure).unwrap()
|
|
}
|
|
}
|
|
|
|
impl Index<ExprId> for InferenceResult {
|
|
type Output = Ty;
|
|
|
|
fn index(&self, expr: ExprId) -> &Ty {
|
|
self.type_of_expr.get(expr).unwrap_or(&self.standard_types.unknown)
|
|
}
|
|
}
|
|
|
|
impl Index<PatId> for InferenceResult {
|
|
type Output = Ty;
|
|
|
|
fn index(&self, pat: PatId) -> &Ty {
|
|
self.type_of_pat.get(pat).unwrap_or(&self.standard_types.unknown)
|
|
}
|
|
}
|
|
|
|
impl Index<BindingId> for InferenceResult {
|
|
type Output = Ty;
|
|
|
|
fn index(&self, b: BindingId) -> &Ty {
|
|
self.type_of_binding.get(b).unwrap_or(&self.standard_types.unknown)
|
|
}
|
|
}
|
|
|
|
/// The inference context contains all information needed during type inference.
|
|
#[derive(Clone, Debug)]
|
|
pub(crate) struct InferenceContext<'a> {
|
|
pub(crate) db: &'a dyn HirDatabase,
|
|
pub(crate) owner: DefWithBodyId,
|
|
pub(crate) body: &'a Body,
|
|
pub(crate) resolver: Resolver,
|
|
table: unify::InferenceTable<'a>,
|
|
/// The traits in scope, disregarding block modules. This is used for caching purposes.
|
|
traits_in_scope: FxHashSet<TraitId>,
|
|
pub(crate) result: InferenceResult,
|
|
/// The return type of the function being inferred, the closure or async block if we're
|
|
/// currently within one.
|
|
///
|
|
/// We might consider using a nested inference context for checking
|
|
/// closures so we can swap all shared things out at once.
|
|
return_ty: Ty,
|
|
/// If `Some`, this stores coercion information for returned
|
|
/// expressions. If `None`, this is in a context where return is
|
|
/// inappropriate, such as a const expression.
|
|
return_coercion: Option<CoerceMany>,
|
|
/// The resume type and the yield type, respectively, of the generator being inferred.
|
|
resume_yield_tys: Option<(Ty, Ty)>,
|
|
diverges: Diverges,
|
|
breakables: Vec<BreakableContext>,
|
|
|
|
deferred_cast_checks: Vec<CastCheck>,
|
|
|
|
// fields related to closure capture
|
|
current_captures: Vec<CapturedItemWithoutTy>,
|
|
current_closure: Option<ClosureId>,
|
|
/// Stores the list of closure ids that need to be analyzed before this closure. See the
|
|
/// comment on `InferenceContext::sort_closures`
|
|
closure_dependencies: FxHashMap<ClosureId, Vec<ClosureId>>,
|
|
deferred_closures: FxHashMap<ClosureId, Vec<(Ty, Ty, Vec<Ty>, ExprId)>>,
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
struct BreakableContext {
|
|
/// Whether this context contains at least one break expression.
|
|
may_break: bool,
|
|
/// The coercion target of the context.
|
|
coerce: Option<CoerceMany>,
|
|
/// The optional label of the context.
|
|
label: Option<LabelId>,
|
|
kind: BreakableKind,
|
|
}
|
|
|
|
#[derive(Clone, Debug)]
|
|
enum BreakableKind {
|
|
Block,
|
|
Loop,
|
|
/// A border is something like an async block, closure etc. Anything that prevents
|
|
/// breaking/continuing through
|
|
Border,
|
|
}
|
|
|
|
fn find_breakable<'c>(
|
|
ctxs: &'c mut [BreakableContext],
|
|
label: Option<LabelId>,
|
|
) -> Option<&'c mut BreakableContext> {
|
|
let mut ctxs = ctxs
|
|
.iter_mut()
|
|
.rev()
|
|
.take_while(|it| matches!(it.kind, BreakableKind::Block | BreakableKind::Loop));
|
|
match label {
|
|
Some(_) => ctxs.find(|ctx| ctx.label == label),
|
|
None => ctxs.find(|ctx| matches!(ctx.kind, BreakableKind::Loop)),
|
|
}
|
|
}
|
|
|
|
fn find_continuable<'c>(
|
|
ctxs: &'c mut [BreakableContext],
|
|
label: Option<LabelId>,
|
|
) -> Option<&'c mut BreakableContext> {
|
|
match label {
|
|
Some(_) => find_breakable(ctxs, label).filter(|it| matches!(it.kind, BreakableKind::Loop)),
|
|
None => find_breakable(ctxs, label),
|
|
}
|
|
}
|
|
|
|
impl<'a> InferenceContext<'a> {
|
|
fn new(
|
|
db: &'a dyn HirDatabase,
|
|
owner: DefWithBodyId,
|
|
body: &'a Body,
|
|
resolver: Resolver,
|
|
) -> Self {
|
|
let trait_env = db.trait_environment_for_body(owner);
|
|
InferenceContext {
|
|
result: InferenceResult::default(),
|
|
table: unify::InferenceTable::new(db, trait_env),
|
|
return_ty: TyKind::Error.intern(Interner), // set in collect_* calls
|
|
resume_yield_tys: None,
|
|
return_coercion: None,
|
|
db,
|
|
owner,
|
|
body,
|
|
traits_in_scope: resolver.traits_in_scope(db.upcast()),
|
|
resolver,
|
|
diverges: Diverges::Maybe,
|
|
breakables: Vec::new(),
|
|
deferred_cast_checks: Vec::new(),
|
|
current_captures: Vec::new(),
|
|
current_closure: None,
|
|
deferred_closures: FxHashMap::default(),
|
|
closure_dependencies: FxHashMap::default(),
|
|
}
|
|
}
|
|
|
|
// FIXME: This function should be private in module. It is currently only used in the consteval, since we need
|
|
// `InferenceResult` in the middle of inference. See the fixme comment in `consteval::eval_to_const`. If you
|
|
// used this function for another workaround, mention it here. If you really need this function and believe that
|
|
// there is no problem in it being `pub(crate)`, remove this comment.
|
|
pub(crate) fn resolve_all(self) -> InferenceResult {
|
|
let InferenceContext { mut table, mut result, deferred_cast_checks, .. } = self;
|
|
// Destructure every single field so whenever new fields are added to `InferenceResult` we
|
|
// don't forget to handle them here.
|
|
let InferenceResult {
|
|
method_resolutions,
|
|
field_resolutions: _,
|
|
variant_resolutions: _,
|
|
assoc_resolutions,
|
|
diagnostics,
|
|
type_of_expr,
|
|
type_of_pat,
|
|
type_of_binding,
|
|
type_of_rpit,
|
|
type_of_for_iterator,
|
|
type_mismatches,
|
|
standard_types: _,
|
|
pat_adjustments,
|
|
binding_modes: _,
|
|
expr_adjustments,
|
|
// Types in `closure_info` have already been `resolve_completely()`'d during
|
|
// `InferenceContext::infer_closures()` (in `HirPlace::ty()` specifically), so no need
|
|
// to resolve them here.
|
|
closure_info: _,
|
|
mutated_bindings_in_closure: _,
|
|
} = &mut result;
|
|
|
|
table.fallback_if_possible();
|
|
|
|
// Comment from rustc:
|
|
// Even though coercion casts provide type hints, we check casts after fallback for
|
|
// backwards compatibility. This makes fallback a stronger type hint than a cast coercion.
|
|
for cast in deferred_cast_checks {
|
|
cast.check(&mut table);
|
|
}
|
|
|
|
// FIXME resolve obligations as well (use Guidance if necessary)
|
|
table.resolve_obligations_as_possible();
|
|
|
|
// make sure diverging type variables are marked as such
|
|
table.propagate_diverging_flag();
|
|
for ty in type_of_expr.values_mut() {
|
|
*ty = table.resolve_completely(ty.clone());
|
|
}
|
|
for ty in type_of_pat.values_mut() {
|
|
*ty = table.resolve_completely(ty.clone());
|
|
}
|
|
for ty in type_of_binding.values_mut() {
|
|
*ty = table.resolve_completely(ty.clone());
|
|
}
|
|
for ty in type_of_rpit.values_mut() {
|
|
*ty = table.resolve_completely(ty.clone());
|
|
}
|
|
for ty in type_of_for_iterator.values_mut() {
|
|
*ty = table.resolve_completely(ty.clone());
|
|
}
|
|
for mismatch in type_mismatches.values_mut() {
|
|
mismatch.expected = table.resolve_completely(mismatch.expected.clone());
|
|
mismatch.actual = table.resolve_completely(mismatch.actual.clone());
|
|
}
|
|
diagnostics.retain_mut(|diagnostic| {
|
|
use InferenceDiagnostic::*;
|
|
match diagnostic {
|
|
ExpectedFunction { found: ty, .. }
|
|
| UnresolvedField { receiver: ty, .. }
|
|
| UnresolvedMethodCall { receiver: ty, .. } => {
|
|
*ty = table.resolve_completely(ty.clone());
|
|
// FIXME: Remove this when we are on par with rustc in terms of inference
|
|
if ty.contains_unknown() {
|
|
return false;
|
|
}
|
|
|
|
if let UnresolvedMethodCall { field_with_same_name, .. } = diagnostic {
|
|
if let Some(ty) = field_with_same_name {
|
|
*ty = table.resolve_completely(ty.clone());
|
|
if ty.contains_unknown() {
|
|
*field_with_same_name = None;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
TypedHole { expected: ty, .. } => {
|
|
*ty = table.resolve_completely(ty.clone());
|
|
}
|
|
_ => (),
|
|
}
|
|
true
|
|
});
|
|
for (_, subst) in method_resolutions.values_mut() {
|
|
*subst = table.resolve_completely(subst.clone());
|
|
}
|
|
for (_, subst) in assoc_resolutions.values_mut() {
|
|
*subst = table.resolve_completely(subst.clone());
|
|
}
|
|
for adjustment in expr_adjustments.values_mut().flatten() {
|
|
adjustment.target = table.resolve_completely(adjustment.target.clone());
|
|
}
|
|
for adjustment in pat_adjustments.values_mut().flatten() {
|
|
*adjustment = table.resolve_completely(adjustment.clone());
|
|
}
|
|
result
|
|
}
|
|
|
|
fn collect_const(&mut self, data: &ConstData) {
|
|
self.return_ty = self.make_ty(&data.type_ref);
|
|
}
|
|
|
|
fn collect_static(&mut self, data: &StaticData) {
|
|
self.return_ty = self.make_ty(&data.type_ref);
|
|
}
|
|
|
|
fn collect_fn(&mut self, func: FunctionId) {
|
|
let data = self.db.function_data(func);
|
|
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, func.into())
|
|
.with_impl_trait_mode(ImplTraitLoweringMode::Param);
|
|
let mut param_tys =
|
|
data.params.iter().map(|type_ref| ctx.lower_ty(type_ref)).collect::<Vec<_>>();
|
|
// Check if function contains a va_list, if it does then we append it to the parameter types
|
|
// that are collected from the function data
|
|
if data.is_varargs() {
|
|
let va_list_ty = match self.resolve_va_list() {
|
|
Some(va_list) => TyBuilder::adt(self.db, va_list)
|
|
.fill_with_defaults(self.db, || self.table.new_type_var())
|
|
.build(),
|
|
None => self.err_ty(),
|
|
};
|
|
|
|
param_tys.push(va_list_ty)
|
|
}
|
|
for (ty, pat) in param_tys.into_iter().zip(self.body.params.iter()) {
|
|
let ty = self.insert_type_vars(ty);
|
|
let ty = self.normalize_associated_types_in(ty);
|
|
|
|
self.infer_top_pat(*pat, &ty);
|
|
}
|
|
let return_ty = &*data.ret_type;
|
|
|
|
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into())
|
|
.with_impl_trait_mode(ImplTraitLoweringMode::Opaque);
|
|
let return_ty = ctx.lower_ty(return_ty);
|
|
let return_ty = self.insert_type_vars(return_ty);
|
|
|
|
let return_ty = if let Some(rpits) = self.db.return_type_impl_traits(func) {
|
|
// RPIT opaque types use substitution of their parent function.
|
|
let fn_placeholders = TyBuilder::placeholder_subst(self.db, func);
|
|
let result =
|
|
self.insert_inference_vars_for_rpit(return_ty, rpits.clone(), fn_placeholders);
|
|
let rpits = rpits.skip_binders();
|
|
for (id, _) in rpits.impl_traits.iter() {
|
|
if let Entry::Vacant(e) = self.result.type_of_rpit.entry(id) {
|
|
never!("Missed RPIT in `insert_inference_vars_for_rpit`");
|
|
e.insert(TyKind::Error.intern(Interner));
|
|
}
|
|
}
|
|
result
|
|
} else {
|
|
return_ty
|
|
};
|
|
|
|
self.return_ty = self.normalize_associated_types_in(return_ty);
|
|
self.return_coercion = Some(CoerceMany::new(self.return_ty.clone()));
|
|
}
|
|
|
|
fn insert_inference_vars_for_rpit<T>(
|
|
&mut self,
|
|
t: T,
|
|
rpits: Arc<chalk_ir::Binders<crate::ReturnTypeImplTraits>>,
|
|
fn_placeholders: Substitution,
|
|
) -> T
|
|
where
|
|
T: crate::HasInterner<Interner = Interner> + crate::TypeFoldable<Interner>,
|
|
{
|
|
fold_tys(
|
|
t,
|
|
|ty, _| {
|
|
let opaque_ty_id = match ty.kind(Interner) {
|
|
TyKind::OpaqueType(opaque_ty_id, _) => *opaque_ty_id,
|
|
_ => return ty,
|
|
};
|
|
let idx = match self.db.lookup_intern_impl_trait_id(opaque_ty_id.into()) {
|
|
ImplTraitId::ReturnTypeImplTrait(_, idx) => idx,
|
|
_ => unreachable!(),
|
|
};
|
|
let bounds = (*rpits)
|
|
.map_ref(|rpits| rpits.impl_traits[idx].bounds.map_ref(|it| it.into_iter()));
|
|
let var = self.table.new_type_var();
|
|
let var_subst = Substitution::from1(Interner, var.clone());
|
|
for bound in bounds {
|
|
let predicate =
|
|
bound.map(|it| it.cloned()).substitute(Interner, &fn_placeholders);
|
|
let (var_predicate, binders) =
|
|
predicate.substitute(Interner, &var_subst).into_value_and_skipped_binders();
|
|
always!(binders.is_empty(Interner)); // quantified where clauses not yet handled
|
|
let var_predicate = self.insert_inference_vars_for_rpit(
|
|
var_predicate,
|
|
rpits.clone(),
|
|
fn_placeholders.clone(),
|
|
);
|
|
self.push_obligation(var_predicate.cast(Interner));
|
|
}
|
|
self.result.type_of_rpit.insert(idx, var.clone());
|
|
var
|
|
},
|
|
DebruijnIndex::INNERMOST,
|
|
)
|
|
}
|
|
|
|
fn infer_body(&mut self) {
|
|
match self.return_coercion {
|
|
Some(_) => self.infer_return(self.body.body_expr),
|
|
None => {
|
|
_ = self.infer_expr_coerce(
|
|
self.body.body_expr,
|
|
&Expectation::has_type(self.return_ty.clone()),
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) {
|
|
self.result.type_of_expr.insert(expr, ty);
|
|
}
|
|
|
|
fn write_expr_adj(&mut self, expr: ExprId, adjustments: Vec<Adjustment>) {
|
|
self.result.expr_adjustments.insert(expr, adjustments);
|
|
}
|
|
|
|
fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId, subst: Substitution) {
|
|
self.result.method_resolutions.insert(expr, (func, subst));
|
|
}
|
|
|
|
fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) {
|
|
self.result.variant_resolutions.insert(id, variant);
|
|
}
|
|
|
|
fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId, subs: Substitution) {
|
|
self.result.assoc_resolutions.insert(id, (item, subs));
|
|
}
|
|
|
|
fn write_pat_ty(&mut self, pat: PatId, ty: Ty) {
|
|
self.result.type_of_pat.insert(pat, ty);
|
|
}
|
|
|
|
fn write_binding_ty(&mut self, id: BindingId, ty: Ty) {
|
|
self.result.type_of_binding.insert(id, ty);
|
|
}
|
|
|
|
fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) {
|
|
self.result.diagnostics.push(diagnostic);
|
|
}
|
|
|
|
fn make_ty(&mut self, type_ref: &TypeRef) -> Ty {
|
|
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into());
|
|
let ty = ctx.lower_ty(type_ref);
|
|
let ty = self.insert_type_vars(ty);
|
|
self.normalize_associated_types_in(ty)
|
|
}
|
|
|
|
fn err_ty(&self) -> Ty {
|
|
self.result.standard_types.unknown.clone()
|
|
}
|
|
|
|
/// Replaces `Ty::Error` by a new type var, so we can maybe still infer it.
|
|
fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty {
|
|
self.table.insert_type_vars_shallow(ty)
|
|
}
|
|
|
|
fn insert_type_vars<T>(&mut self, ty: T) -> T
|
|
where
|
|
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
|
|
{
|
|
self.table.insert_type_vars(ty)
|
|
}
|
|
|
|
fn push_obligation(&mut self, o: DomainGoal) {
|
|
self.table.register_obligation(o.cast(Interner));
|
|
}
|
|
|
|
fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool {
|
|
let ty1 = ty1
|
|
.clone()
|
|
.try_fold_with(
|
|
&mut UnevaluatedConstEvaluatorFolder { db: self.db },
|
|
DebruijnIndex::INNERMOST,
|
|
)
|
|
.unwrap();
|
|
let ty2 = ty2
|
|
.clone()
|
|
.try_fold_with(
|
|
&mut UnevaluatedConstEvaluatorFolder { db: self.db },
|
|
DebruijnIndex::INNERMOST,
|
|
)
|
|
.unwrap();
|
|
self.table.unify(&ty1, &ty2)
|
|
}
|
|
|
|
/// Attempts to returns the deeply last field of nested structures, but
|
|
/// does not apply any normalization in its search. Returns the same type
|
|
/// if input `ty` is not a structure at all.
|
|
fn struct_tail_without_normalization(&mut self, ty: Ty) -> Ty {
|
|
self.struct_tail_with_normalize(ty, identity)
|
|
}
|
|
|
|
/// Returns the deeply last field of nested structures, or the same type if
|
|
/// not a structure at all. Corresponds to the only possible unsized field,
|
|
/// and its type can be used to determine unsizing strategy.
|
|
///
|
|
/// This is parameterized over the normalization strategy (i.e. how to
|
|
/// handle `<T as Trait>::Assoc` and `impl Trait`); pass the identity
|
|
/// function to indicate no normalization should take place.
|
|
fn struct_tail_with_normalize(
|
|
&mut self,
|
|
mut ty: Ty,
|
|
mut normalize: impl FnMut(Ty) -> Ty,
|
|
) -> Ty {
|
|
// FIXME: fetch the limit properly
|
|
let recursion_limit = 10;
|
|
for iteration in 0.. {
|
|
if iteration > recursion_limit {
|
|
return self.err_ty();
|
|
}
|
|
match ty.kind(Interner) {
|
|
TyKind::Adt(chalk_ir::AdtId(hir_def::AdtId::StructId(struct_id)), substs) => {
|
|
match self.db.field_types((*struct_id).into()).values().next_back().cloned() {
|
|
Some(field) => {
|
|
ty = field.substitute(Interner, substs);
|
|
}
|
|
None => break,
|
|
}
|
|
}
|
|
TyKind::Adt(..) => break,
|
|
TyKind::Tuple(_, substs) => {
|
|
match substs
|
|
.as_slice(Interner)
|
|
.split_last()
|
|
.and_then(|(last_ty, _)| last_ty.ty(Interner))
|
|
{
|
|
Some(last_ty) => ty = last_ty.clone(),
|
|
None => break,
|
|
}
|
|
}
|
|
TyKind::Alias(..) => {
|
|
let normalized = normalize(ty.clone());
|
|
if ty == normalized {
|
|
return ty;
|
|
} else {
|
|
ty = normalized;
|
|
}
|
|
}
|
|
_ => break,
|
|
}
|
|
}
|
|
ty
|
|
}
|
|
|
|
/// Recurses through the given type, normalizing associated types mentioned
|
|
/// in it by replacing them by type variables and registering obligations to
|
|
/// resolve later. This should be done once for every type we get from some
|
|
/// type annotation (e.g. from a let type annotation, field type or function
|
|
/// call). `make_ty` handles this already, but e.g. for field types we need
|
|
/// to do it as well.
|
|
fn normalize_associated_types_in<T>(&mut self, ty: T) -> T
|
|
where
|
|
T: HasInterner<Interner = Interner> + TypeFoldable<Interner>,
|
|
{
|
|
self.table.normalize_associated_types_in(ty)
|
|
}
|
|
|
|
fn resolve_ty_shallow(&mut self, ty: &Ty) -> Ty {
|
|
self.table.resolve_ty_shallow(ty)
|
|
}
|
|
|
|
fn resolve_associated_type(&mut self, inner_ty: Ty, assoc_ty: Option<TypeAliasId>) -> Ty {
|
|
self.resolve_associated_type_with_params(inner_ty, assoc_ty, &[])
|
|
}
|
|
|
|
fn resolve_associated_type_with_params(
|
|
&mut self,
|
|
inner_ty: Ty,
|
|
assoc_ty: Option<TypeAliasId>,
|
|
// FIXME(GATs): these are args for the trait ref, args for assoc type itself should be
|
|
// handled when we support them.
|
|
params: &[GenericArg],
|
|
) -> Ty {
|
|
match assoc_ty {
|
|
Some(res_assoc_ty) => {
|
|
let trait_ = match res_assoc_ty.lookup(self.db.upcast()).container {
|
|
hir_def::ItemContainerId::TraitId(trait_) => trait_,
|
|
_ => panic!("resolve_associated_type called with non-associated type"),
|
|
};
|
|
let ty = self.table.new_type_var();
|
|
let mut param_iter = params.iter().cloned();
|
|
let trait_ref = TyBuilder::trait_ref(self.db, trait_)
|
|
.push(inner_ty)
|
|
.fill(|_| param_iter.next().unwrap())
|
|
.build();
|
|
let alias_eq = AliasEq {
|
|
alias: AliasTy::Projection(ProjectionTy {
|
|
associated_ty_id: to_assoc_type_id(res_assoc_ty),
|
|
substitution: trait_ref.substitution.clone(),
|
|
}),
|
|
ty: ty.clone(),
|
|
};
|
|
self.push_obligation(trait_ref.cast(Interner));
|
|
self.push_obligation(alias_eq.cast(Interner));
|
|
ty
|
|
}
|
|
None => self.err_ty(),
|
|
}
|
|
}
|
|
|
|
fn resolve_variant(&mut self, path: Option<&Path>, value_ns: bool) -> (Ty, Option<VariantId>) {
|
|
let path = match path {
|
|
Some(path) => path,
|
|
None => return (self.err_ty(), None),
|
|
};
|
|
let ctx = crate::lower::TyLoweringContext::new(self.db, &self.resolver, self.owner.into());
|
|
let (resolution, unresolved) = if value_ns {
|
|
match self.resolver.resolve_path_in_value_ns(self.db.upcast(), path) {
|
|
Some(ResolveValueResult::ValueNs(value, _)) => match value {
|
|
ValueNs::EnumVariantId(var) => {
|
|
let substs = ctx.substs_from_path(path, var.into(), true);
|
|
let ty = self.db.ty(var.parent.into());
|
|
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
|
|
return (ty, Some(var.into()));
|
|
}
|
|
ValueNs::StructId(strukt) => {
|
|
let substs = ctx.substs_from_path(path, strukt.into(), true);
|
|
let ty = self.db.ty(strukt.into());
|
|
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
|
|
return (ty, Some(strukt.into()));
|
|
}
|
|
ValueNs::ImplSelf(impl_id) => (TypeNs::SelfType(impl_id), None),
|
|
_ => return (self.err_ty(), None),
|
|
},
|
|
Some(ResolveValueResult::Partial(typens, unresolved, _)) => {
|
|
(typens, Some(unresolved))
|
|
}
|
|
None => return (self.err_ty(), None),
|
|
}
|
|
} else {
|
|
match self.resolver.resolve_path_in_type_ns(self.db.upcast(), path) {
|
|
Some((it, idx, _)) => (it, idx),
|
|
None => return (self.err_ty(), None),
|
|
}
|
|
};
|
|
let Some(mod_path) = path.mod_path() else {
|
|
never!("resolver should always resolve lang item paths");
|
|
return (self.err_ty(), None);
|
|
};
|
|
return match resolution {
|
|
TypeNs::AdtId(AdtId::StructId(strukt)) => {
|
|
let substs = ctx.substs_from_path(path, strukt.into(), true);
|
|
let ty = self.db.ty(strukt.into());
|
|
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
|
|
forbid_unresolved_segments((ty, Some(strukt.into())), unresolved)
|
|
}
|
|
TypeNs::AdtId(AdtId::UnionId(u)) => {
|
|
let substs = ctx.substs_from_path(path, u.into(), true);
|
|
let ty = self.db.ty(u.into());
|
|
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
|
|
forbid_unresolved_segments((ty, Some(u.into())), unresolved)
|
|
}
|
|
TypeNs::EnumVariantId(var) => {
|
|
let substs = ctx.substs_from_path(path, var.into(), true);
|
|
let ty = self.db.ty(var.parent.into());
|
|
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
|
|
forbid_unresolved_segments((ty, Some(var.into())), unresolved)
|
|
}
|
|
TypeNs::SelfType(impl_id) => {
|
|
let generics = crate::utils::generics(self.db.upcast(), impl_id.into());
|
|
let substs = generics.placeholder_subst(self.db);
|
|
let mut ty = self.db.impl_self_ty(impl_id).substitute(Interner, &substs);
|
|
|
|
let Some(mut remaining_idx) = unresolved else {
|
|
return self.resolve_variant_on_alias(ty, None, mod_path);
|
|
};
|
|
|
|
let mut remaining_segments = path.segments().skip(remaining_idx);
|
|
|
|
// We need to try resolving unresolved segments one by one because each may resolve
|
|
// to a projection, which `TyLoweringContext` cannot handle on its own.
|
|
while !remaining_segments.is_empty() {
|
|
let resolved_segment = path.segments().get(remaining_idx - 1).unwrap();
|
|
let current_segment = remaining_segments.take(1);
|
|
|
|
// If we can resolve to an enum variant, it takes priority over associated type
|
|
// of the same name.
|
|
if let Some((AdtId::EnumId(id), _)) = ty.as_adt() {
|
|
let enum_data = self.db.enum_data(id);
|
|
let name = current_segment.first().unwrap().name;
|
|
if let Some(local_id) = enum_data.variant(name) {
|
|
let variant = EnumVariantId { parent: id, local_id };
|
|
return if remaining_segments.len() == 1 {
|
|
(ty, Some(variant.into()))
|
|
} else {
|
|
// We still have unresolved paths, but enum variants never have
|
|
// associated types!
|
|
(self.err_ty(), None)
|
|
};
|
|
}
|
|
}
|
|
|
|
// `lower_partly_resolved_path()` returns `None` as type namespace unless
|
|
// `remaining_segments` is empty, which is never the case here. We don't know
|
|
// which namespace the new `ty` is in until normalized anyway.
|
|
(ty, _) = ctx.lower_partly_resolved_path(
|
|
resolution,
|
|
resolved_segment,
|
|
current_segment,
|
|
false,
|
|
);
|
|
|
|
ty = self.table.insert_type_vars(ty);
|
|
ty = self.table.normalize_associated_types_in(ty);
|
|
ty = self.table.resolve_ty_shallow(&ty);
|
|
if ty.is_unknown() {
|
|
return (self.err_ty(), None);
|
|
}
|
|
|
|
// FIXME(inherent_associated_types): update `resolution` based on `ty` here.
|
|
remaining_idx += 1;
|
|
remaining_segments = remaining_segments.skip(1);
|
|
}
|
|
|
|
let variant = ty.as_adt().and_then(|(id, _)| match id {
|
|
AdtId::StructId(s) => Some(VariantId::StructId(s)),
|
|
AdtId::UnionId(u) => Some(VariantId::UnionId(u)),
|
|
AdtId::EnumId(_) => {
|
|
// FIXME Error E0071, expected struct, variant or union type, found enum `Foo`
|
|
None
|
|
}
|
|
});
|
|
(ty, variant)
|
|
}
|
|
TypeNs::TypeAliasId(it) => {
|
|
let resolved_seg = match unresolved {
|
|
None => path.segments().last().unwrap(),
|
|
Some(n) => path.segments().get(path.segments().len() - n - 1).unwrap(),
|
|
};
|
|
let substs =
|
|
ctx.substs_from_path_segment(resolved_seg, Some(it.into()), true, None);
|
|
let ty = self.db.ty(it.into());
|
|
let ty = self.insert_type_vars(ty.substitute(Interner, &substs));
|
|
|
|
self.resolve_variant_on_alias(ty, unresolved, mod_path)
|
|
}
|
|
TypeNs::AdtSelfType(_) => {
|
|
// FIXME this could happen in array size expressions, once we're checking them
|
|
(self.err_ty(), None)
|
|
}
|
|
TypeNs::GenericParam(_) => {
|
|
// FIXME potentially resolve assoc type
|
|
(self.err_ty(), None)
|
|
}
|
|
TypeNs::AdtId(AdtId::EnumId(_))
|
|
| TypeNs::BuiltinType(_)
|
|
| TypeNs::TraitId(_)
|
|
| TypeNs::TraitAliasId(_) => {
|
|
// FIXME diagnostic
|
|
(self.err_ty(), None)
|
|
}
|
|
};
|
|
|
|
fn forbid_unresolved_segments(
|
|
result: (Ty, Option<VariantId>),
|
|
unresolved: Option<usize>,
|
|
) -> (Ty, Option<VariantId>) {
|
|
if unresolved.is_none() {
|
|
result
|
|
} else {
|
|
// FIXME diagnostic
|
|
(TyKind::Error.intern(Interner), None)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_variant_on_alias(
|
|
&mut self,
|
|
ty: Ty,
|
|
unresolved: Option<usize>,
|
|
path: &ModPath,
|
|
) -> (Ty, Option<VariantId>) {
|
|
let remaining = unresolved.map(|it| path.segments()[it..].len()).filter(|it| it > &0);
|
|
let ty = match ty.kind(Interner) {
|
|
TyKind::Alias(AliasTy::Projection(proj_ty)) => {
|
|
self.db.normalize_projection(proj_ty.clone(), self.table.trait_env.clone())
|
|
}
|
|
_ => ty,
|
|
};
|
|
match remaining {
|
|
None => {
|
|
let variant = ty.as_adt().and_then(|(adt_id, _)| match adt_id {
|
|
AdtId::StructId(s) => Some(VariantId::StructId(s)),
|
|
AdtId::UnionId(u) => Some(VariantId::UnionId(u)),
|
|
AdtId::EnumId(_) => {
|
|
// FIXME Error E0071, expected struct, variant or union type, found enum `Foo`
|
|
None
|
|
}
|
|
});
|
|
(ty, variant)
|
|
}
|
|
Some(1) => {
|
|
let segment = path.segments().last().unwrap();
|
|
// this could be an enum variant or associated type
|
|
if let Some((AdtId::EnumId(enum_id), _)) = ty.as_adt() {
|
|
let enum_data = self.db.enum_data(enum_id);
|
|
if let Some(local_id) = enum_data.variant(segment) {
|
|
let variant = EnumVariantId { parent: enum_id, local_id };
|
|
return (ty, Some(variant.into()));
|
|
}
|
|
}
|
|
// FIXME potentially resolve assoc type
|
|
(self.err_ty(), None)
|
|
}
|
|
Some(_) => {
|
|
// FIXME diagnostic
|
|
(self.err_ty(), None)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn resolve_lang_item(&self, item: LangItem) -> Option<LangItemTarget> {
|
|
let krate = self.resolver.krate();
|
|
self.db.lang_item(krate, item)
|
|
}
|
|
|
|
fn resolve_output_on(&self, trait_: TraitId) -> Option<TypeAliasId> {
|
|
self.db.trait_data(trait_).associated_type_by_name(&name![Output])
|
|
}
|
|
|
|
fn resolve_lang_trait(&self, lang: LangItem) -> Option<TraitId> {
|
|
self.resolve_lang_item(lang)?.as_trait()
|
|
}
|
|
|
|
fn resolve_ops_neg_output(&self) -> Option<TypeAliasId> {
|
|
self.resolve_output_on(self.resolve_lang_trait(LangItem::Neg)?)
|
|
}
|
|
|
|
fn resolve_ops_not_output(&self) -> Option<TypeAliasId> {
|
|
self.resolve_output_on(self.resolve_lang_trait(LangItem::Not)?)
|
|
}
|
|
|
|
fn resolve_future_future_output(&self) -> Option<TypeAliasId> {
|
|
let ItemContainerId::TraitId(trait_) = self
|
|
.resolve_lang_item(LangItem::IntoFutureIntoFuture)?
|
|
.as_function()?
|
|
.lookup(self.db.upcast())
|
|
.container
|
|
else {
|
|
return None;
|
|
};
|
|
self.resolve_output_on(trait_)
|
|
}
|
|
|
|
fn resolve_boxed_box(&self) -> Option<AdtId> {
|
|
let struct_ = self.resolve_lang_item(LangItem::OwnedBox)?.as_struct()?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_full(&self) -> Option<AdtId> {
|
|
let struct_ = self.resolve_lang_item(LangItem::RangeFull)?.as_struct()?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range(&self) -> Option<AdtId> {
|
|
let struct_ = self.resolve_lang_item(LangItem::Range)?.as_struct()?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_inclusive(&self) -> Option<AdtId> {
|
|
let struct_ = self.resolve_lang_item(LangItem::RangeInclusiveStruct)?.as_struct()?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_from(&self) -> Option<AdtId> {
|
|
let struct_ = self.resolve_lang_item(LangItem::RangeFrom)?.as_struct()?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_to(&self) -> Option<AdtId> {
|
|
let struct_ = self.resolve_lang_item(LangItem::RangeTo)?.as_struct()?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_range_to_inclusive(&self) -> Option<AdtId> {
|
|
let struct_ = self.resolve_lang_item(LangItem::RangeToInclusive)?.as_struct()?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn resolve_ops_index_output(&self) -> Option<TypeAliasId> {
|
|
self.resolve_output_on(self.resolve_lang_trait(LangItem::Index)?)
|
|
}
|
|
|
|
fn resolve_va_list(&self) -> Option<AdtId> {
|
|
let struct_ = self.resolve_lang_item(LangItem::VaList)?.as_struct()?;
|
|
Some(struct_.into())
|
|
}
|
|
|
|
fn get_traits_in_scope(&self) -> Either<FxHashSet<TraitId>, &FxHashSet<TraitId>> {
|
|
let mut b_traits = self.resolver.traits_in_scope_from_block_scopes().peekable();
|
|
if b_traits.peek().is_some() {
|
|
Either::Left(self.traits_in_scope.iter().copied().chain(b_traits).collect())
|
|
} else {
|
|
Either::Right(&self.traits_in_scope)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// When inferring an expression, we propagate downward whatever type hint we
|
|
/// are able in the form of an `Expectation`.
|
|
#[derive(Clone, PartialEq, Eq, Debug)]
|
|
pub(crate) enum Expectation {
|
|
None,
|
|
HasType(Ty),
|
|
#[allow(dead_code)]
|
|
Castable(Ty),
|
|
RValueLikeUnsized(Ty),
|
|
}
|
|
|
|
impl Expectation {
|
|
/// The expectation that the type of the expression needs to equal the given
|
|
/// type.
|
|
fn has_type(ty: Ty) -> Self {
|
|
if ty.is_unknown() {
|
|
// FIXME: get rid of this?
|
|
Expectation::None
|
|
} else {
|
|
Expectation::HasType(ty)
|
|
}
|
|
}
|
|
|
|
/// The following explanation is copied straight from rustc:
|
|
/// Provides an expectation for an rvalue expression given an *optional*
|
|
/// hint, which is not required for type safety (the resulting type might
|
|
/// be checked higher up, as is the case with `&expr` and `box expr`), but
|
|
/// is useful in determining the concrete type.
|
|
///
|
|
/// The primary use case is where the expected type is a fat pointer,
|
|
/// like `&[isize]`. For example, consider the following statement:
|
|
///
|
|
/// let it: &[isize] = &[1, 2, 3];
|
|
///
|
|
/// In this case, the expected type for the `&[1, 2, 3]` expression is
|
|
/// `&[isize]`. If however we were to say that `[1, 2, 3]` has the
|
|
/// expectation `ExpectHasType([isize])`, that would be too strong --
|
|
/// `[1, 2, 3]` does not have the type `[isize]` but rather `[isize; 3]`.
|
|
/// It is only the `&[1, 2, 3]` expression as a whole that can be coerced
|
|
/// to the type `&[isize]`. Therefore, we propagate this more limited hint,
|
|
/// which still is useful, because it informs integer literals and the like.
|
|
/// See the test case `test/ui/coerce-expect-unsized.rs` and #20169
|
|
/// for examples of where this comes up,.
|
|
fn rvalue_hint(ctx: &mut InferenceContext<'_>, ty: Ty) -> Self {
|
|
match ctx.struct_tail_without_normalization(ty.clone()).kind(Interner) {
|
|
TyKind::Slice(_) | TyKind::Str | TyKind::Dyn(_) => Expectation::RValueLikeUnsized(ty),
|
|
_ => Expectation::has_type(ty),
|
|
}
|
|
}
|
|
|
|
/// This expresses no expectation on the type.
|
|
fn none() -> Self {
|
|
Expectation::None
|
|
}
|
|
|
|
fn resolve(&self, table: &mut unify::InferenceTable<'_>) -> Expectation {
|
|
match self {
|
|
Expectation::None => Expectation::None,
|
|
Expectation::HasType(t) => Expectation::HasType(table.resolve_ty_shallow(t)),
|
|
Expectation::Castable(t) => Expectation::Castable(table.resolve_ty_shallow(t)),
|
|
Expectation::RValueLikeUnsized(t) => {
|
|
Expectation::RValueLikeUnsized(table.resolve_ty_shallow(t))
|
|
}
|
|
}
|
|
}
|
|
|
|
fn to_option(&self, table: &mut unify::InferenceTable<'_>) -> Option<Ty> {
|
|
match self.resolve(table) {
|
|
Expectation::None => None,
|
|
Expectation::HasType(t)
|
|
| Expectation::Castable(t)
|
|
| Expectation::RValueLikeUnsized(t) => Some(t),
|
|
}
|
|
}
|
|
|
|
fn only_has_type(&self, table: &mut unify::InferenceTable<'_>) -> Option<Ty> {
|
|
match self {
|
|
Expectation::HasType(t) => Some(table.resolve_ty_shallow(t)),
|
|
Expectation::Castable(_) | Expectation::RValueLikeUnsized(_) | Expectation::None => {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
fn coercion_target_type(&self, table: &mut unify::InferenceTable<'_>) -> Ty {
|
|
self.only_has_type(table).unwrap_or_else(|| table.new_type_var())
|
|
}
|
|
|
|
/// Comment copied from rustc:
|
|
/// Disregard "castable to" expectations because they
|
|
/// can lead us astray. Consider for example `if cond
|
|
/// {22} else {c} as u8` -- if we propagate the
|
|
/// "castable to u8" constraint to 22, it will pick the
|
|
/// type 22u8, which is overly constrained (c might not
|
|
/// be a u8). In effect, the problem is that the
|
|
/// "castable to" expectation is not the tightest thing
|
|
/// we can say, so we want to drop it in this case.
|
|
/// The tightest thing we can say is "must unify with
|
|
/// else branch". Note that in the case of a "has type"
|
|
/// constraint, this limitation does not hold.
|
|
///
|
|
/// If the expected type is just a type variable, then don't use
|
|
/// an expected type. Otherwise, we might write parts of the type
|
|
/// when checking the 'then' block which are incompatible with the
|
|
/// 'else' branch.
|
|
fn adjust_for_branches(&self, table: &mut unify::InferenceTable<'_>) -> Expectation {
|
|
match self {
|
|
Expectation::HasType(ety) => {
|
|
let ety = table.resolve_ty_shallow(ety);
|
|
if !ety.is_ty_var() {
|
|
Expectation::HasType(ety)
|
|
} else {
|
|
Expectation::None
|
|
}
|
|
}
|
|
Expectation::RValueLikeUnsized(ety) => Expectation::RValueLikeUnsized(ety.clone()),
|
|
_ => Expectation::None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, PartialOrd, Ord)]
|
|
enum Diverges {
|
|
Maybe,
|
|
Always,
|
|
}
|
|
|
|
impl Diverges {
|
|
fn is_always(self) -> bool {
|
|
self == Diverges::Always
|
|
}
|
|
}
|
|
|
|
impl std::ops::BitAnd for Diverges {
|
|
type Output = Self;
|
|
fn bitand(self, other: Self) -> Self {
|
|
std::cmp::min(self, other)
|
|
}
|
|
}
|
|
|
|
impl std::ops::BitOr for Diverges {
|
|
type Output = Self;
|
|
fn bitor(self, other: Self) -> Self {
|
|
std::cmp::max(self, other)
|
|
}
|
|
}
|
|
|
|
impl std::ops::BitAndAssign for Diverges {
|
|
fn bitand_assign(&mut self, other: Self) {
|
|
*self = *self & other;
|
|
}
|
|
}
|
|
|
|
impl std::ops::BitOrAssign for Diverges {
|
|
fn bitor_assign(&mut self, other: Self) {
|
|
*self = *self | other;
|
|
}
|
|
}
|