mirror of
https://github.com/rust-lang/rust-analyzer
synced 2025-01-02 16:28:46 +00:00
336a3c6121
Basically, we need to allow variables in the caller self type to unify with the impl's declared self type. That requires some more contortions in the variable handling. I'm looking forward to (hopefully) handling this in a cleaner way when we switch to Chalk's types and unification code.
593 lines
20 KiB
Rust
593 lines
20 KiB
Rust
//! This module is concerned with finding methods that a given type provides.
|
|
//! For details about how this works in rustc, see the method lookup page in the
|
|
//! [rustc guide](https://rust-lang.github.io/rustc-guide/method-lookup.html)
|
|
//! and the corresponding code mostly in librustc_typeck/check/method/probe.rs.
|
|
use std::sync::Arc;
|
|
|
|
use arrayvec::ArrayVec;
|
|
use hir_def::{
|
|
lang_item::LangItemTarget, type_ref::Mutability, AssocContainerId, AssocItemId, FunctionId,
|
|
HasModule, ImplId, Lookup, TraitId,
|
|
};
|
|
use hir_expand::name::Name;
|
|
use ra_db::CrateId;
|
|
use ra_prof::profile;
|
|
use rustc_hash::{FxHashMap, FxHashSet};
|
|
|
|
use super::Substs;
|
|
use crate::{
|
|
autoderef,
|
|
db::HirDatabase,
|
|
primitive::{FloatBitness, Uncertain},
|
|
utils::all_super_traits,
|
|
ApplicationTy, Canonical, InEnvironment, TraitEnvironment, TraitRef, Ty, TypeCtor, TypeWalk,
|
|
};
|
|
|
|
/// This is used as a key for indexing impls.
|
|
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
|
|
pub enum TyFingerprint {
|
|
Apply(TypeCtor),
|
|
}
|
|
|
|
impl TyFingerprint {
|
|
/// Creates a TyFingerprint for looking up an impl. Only certain types can
|
|
/// have impls: if we have some `struct S`, we can have an `impl S`, but not
|
|
/// `impl &S`. Hence, this will return `None` for reference types and such.
|
|
fn for_impl(ty: &Ty) -> Option<TyFingerprint> {
|
|
match ty {
|
|
Ty::Apply(a_ty) => Some(TyFingerprint::Apply(a_ty.ctor)),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub struct CrateImplDefs {
|
|
impls: FxHashMap<TyFingerprint, Vec<ImplId>>,
|
|
impls_by_trait: FxHashMap<TraitId, Vec<ImplId>>,
|
|
}
|
|
|
|
impl CrateImplDefs {
|
|
pub(crate) fn impls_in_crate_query(
|
|
db: &impl HirDatabase,
|
|
krate: CrateId,
|
|
) -> Arc<CrateImplDefs> {
|
|
let _p = profile("impls_in_crate_query");
|
|
let mut res =
|
|
CrateImplDefs { impls: FxHashMap::default(), impls_by_trait: FxHashMap::default() };
|
|
|
|
let crate_def_map = db.crate_def_map(krate);
|
|
for (_module_id, module_data) in crate_def_map.modules.iter() {
|
|
for impl_id in module_data.scope.impls() {
|
|
match db.impl_trait(impl_id) {
|
|
Some(tr) => {
|
|
res.impls_by_trait.entry(tr.value.trait_).or_default().push(impl_id);
|
|
}
|
|
None => {
|
|
let self_ty = db.impl_self_ty(impl_id);
|
|
if let Some(self_ty_fp) = TyFingerprint::for_impl(&self_ty.value) {
|
|
res.impls.entry(self_ty_fp).or_default().push(impl_id);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Arc::new(res)
|
|
}
|
|
pub fn lookup_impl_defs(&self, ty: &Ty) -> impl Iterator<Item = ImplId> + '_ {
|
|
let fingerprint = TyFingerprint::for_impl(ty);
|
|
fingerprint.and_then(|f| self.impls.get(&f)).into_iter().flatten().copied()
|
|
}
|
|
|
|
pub fn lookup_impl_defs_for_trait(&self, tr: TraitId) -> impl Iterator<Item = ImplId> + '_ {
|
|
self.impls_by_trait.get(&tr).into_iter().flatten().copied()
|
|
}
|
|
|
|
pub fn all_impls<'a>(&'a self) -> impl Iterator<Item = ImplId> + 'a {
|
|
self.impls.values().chain(self.impls_by_trait.values()).flatten().copied()
|
|
}
|
|
}
|
|
|
|
impl Ty {
|
|
pub fn def_crates(
|
|
&self,
|
|
db: &impl HirDatabase,
|
|
cur_crate: CrateId,
|
|
) -> Option<ArrayVec<[CrateId; 2]>> {
|
|
// Types like slice can have inherent impls in several crates, (core and alloc).
|
|
// The corresponding impls are marked with lang items, so we can use them to find the required crates.
|
|
macro_rules! lang_item_crate {
|
|
($($name:expr),+ $(,)?) => {{
|
|
let mut v = ArrayVec::<[LangItemTarget; 2]>::new();
|
|
$(
|
|
v.extend(db.lang_item(cur_crate, $name.into()));
|
|
)+
|
|
v
|
|
}};
|
|
}
|
|
|
|
let lang_item_targets = match self {
|
|
Ty::Apply(a_ty) => match a_ty.ctor {
|
|
TypeCtor::Adt(def_id) => {
|
|
return Some(std::iter::once(def_id.module(db).krate).collect())
|
|
}
|
|
TypeCtor::Bool => lang_item_crate!("bool"),
|
|
TypeCtor::Char => lang_item_crate!("char"),
|
|
TypeCtor::Float(Uncertain::Known(f)) => match f.bitness {
|
|
// There are two lang items: one in libcore (fXX) and one in libstd (fXX_runtime)
|
|
FloatBitness::X32 => lang_item_crate!("f32", "f32_runtime"),
|
|
FloatBitness::X64 => lang_item_crate!("f64", "f64_runtime"),
|
|
},
|
|
TypeCtor::Int(Uncertain::Known(i)) => lang_item_crate!(i.ty_to_string()),
|
|
TypeCtor::Str => lang_item_crate!("str_alloc", "str"),
|
|
TypeCtor::Slice => lang_item_crate!("slice_alloc", "slice"),
|
|
TypeCtor::RawPtr(Mutability::Shared) => lang_item_crate!("const_ptr"),
|
|
TypeCtor::RawPtr(Mutability::Mut) => lang_item_crate!("mut_ptr"),
|
|
_ => return None,
|
|
},
|
|
_ => return None,
|
|
};
|
|
let res = lang_item_targets
|
|
.into_iter()
|
|
.filter_map(|it| match it {
|
|
LangItemTarget::ImplDefId(it) => Some(it),
|
|
_ => None,
|
|
})
|
|
.map(|it| it.lookup(db).container.module(db).krate)
|
|
.collect();
|
|
Some(res)
|
|
}
|
|
}
|
|
/// Look up the method with the given name, returning the actual autoderefed
|
|
/// receiver type (but without autoref applied yet).
|
|
pub(crate) fn lookup_method(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: &Name,
|
|
) -> Option<(Ty, FunctionId)> {
|
|
iterate_method_candidates(
|
|
ty,
|
|
db,
|
|
env,
|
|
krate,
|
|
&traits_in_scope,
|
|
Some(name),
|
|
LookupMode::MethodCall,
|
|
|ty, f| match f {
|
|
AssocItemId::FunctionId(f) => Some((ty.clone(), f)),
|
|
_ => None,
|
|
},
|
|
)
|
|
}
|
|
|
|
/// Whether we're looking up a dotted method call (like `v.len()`) or a path
|
|
/// (like `Vec::new`).
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
|
pub enum LookupMode {
|
|
/// Looking up a method call like `v.len()`: We only consider candidates
|
|
/// that have a `self` parameter, and do autoderef.
|
|
MethodCall,
|
|
/// Looking up a path like `Vec::new` or `Vec::default`: We consider all
|
|
/// candidates including associated constants, but don't do autoderef.
|
|
Path,
|
|
}
|
|
|
|
// This would be nicer if it just returned an iterator, but that runs into
|
|
// lifetime problems, because we need to borrow temp `CrateImplDefs`.
|
|
// FIXME add a context type here?
|
|
pub fn iterate_method_candidates<T>(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: Option<&Name>,
|
|
mode: LookupMode,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
match mode {
|
|
LookupMode::MethodCall => {
|
|
// For method calls, rust first does any number of autoderef, and then one
|
|
// autoref (i.e. when the method takes &self or &mut self). We just ignore
|
|
// the autoref currently -- when we find a method matching the given name,
|
|
// we assume it fits.
|
|
|
|
// Also note that when we've got a receiver like &S, even if the method we
|
|
// find in the end takes &self, we still do the autoderef step (just as
|
|
// rustc does an autoderef and then autoref again).
|
|
let ty = InEnvironment { value: ty.clone(), environment: env.clone() };
|
|
|
|
// We have to be careful about the order we're looking at candidates
|
|
// in here. Consider the case where we're resolving `x.clone()`
|
|
// where `x: &Vec<_>`. This resolves to the clone method with self
|
|
// type `Vec<_>`, *not* `&_`. I.e. we need to consider methods where
|
|
// the receiver type exactly matches before cases where we have to
|
|
// do autoref. But in the autoderef steps, the `&_` self type comes
|
|
// up *before* the `Vec<_>` self type.
|
|
//
|
|
// On the other hand, we don't want to just pick any by-value method
|
|
// before any by-autoref method; it's just that we need to consider
|
|
// the methods by autoderef order of *receiver types*, not *self
|
|
// types*.
|
|
|
|
let deref_chain = autoderef_method_receiver(db, krate, ty);
|
|
for i in 0..deref_chain.len() {
|
|
if let Some(result) = iterate_method_candidates_with_autoref(
|
|
&deref_chain[i..],
|
|
db,
|
|
env.clone(),
|
|
krate,
|
|
traits_in_scope,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
LookupMode::Path => {
|
|
// No autoderef for path lookups
|
|
iterate_method_candidates_for_self_ty(
|
|
&ty,
|
|
db,
|
|
env,
|
|
krate,
|
|
traits_in_scope,
|
|
name,
|
|
&mut callback,
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn iterate_method_candidates_with_autoref<T>(
|
|
deref_chain: &[Canonical<Ty>],
|
|
db: &impl HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
if let Some(result) = iterate_method_candidates_by_receiver(
|
|
&deref_chain[0],
|
|
&deref_chain[1..],
|
|
db,
|
|
env.clone(),
|
|
krate,
|
|
&traits_in_scope,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
let refed = Canonical {
|
|
num_vars: deref_chain[0].num_vars,
|
|
value: Ty::apply_one(TypeCtor::Ref(Mutability::Shared), deref_chain[0].value.clone()),
|
|
};
|
|
if let Some(result) = iterate_method_candidates_by_receiver(
|
|
&refed,
|
|
deref_chain,
|
|
db,
|
|
env.clone(),
|
|
krate,
|
|
&traits_in_scope,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
let ref_muted = Canonical {
|
|
num_vars: deref_chain[0].num_vars,
|
|
value: Ty::apply_one(TypeCtor::Ref(Mutability::Mut), deref_chain[0].value.clone()),
|
|
};
|
|
if let Some(result) = iterate_method_candidates_by_receiver(
|
|
&ref_muted,
|
|
deref_chain,
|
|
db,
|
|
env,
|
|
krate,
|
|
&traits_in_scope,
|
|
name,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_method_candidates_by_receiver<T>(
|
|
receiver_ty: &Canonical<Ty>,
|
|
rest_of_deref_chain: &[Canonical<Ty>],
|
|
db: &impl HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
// We're looking for methods with *receiver* type receiver_ty. These could
|
|
// be found in any of the derefs of receiver_ty, so we have to go through
|
|
// that.
|
|
for self_ty in std::iter::once(receiver_ty).chain(rest_of_deref_chain) {
|
|
if let Some(result) =
|
|
iterate_inherent_methods(self_ty, db, name, Some(receiver_ty), krate, &mut callback)
|
|
{
|
|
return Some(result);
|
|
}
|
|
}
|
|
for self_ty in std::iter::once(receiver_ty).chain(rest_of_deref_chain) {
|
|
if let Some(result) = iterate_trait_method_candidates(
|
|
self_ty,
|
|
db,
|
|
env.clone(),
|
|
krate,
|
|
&traits_in_scope,
|
|
name,
|
|
Some(receiver_ty),
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_method_candidates_for_self_ty<T>(
|
|
self_ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: Option<&Name>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
if let Some(result) = iterate_inherent_methods(self_ty, db, name, None, krate, &mut callback) {
|
|
return Some(result);
|
|
}
|
|
if let Some(result) = iterate_trait_method_candidates(
|
|
self_ty,
|
|
db,
|
|
env,
|
|
krate,
|
|
traits_in_scope,
|
|
name,
|
|
None,
|
|
&mut callback,
|
|
) {
|
|
return Some(result);
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_trait_method_candidates<T>(
|
|
self_ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
traits_in_scope: &FxHashSet<TraitId>,
|
|
name: Option<&Name>,
|
|
receiver_ty: Option<&Canonical<Ty>>,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
// if ty is `impl Trait` or `dyn Trait`, the trait doesn't need to be in scope
|
|
let inherent_trait = self_ty.value.inherent_trait().into_iter();
|
|
let env_traits = if let Ty::Placeholder(_) = self_ty.value {
|
|
// if we have `T: Trait` in the param env, the trait doesn't need to be in scope
|
|
env.trait_predicates_for_self_ty(&self_ty.value)
|
|
.map(|tr| tr.trait_)
|
|
.flat_map(|t| all_super_traits(db, t))
|
|
.collect()
|
|
} else {
|
|
Vec::new()
|
|
};
|
|
let traits =
|
|
inherent_trait.chain(env_traits.into_iter()).chain(traits_in_scope.iter().copied());
|
|
'traits: for t in traits {
|
|
let data = db.trait_data(t);
|
|
|
|
// we'll be lazy about checking whether the type implements the
|
|
// trait, but if we find out it doesn't, we'll skip the rest of the
|
|
// iteration
|
|
let mut known_implemented = false;
|
|
for (_name, item) in data.items.iter() {
|
|
if !is_valid_candidate(db, name, receiver_ty, *item, self_ty) {
|
|
continue;
|
|
}
|
|
if !known_implemented {
|
|
let goal = generic_implements_goal(db, env.clone(), t, self_ty.clone());
|
|
if db.trait_solve(krate, goal).is_none() {
|
|
continue 'traits;
|
|
}
|
|
}
|
|
known_implemented = true;
|
|
if let Some(result) = callback(&self_ty.value, *item) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn iterate_inherent_methods<T>(
|
|
self_ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
name: Option<&Name>,
|
|
receiver_ty: Option<&Canonical<Ty>>,
|
|
krate: CrateId,
|
|
mut callback: impl FnMut(&Ty, AssocItemId) -> Option<T>,
|
|
) -> Option<T> {
|
|
for krate in self_ty.value.def_crates(db, krate)? {
|
|
let impls = db.impls_in_crate(krate);
|
|
|
|
for impl_def in impls.lookup_impl_defs(&self_ty.value) {
|
|
for &item in db.impl_data(impl_def).items.iter() {
|
|
if !is_valid_candidate(db, name, receiver_ty, item, self_ty) {
|
|
continue;
|
|
}
|
|
// we have to check whether the self type unifies with the type
|
|
// that the impl is for. If we have a receiver type, this
|
|
// already happens in `is_valid_candidate` above; if not, we
|
|
// check it here
|
|
if receiver_ty.is_none() && inherent_impl_substs(db, impl_def, self_ty).is_none() {
|
|
test_utils::tested_by!(impl_self_type_match_without_receiver);
|
|
continue;
|
|
}
|
|
if let Some(result) = callback(&self_ty.value, item) {
|
|
return Some(result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Returns the self type for the index trait call.
|
|
pub fn resolve_indexing_op(
|
|
db: &impl HirDatabase,
|
|
ty: &Canonical<Ty>,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
index_trait: TraitId,
|
|
) -> Option<Canonical<Ty>> {
|
|
let ty = InEnvironment { value: ty.clone(), environment: env.clone() };
|
|
let deref_chain = autoderef_method_receiver(db, krate, ty);
|
|
for ty in deref_chain {
|
|
let goal = generic_implements_goal(db, env.clone(), index_trait, ty.clone());
|
|
if db.trait_solve(krate, goal).is_some() {
|
|
return Some(ty);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
fn is_valid_candidate(
|
|
db: &impl HirDatabase,
|
|
name: Option<&Name>,
|
|
receiver_ty: Option<&Canonical<Ty>>,
|
|
item: AssocItemId,
|
|
self_ty: &Canonical<Ty>,
|
|
) -> bool {
|
|
match item {
|
|
AssocItemId::FunctionId(m) => {
|
|
let data = db.function_data(m);
|
|
if let Some(name) = name {
|
|
if &data.name != name {
|
|
return false;
|
|
}
|
|
}
|
|
if let Some(receiver_ty) = receiver_ty {
|
|
if !data.has_self_param {
|
|
return false;
|
|
}
|
|
let transformed_receiver_ty = match transform_receiver_ty(db, m, self_ty) {
|
|
Some(ty) => ty,
|
|
None => return false,
|
|
};
|
|
if transformed_receiver_ty != receiver_ty.value {
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
}
|
|
AssocItemId::ConstId(c) => {
|
|
let data = db.const_data(c);
|
|
name.map_or(true, |name| data.name.as_ref() == Some(name)) && receiver_ty.is_none()
|
|
}
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
pub(crate) fn inherent_impl_substs(
|
|
db: &impl HirDatabase,
|
|
impl_id: ImplId,
|
|
self_ty: &Canonical<Ty>,
|
|
) -> Option<Substs> {
|
|
// we create a var for each type parameter of the impl; we need to keep in
|
|
// mind here that `self_ty` might have vars of its own
|
|
let vars =
|
|
Substs::build_for_def(db, impl_id).fill_with_bound_vars(self_ty.num_vars as u32).build();
|
|
let self_ty_with_vars = db.impl_self_ty(impl_id).subst(&vars);
|
|
let self_ty_with_vars =
|
|
Canonical { num_vars: vars.len() + self_ty.num_vars, value: self_ty_with_vars };
|
|
let substs = super::infer::unify(&self_ty_with_vars, self_ty);
|
|
// we only want the substs for the vars we added, not the ones from self_ty
|
|
let result = substs.map(|s| s.suffix(vars.len()));
|
|
result
|
|
}
|
|
|
|
fn transform_receiver_ty(
|
|
db: &impl HirDatabase,
|
|
function_id: FunctionId,
|
|
self_ty: &Canonical<Ty>,
|
|
) -> Option<Ty> {
|
|
let substs = match function_id.lookup(db).container {
|
|
AssocContainerId::TraitId(_) => Substs::build_for_def(db, function_id)
|
|
.push(self_ty.value.clone())
|
|
.fill_with_unknown()
|
|
.build(),
|
|
AssocContainerId::ImplId(impl_id) => inherent_impl_substs(db, impl_id, &self_ty)?,
|
|
AssocContainerId::ContainerId(_) => unreachable!(),
|
|
};
|
|
let sig = db.callable_item_signature(function_id.into());
|
|
Some(sig.value.params()[0].clone().subst_bound_vars(&substs))
|
|
}
|
|
|
|
pub fn implements_trait(
|
|
ty: &Canonical<Ty>,
|
|
db: &impl HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
krate: CrateId,
|
|
trait_: TraitId,
|
|
) -> bool {
|
|
if ty.value.inherent_trait() == Some(trait_) {
|
|
// FIXME this is a bit of a hack, since Chalk should say the same thing
|
|
// anyway, but currently Chalk doesn't implement `dyn/impl Trait` yet
|
|
return true;
|
|
}
|
|
let goal = generic_implements_goal(db, env, trait_, ty.clone());
|
|
let solution = db.trait_solve(krate, goal);
|
|
|
|
solution.is_some()
|
|
}
|
|
|
|
/// This creates Substs for a trait with the given Self type and type variables
|
|
/// for all other parameters, to query Chalk with it.
|
|
fn generic_implements_goal(
|
|
db: &impl HirDatabase,
|
|
env: Arc<TraitEnvironment>,
|
|
trait_: TraitId,
|
|
self_ty: Canonical<Ty>,
|
|
) -> Canonical<InEnvironment<super::Obligation>> {
|
|
let num_vars = self_ty.num_vars;
|
|
let substs = super::Substs::build_for_def(db, trait_)
|
|
.push(self_ty.value)
|
|
.fill_with_bound_vars(num_vars as u32)
|
|
.build();
|
|
let num_vars = substs.len() - 1 + self_ty.num_vars;
|
|
let trait_ref = TraitRef { trait_, substs };
|
|
let obligation = super::Obligation::Trait(trait_ref);
|
|
Canonical { num_vars, value: InEnvironment::new(env, obligation) }
|
|
}
|
|
|
|
fn autoderef_method_receiver(
|
|
db: &impl HirDatabase,
|
|
krate: CrateId,
|
|
ty: InEnvironment<Canonical<Ty>>,
|
|
) -> Vec<Canonical<Ty>> {
|
|
let mut deref_chain: Vec<_> = autoderef::autoderef(db, Some(krate), ty).collect();
|
|
// As a last step, we can do array unsizing (that's the only unsizing that rustc does for method receivers!)
|
|
if let Some(Ty::Apply(ApplicationTy { ctor: TypeCtor::Array, parameters })) =
|
|
deref_chain.last().map(|ty| &ty.value)
|
|
{
|
|
let num_vars = deref_chain.last().unwrap().num_vars;
|
|
let unsized_ty = Ty::apply(TypeCtor::Slice, parameters.clone());
|
|
deref_chain.push(Canonical { value: unsized_ty, num_vars })
|
|
}
|
|
deref_chain
|
|
}
|