rust-analyzer/crates/hir_ty/src/utils.rs
Alex Chi 51d66714ac fix panic on GAT
Signed-off-by: Alex Chi <iskyzh@gmail.com>
2022-04-11 13:52:02 +08:00

449 lines
16 KiB
Rust

//! Helper functions for working with def, which don't need to be a separate
//! query, but can't be computed directly from `*Data` (ie, which need a `db`).
use std::iter;
use base_db::CrateId;
use chalk_ir::{fold::Shift, BoundVar, DebruijnIndex};
use hir_def::{
db::DefDatabase,
generics::{
GenericParams, TypeOrConstParamData, TypeParamData, TypeParamProvenance, WherePredicate,
WherePredicateTypeTarget,
},
intern::Interned,
path::Path,
resolver::{HasResolver, TypeNs},
type_ref::{TraitBoundModifier, TypeRef},
ConstParamId, FunctionId, GenericDefId, ItemContainerId, Lookup, TraitId, TypeAliasId,
TypeOrConstParamId, TypeParamId,
};
use hir_expand::name::{known, name, Name};
use itertools::Either;
use rustc_hash::FxHashSet;
use smallvec::{smallvec, SmallVec};
use syntax::SmolStr;
use crate::{
db::HirDatabase, ChalkTraitId, ConstData, ConstValue, GenericArgData, Interner, Substitution,
TraitRef, TraitRefExt, TyKind, WhereClause,
};
pub(crate) fn fn_traits(db: &dyn DefDatabase, krate: CrateId) -> impl Iterator<Item = TraitId> {
[
db.lang_item(krate, SmolStr::new_inline("fn")),
db.lang_item(krate, SmolStr::new_inline("fn_mut")),
db.lang_item(krate, SmolStr::new_inline("fn_once")),
]
.into_iter()
.flatten()
.flat_map(|it| it.as_trait())
}
fn direct_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> SmallVec<[TraitId; 4]> {
let resolver = trait_.resolver(db);
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
let generic_params = db.generic_params(trait_.into());
let trait_self = generic_params.find_trait_self_param();
generic_params
.where_predicates
.iter()
.filter_map(|pred| match pred {
WherePredicate::ForLifetime { target, bound, .. }
| WherePredicate::TypeBound { target, bound } => match target {
WherePredicateTypeTarget::TypeRef(type_ref) => match &**type_ref {
TypeRef::Path(p) if p == &Path::from(name![Self]) => bound.as_path(),
_ => None,
},
WherePredicateTypeTarget::TypeOrConstParam(local_id)
if Some(*local_id) == trait_self =>
{
bound.as_path()
}
_ => None,
},
WherePredicate::Lifetime { .. } => None,
})
.filter_map(|(path, bound_modifier)| match bound_modifier {
TraitBoundModifier::None => Some(path),
TraitBoundModifier::Maybe => None,
})
.filter_map(|path| match resolver.resolve_path_in_type_ns_fully(db, path.mod_path()) {
Some(TypeNs::TraitId(t)) => Some(t),
_ => None,
})
.collect()
}
fn direct_super_trait_refs(db: &dyn HirDatabase, trait_ref: &TraitRef) -> Vec<TraitRef> {
// returning the iterator directly doesn't easily work because of
// lifetime problems, but since there usually shouldn't be more than a
// few direct traits this should be fine (we could even use some kind of
// SmallVec if performance is a concern)
let generic_params = db.generic_params(trait_ref.hir_trait_id().into());
let trait_self = match generic_params.find_trait_self_param() {
Some(p) => TypeOrConstParamId { parent: trait_ref.hir_trait_id().into(), local_id: p },
None => return Vec::new(),
};
db.generic_predicates_for_param(trait_self.parent, trait_self, None)
.iter()
.filter_map(|pred| {
pred.as_ref().filter_map(|pred| match pred.skip_binders() {
// FIXME: how to correctly handle higher-ranked bounds here?
WhereClause::Implemented(tr) => Some(
tr.clone()
.shifted_out_to(Interner, DebruijnIndex::ONE)
.expect("FIXME unexpected higher-ranked trait bound"),
),
_ => None,
})
})
.map(|pred| pred.substitute(Interner, &trait_ref.substitution))
.collect()
}
/// Returns an iterator over the whole super trait hierarchy (including the
/// trait itself).
pub fn all_super_traits(db: &dyn DefDatabase, trait_: TraitId) -> SmallVec<[TraitId; 4]> {
// we need to take care a bit here to avoid infinite loops in case of cycles
// (i.e. if we have `trait A: B; trait B: A;`)
let mut result = smallvec![trait_];
let mut i = 0;
while let Some(&t) = result.get(i) {
// yeah this is quadratic, but trait hierarchies should be flat
// enough that this doesn't matter
for tt in direct_super_traits(db, t) {
if !result.contains(&tt) {
result.push(tt);
}
}
i += 1;
}
result
}
/// Given a trait ref (`Self: Trait`), builds all the implied trait refs for
/// super traits. The original trait ref will be included. So the difference to
/// `all_super_traits` is that we keep track of type parameters; for example if
/// we have `Self: Trait<u32, i32>` and `Trait<T, U>: OtherTrait<U>` we'll get
/// `Self: OtherTrait<i32>`.
pub(super) fn all_super_trait_refs(db: &dyn HirDatabase, trait_ref: TraitRef) -> SuperTraits {
SuperTraits { db, seen: iter::once(trait_ref.trait_id).collect(), stack: vec![trait_ref] }
}
pub(super) struct SuperTraits<'a> {
db: &'a dyn HirDatabase,
stack: Vec<TraitRef>,
seen: FxHashSet<ChalkTraitId>,
}
impl<'a> SuperTraits<'a> {
fn elaborate(&mut self, trait_ref: &TraitRef) {
let mut trait_refs = direct_super_trait_refs(self.db, trait_ref);
trait_refs.retain(|tr| !self.seen.contains(&tr.trait_id));
self.stack.extend(trait_refs);
}
}
impl<'a> Iterator for SuperTraits<'a> {
type Item = TraitRef;
fn next(&mut self) -> Option<Self::Item> {
if let Some(next) = self.stack.pop() {
self.elaborate(&next);
Some(next)
} else {
None
}
}
}
pub(super) fn associated_type_by_name_including_super_traits(
db: &dyn HirDatabase,
trait_ref: TraitRef,
name: &Name,
) -> Option<(TraitRef, TypeAliasId)> {
all_super_trait_refs(db, trait_ref).find_map(|t| {
let assoc_type = db.trait_data(t.hir_trait_id()).associated_type_by_name(name)?;
Some((t, assoc_type))
})
}
pub(crate) fn generics(db: &dyn DefDatabase, def: GenericDefId) -> Generics {
let parent_generics = parent_generic_def(db, def).map(|def| Box::new(generics(db, def)));
if parent_generics.is_some() && matches!(def, GenericDefId::TypeAliasId(_)) {
let params = db.generic_params(def);
if params
.type_or_consts
.iter()
.any(|(_, x)| matches!(x, TypeOrConstParamData::ConstParamData(_)))
{
// XXX: treat const generic associated types as not existing to avoid crashes (#11769)
//
// Chalk expects the inner associated type's parameters to come
// *before*, not after the trait's generics as we've always done it.
// Adapting to this requires a larger refactoring
cov_mark::hit!(ignore_gats);
return Generics { def, params: Interned::new(Default::default()), parent_generics };
} else {
return Generics { def, params, parent_generics };
}
}
Generics { def, params: db.generic_params(def), parent_generics }
}
#[derive(Debug)]
pub(crate) struct Generics {
def: GenericDefId,
pub(crate) params: Interned<GenericParams>,
parent_generics: Option<Box<Generics>>,
}
impl Generics {
// FIXME: we should drop this and handle const and type generics at the same time
pub(crate) fn type_iter<'a>(
&'a self,
) -> impl Iterator<Item = (TypeOrConstParamId, &'a TypeParamData)> + 'a {
self.parent_generics
.as_ref()
.into_iter()
.flat_map(|it| {
it.params
.type_iter()
.map(move |(local_id, p)| (TypeOrConstParamId { parent: it.def, local_id }, p))
})
.chain(
self.params.type_iter().map(move |(local_id, p)| {
(TypeOrConstParamId { parent: self.def, local_id }, p)
}),
)
}
pub(crate) fn iter_id<'a>(
&'a self,
) -> impl Iterator<Item = Either<TypeParamId, ConstParamId>> + 'a {
self.iter().map(|(id, data)| match data {
TypeOrConstParamData::TypeParamData(_) => Either::Left(TypeParamId::from_unchecked(id)),
TypeOrConstParamData::ConstParamData(_) => {
Either::Right(ConstParamId::from_unchecked(id))
}
})
}
/// Iterator over types and const params of parent, then self.
pub(crate) fn iter<'a>(
&'a self,
) -> impl DoubleEndedIterator<Item = (TypeOrConstParamId, &'a TypeOrConstParamData)> + 'a {
self.parent_generics
.as_ref()
.into_iter()
.flat_map(|it| {
it.params
.iter()
.map(move |(local_id, p)| (TypeOrConstParamId { parent: it.def, local_id }, p))
})
.chain(
self.params.iter().map(move |(local_id, p)| {
(TypeOrConstParamId { parent: self.def, local_id }, p)
}),
)
}
/// Iterator over types and const params of parent.
pub(crate) fn iter_parent<'a>(
&'a self,
) -> impl Iterator<Item = (TypeOrConstParamId, &'a TypeOrConstParamData)> + 'a {
self.parent_generics.as_ref().into_iter().flat_map(|it| {
it.params
.type_or_consts
.iter()
.map(move |(local_id, p)| (TypeOrConstParamId { parent: it.def, local_id }, p))
})
}
pub(crate) fn len(&self) -> usize {
self.len_split().0
}
/// (total, parents, child)
pub(crate) fn len_split(&self) -> (usize, usize, usize) {
let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
let child = self.params.type_or_consts.len();
(parent + child, parent, child)
}
/// (parent total, self param, type param list, const param list, impl trait)
pub(crate) fn provenance_split(&self) -> (usize, usize, usize, usize, usize) {
let parent = self.parent_generics.as_ref().map_or(0, |p| p.len());
let self_params = self
.params
.iter()
.filter_map(|x| x.1.type_param())
.filter(|p| p.provenance == TypeParamProvenance::TraitSelf)
.count();
let type_params = self
.params
.type_or_consts
.iter()
.filter_map(|x| x.1.type_param())
.filter(|p| p.provenance == TypeParamProvenance::TypeParamList)
.count();
let const_params = self.params.iter().filter_map(|x| x.1.const_param()).count();
let impl_trait_params = self
.params
.iter()
.filter_map(|x| x.1.type_param())
.filter(|p| p.provenance == TypeParamProvenance::ArgumentImplTrait)
.count();
(parent, self_params, type_params, const_params, impl_trait_params)
}
pub(crate) fn param_idx(&self, param: TypeOrConstParamId) -> Option<usize> {
Some(self.find_param(param)?.0)
}
fn find_param(&self, param: TypeOrConstParamId) -> Option<(usize, &TypeOrConstParamData)> {
if param.parent == self.def {
let (idx, (_local_id, data)) = self
.params
.type_or_consts
.iter()
.enumerate()
.find(|(_, (idx, _))| *idx == param.local_id)
.unwrap();
let (_total, parent_len, _child) = self.len_split();
Some((parent_len + idx, data))
} else {
self.parent_generics.as_ref().and_then(|g| g.find_param(param))
}
}
/// Returns a Substitution that replaces each parameter by a bound variable.
pub(crate) fn bound_vars_subst(
&self,
db: &dyn HirDatabase,
debruijn: DebruijnIndex,
) -> Substitution {
Substitution::from_iter(
Interner,
self.iter_id().enumerate().map(|(idx, id)| match id {
Either::Left(_) => GenericArgData::Ty(
TyKind::BoundVar(BoundVar::new(debruijn, idx)).intern(Interner),
)
.intern(Interner),
Either::Right(id) => GenericArgData::Const(
ConstData {
value: ConstValue::BoundVar(BoundVar::new(debruijn, idx)),
ty: db.const_param_ty(id),
}
.intern(Interner),
)
.intern(Interner),
}),
)
}
/// Returns a Substitution that replaces each parameter by itself (i.e. `Ty::Param`).
pub(crate) fn placeholder_subst(&self, db: &dyn HirDatabase) -> Substitution {
Substitution::from_iter(
Interner,
self.iter_id().map(|id| match id {
Either::Left(id) => GenericArgData::Ty(
TyKind::Placeholder(crate::to_placeholder_idx(db, id.into())).intern(Interner),
)
.intern(Interner),
Either::Right(id) => GenericArgData::Const(
ConstData {
value: ConstValue::Placeholder(crate::to_placeholder_idx(db, id.into())),
ty: db.const_param_ty(id),
}
.intern(Interner),
)
.intern(Interner),
}),
)
}
}
fn parent_generic_def(db: &dyn DefDatabase, def: GenericDefId) -> Option<GenericDefId> {
let container = match def {
GenericDefId::FunctionId(it) => it.lookup(db).container,
GenericDefId::TypeAliasId(it) => it.lookup(db).container,
GenericDefId::ConstId(it) => it.lookup(db).container,
GenericDefId::EnumVariantId(it) => return Some(it.parent.into()),
GenericDefId::AdtId(_) | GenericDefId::TraitId(_) | GenericDefId::ImplId(_) => return None,
};
match container {
ItemContainerId::ImplId(it) => Some(it.into()),
ItemContainerId::TraitId(it) => Some(it.into()),
ItemContainerId::ModuleId(_) | ItemContainerId::ExternBlockId(_) => None,
}
}
pub fn is_fn_unsafe_to_call(db: &dyn HirDatabase, func: FunctionId) -> bool {
let data = db.function_data(func);
if data.has_unsafe_kw() {
return true;
}
match func.lookup(db.upcast()).container {
hir_def::ItemContainerId::ExternBlockId(block) => {
// Function in an `extern` block are always unsafe to call, except when it has
// `"rust-intrinsic"` ABI there are a few exceptions.
let id = block.lookup(db.upcast()).id;
match id.item_tree(db.upcast())[id.value].abi.as_deref() {
Some("rust-intrinsic") => is_intrinsic_fn_unsafe(&data.name),
_ => true,
}
}
_ => false,
}
}
/// Returns `true` if the given intrinsic is unsafe to call, or false otherwise.
fn is_intrinsic_fn_unsafe(name: &Name) -> bool {
// Should be kept in sync with https://github.com/rust-lang/rust/blob/532d2b14c05f9bc20b2d27cbb5f4550d28343a36/compiler/rustc_typeck/src/check/intrinsic.rs#L72-L106
![
known::abort,
known::add_with_overflow,
known::bitreverse,
known::black_box,
known::bswap,
known::caller_location,
known::ctlz,
known::ctpop,
known::cttz,
known::discriminant_value,
known::forget,
known::likely,
known::maxnumf32,
known::maxnumf64,
known::min_align_of,
known::minnumf32,
known::minnumf64,
known::mul_with_overflow,
known::needs_drop,
known::ptr_guaranteed_eq,
known::ptr_guaranteed_ne,
known::rotate_left,
known::rotate_right,
known::rustc_peek,
known::saturating_add,
known::saturating_sub,
known::size_of,
known::sub_with_overflow,
known::type_id,
known::type_name,
known::unlikely,
known::variant_count,
known::wrapping_add,
known::wrapping_mul,
known::wrapping_sub,
]
.contains(name)
}