//! FIXME: write short doc here use hir::db::HirDatabase; use ra_db::FileRange; use ra_fmt::{leading_indent, reindent}; use ra_syntax::{ algo::{find_covering_element, find_node_at_offset}, AstNode, SourceFile, SyntaxElement, SyntaxNode, SyntaxToken, TextRange, TextUnit, TokenAtOffset, }; use ra_text_edit::TextEditBuilder; use crate::{AssistAction, AssistId, AssistLabel}; #[derive(Clone, Debug)] pub(crate) enum Assist { Unresolved(Vec), Resolved(Vec<(AssistLabel, AssistAction)>), } /// `AssistCtx` allows to apply an assist or check if it could be applied. /// /// Assists use a somewhat over-engineered approach, given the current needs. The /// assists workflow consists of two phases. In the first phase, a user asks for /// the list of available assists. In the second phase, the user picks a /// particular assist and it gets applied. /// /// There are two peculiarities here: /// /// * first, we ideally avoid computing more things then necessary to answer /// "is assist applicable" in the first phase. /// * second, when we are applying assist, we don't have a guarantee that there /// weren't any changes between the point when user asked for assists and when /// they applied a particular assist. So, when applying assist, we need to do /// all the checks from scratch. /// /// To avoid repeating the same code twice for both "check" and "apply" /// functions, we use an approach reminiscent of that of Django's function based /// views dealing with forms. Each assist receives a runtime parameter, /// `should_compute_edit`. It first check if an edit is applicable (potentially /// computing info required to compute the actual edit). If it is applicable, /// and `should_compute_edit` is `true`, it then computes the actual edit. /// /// So, to implement the original assists workflow, we can first apply each edit /// with `should_compute_edit = false`, and then applying the selected edit /// again, with `should_compute_edit = true` this time. /// /// Note, however, that we don't actually use such two-phase logic at the /// moment, because the LSP API is pretty awkward in this place, and it's much /// easier to just compute the edit eagerly :-)#[derive(Debug, Clone)] #[derive(Debug)] pub(crate) struct AssistCtx<'a, DB> { pub(crate) db: &'a DB, pub(crate) frange: FileRange, source_file: SourceFile, should_compute_edit: bool, assist: Assist, } impl<'a, DB> Clone for AssistCtx<'a, DB> { fn clone(&self) -> Self { AssistCtx { db: self.db, frange: self.frange, source_file: self.source_file.clone(), should_compute_edit: self.should_compute_edit, assist: self.assist.clone(), } } } impl<'a, DB: HirDatabase> AssistCtx<'a, DB> { pub(crate) fn with_ctx(db: &DB, frange: FileRange, should_compute_edit: bool, f: F) -> T where F: FnOnce(AssistCtx) -> T, { let parse = db.parse(frange.file_id); let assist = if should_compute_edit { Assist::Resolved(vec![]) } else { Assist::Unresolved(vec![]) }; let ctx = AssistCtx { db, frange, source_file: parse.tree(), should_compute_edit, assist }; f(ctx) } pub(crate) fn add_action( &mut self, id: AssistId, label: impl Into, f: impl FnOnce(&mut AssistBuilder), ) -> &mut Self { let label = AssistLabel { label: label.into(), id }; match &mut self.assist { Assist::Unresolved(labels) => labels.push(label), Assist::Resolved(labels_actions) => { let action = { let mut edit = AssistBuilder::default(); f(&mut edit); edit.build() }; labels_actions.push((label, action)); } } self } pub(crate) fn build(self) -> Option { Some(self.assist) } pub(crate) fn token_at_offset(&self) -> TokenAtOffset { self.source_file.syntax().token_at_offset(self.frange.range.start()) } pub(crate) fn node_at_offset(&self) -> Option { find_node_at_offset(self.source_file.syntax(), self.frange.range.start()) } pub(crate) fn covering_element(&self) -> SyntaxElement { find_covering_element(self.source_file.syntax(), self.frange.range) } pub(crate) fn covering_node_for_range(&self, range: TextRange) -> SyntaxElement { find_covering_element(self.source_file.syntax(), range) } } #[derive(Default)] pub(crate) struct AssistBuilder { edit: TextEditBuilder, cursor_position: Option, target: Option, } impl AssistBuilder { /// Replaces specified `range` of text with a given string. pub(crate) fn replace(&mut self, range: TextRange, replace_with: impl Into) { self.edit.replace(range, replace_with.into()) } /// Replaces specified `node` of text with a given string, reindenting the /// string to maintain `node`'s existing indent. pub(crate) fn replace_node_and_indent( &mut self, node: &SyntaxNode, replace_with: impl Into, ) { let mut replace_with = replace_with.into(); if let Some(indent) = leading_indent(node) { replace_with = reindent(&replace_with, &indent) } self.replace(node.text_range(), replace_with) } /// Remove specified `range` of text. #[allow(unused)] pub(crate) fn delete(&mut self, range: TextRange) { self.edit.delete(range) } /// Append specified `text` at the given `offset` pub(crate) fn insert(&mut self, offset: TextUnit, text: impl Into) { self.edit.insert(offset, text.into()) } /// Specify desired position of the cursor after the assist is applied. pub(crate) fn set_cursor(&mut self, offset: TextUnit) { self.cursor_position = Some(offset) } /// Specify that the assist should be active withing the `target` range. /// /// Target ranges are used to sort assists: the smaller the target range, /// the more specific assist is, and so it should be sorted first. pub(crate) fn target(&mut self, target: TextRange) { self.target = Some(target) } /// Get access to the raw `TextEditBuilder`. pub(crate) fn text_edit_builder(&mut self) -> &mut TextEditBuilder { &mut self.edit } fn build(self) -> AssistAction { AssistAction { edit: self.edit.finish(), cursor_position: self.cursor_position, target: self.target, } } }