use expect_test::{expect, Expect}; use hir::{FilePosition, FileRange}; use ide_db::{ base_db::{salsa::Durability, SourceDatabase}, EditionedFileId, FxHashSet, }; use test_utils::RangeOrOffset; use triomphe::Arc; use crate::{MatchFinder, SsrRule}; fn parse_error_text(query: &str) -> String { format!("{}", query.parse::().unwrap_err()) } #[test] fn parser_empty_query() { assert_eq!(parse_error_text(""), "Parse error: Cannot find delimiter `==>>`"); } #[test] fn parser_no_delimiter() { assert_eq!(parse_error_text("foo()"), "Parse error: Cannot find delimiter `==>>`"); } #[test] fn parser_two_delimiters() { assert_eq!( parse_error_text("foo() ==>> a ==>> b "), "Parse error: More than one delimiter found" ); } #[test] fn parser_repeated_name() { assert_eq!( parse_error_text("foo($a, $a) ==>>"), "Parse error: Placeholder `$a` repeats more than once" ); } #[test] fn parser_invalid_pattern() { assert_eq!( parse_error_text(" ==>> ()"), "Parse error: Not a valid Rust expression, type, item, path or pattern" ); } #[test] fn parser_invalid_template() { assert_eq!( parse_error_text("() ==>> )"), "Parse error: Not a valid Rust expression, type, item, path or pattern" ); } #[test] fn parser_undefined_placeholder_in_replacement() { assert_eq!( parse_error_text("42 ==>> $a"), "Parse error: Replacement contains undefined placeholders: $a" ); } /// `code` may optionally contain a cursor marker `$0`. If it doesn't, then the position will be /// the start of the file. If there's a second cursor marker, then we'll return a single range. pub(crate) fn single_file(code: &str) -> (ide_db::RootDatabase, FilePosition, Vec) { use ide_db::symbol_index::SymbolsDatabase; use test_fixture::{WithFixture, WORKSPACE}; let (mut db, file_id, range_or_offset) = if code.contains(test_utils::CURSOR_MARKER) { ide_db::RootDatabase::with_range_or_offset(code) } else { let (db, file_id) = ide_db::RootDatabase::with_single_file(code); (db, file_id, RangeOrOffset::Offset(0.into())) }; let selections; let position; match range_or_offset { RangeOrOffset::Range(range) => { position = FilePosition { file_id, offset: range.start() }; selections = vec![FileRange { file_id, range }]; } RangeOrOffset::Offset(offset) => { position = FilePosition { file_id, offset }; selections = vec![]; } } let mut local_roots = FxHashSet::default(); local_roots.insert(WORKSPACE); db.set_local_roots_with_durability(Arc::new(local_roots), Durability::HIGH); (db, position, selections) } fn assert_ssr_transform(rule: &str, input: &str, expected: Expect) { assert_ssr_transforms(&[rule], input, expected); } fn assert_ssr_transforms(rules: &[&str], input: &str, expected: Expect) { let (db, position, selections) = single_file(input); let mut match_finder = MatchFinder::in_context( &db, position.into(), selections.into_iter().map(Into::into).collect(), ) .unwrap(); for rule in rules { let rule: SsrRule = rule.parse().unwrap(); match_finder.add_rule(rule).unwrap(); } let edits = match_finder.edits(); if edits.is_empty() { panic!("No edits were made"); } // Note, db.file_text is not necessarily the same as `input`, since fixture parsing alters // stuff. let mut actual = db.file_text(position.file_id.into()).to_string(); edits[&position.file_id.into()].apply(&mut actual); expected.assert_eq(&actual); } #[allow(clippy::print_stdout)] fn print_match_debug_info(match_finder: &MatchFinder<'_>, file_id: EditionedFileId, snippet: &str) { let debug_info = match_finder.debug_where_text_equal(file_id, snippet); println!( "Match debug info: {} nodes had text exactly equal to '{}'", debug_info.len(), snippet ); for (index, d) in debug_info.iter().enumerate() { println!("Node #{index}\n{d:#?}\n"); } } fn assert_matches(pattern: &str, code: &str, expected: &[&str]) { let (db, position, selections) = single_file(code); let mut match_finder = MatchFinder::in_context( &db, position.into(), selections.into_iter().map(Into::into).collect(), ) .unwrap(); match_finder.add_search_pattern(pattern.parse().unwrap()).unwrap(); let matched_strings: Vec = match_finder.matches().flattened().matches.iter().map(|m| m.matched_text()).collect(); if matched_strings != expected && !expected.is_empty() { print_match_debug_info(&match_finder, position.file_id, expected[0]); } assert_eq!(matched_strings, expected); } fn assert_no_match(pattern: &str, code: &str) { let (db, position, selections) = single_file(code); let mut match_finder = MatchFinder::in_context( &db, position.into(), selections.into_iter().map(Into::into).collect(), ) .unwrap(); match_finder.add_search_pattern(pattern.parse().unwrap()).unwrap(); let matches = match_finder.matches().flattened().matches; if !matches.is_empty() { print_match_debug_info(&match_finder, position.file_id, &matches[0].matched_text()); panic!("Got {} matches when we expected none: {matches:#?}", matches.len()); } } fn assert_match_failure_reason(pattern: &str, code: &str, snippet: &str, expected_reason: &str) { let (db, position, selections) = single_file(code); let mut match_finder = MatchFinder::in_context( &db, position.into(), selections.into_iter().map(Into::into).collect(), ) .unwrap(); match_finder.add_search_pattern(pattern.parse().unwrap()).unwrap(); let mut reasons = Vec::new(); for d in match_finder.debug_where_text_equal(position.file_id, snippet) { if let Some(reason) = d.match_failure_reason() { reasons.push(reason.to_owned()); } } assert_eq!(reasons, vec![expected_reason]); } #[test] fn ssr_let_stmt_in_macro_match() { assert_matches( "let a = 0", r#" macro_rules! m1 { ($a:stmt) => {$a}; } fn f() {m1!{ let a = 0 };}"#, // FIXME: Whitespace is not part of the matched block &["leta=0"], ); } #[test] fn ssr_let_stmt_in_fn_match() { assert_matches("let $a = 10;", "fn main() { let x = 10; x }", &["let x = 10;"]); assert_matches("let $a = $b;", "fn main() { let x = 10; x }", &["let x = 10;"]); } #[test] fn ssr_block_expr_match() { assert_matches("{ let $a = $b; }", "fn main() { let x = 10; }", &["{ let x = 10; }"]); assert_matches("{ let $a = $b; $c }", "fn main() { let x = 10; x }", &["{ let x = 10; x }"]); } #[test] fn ssr_let_stmt_replace() { // Pattern and template with trailing semicolon assert_ssr_transform( "let $a = $b; ==>> let $a = 11;", "fn main() { let x = 10; x }", expect![["fn main() { let x = 11; x }"]], ); } #[test] fn ssr_let_stmt_replace_expr() { // Trailing semicolon should be dropped from the new expression assert_ssr_transform( "let $a = $b; ==>> $b", "fn main() { let x = 10; }", expect![["fn main() { 10 }"]], ); } #[test] fn ssr_blockexpr_replace_stmt_with_stmt() { assert_ssr_transform( "if $a() {$b;} ==>> $b;", "{ if foo() { bar(); } Ok(()) }", expect![[r#"{ bar(); Ok(()) }"#]], ); } #[test] fn ssr_blockexpr_match_trailing_expr() { assert_matches( "if $a() {$b;}", "{ if foo() { bar(); } }", &["if foo() { bar(); }"], ); } #[test] fn ssr_blockexpr_replace_trailing_expr_with_stmt() { assert_ssr_transform( "if $a() {$b;} ==>> $b;", "{ if foo() { bar(); } }", expect![["{ bar(); }"]], ); } #[test] fn ssr_function_to_method() { assert_ssr_transform( "my_function($a, $b) ==>> ($a).my_method($b)", "fn my_function() {} fn main() { loop { my_function( other_func(x, y), z + w) } }", expect![["fn my_function() {} fn main() { loop { (other_func(x, y)).my_method(z + w) } }"]], ) } #[test] fn ssr_nested_function() { assert_ssr_transform( "foo($a, $b, $c) ==>> bar($c, baz($a, $b))", r#" //- /lib.rs crate:foo fn foo() {} fn bar() {} fn baz() {} fn main { foo (x + value.method(b), x+y-z, true && false) } "#, expect![[r#" fn foo() {} fn bar() {} fn baz() {} fn main { bar(true && false, baz(x + value.method(b), x+y-z)) } "#]], ) } #[test] fn ssr_expected_spacing() { assert_ssr_transform( "foo($x) + bar() ==>> bar($x)", "fn foo() {} fn bar() {} fn main() { foo(5) + bar() }", expect![["fn foo() {} fn bar() {} fn main() { bar(5) }"]], ); } #[test] fn ssr_with_extra_space() { assert_ssr_transform( "foo($x ) + bar() ==>> bar($x)", "fn foo() {} fn bar() {} fn main() { foo( 5 ) +bar( ) }", expect![["fn foo() {} fn bar() {} fn main() { bar(5) }"]], ); } #[test] fn ssr_keeps_nested_comment() { assert_ssr_transform( "foo($x) ==>> bar($x)", "fn foo() {} fn bar() {} fn main() { foo(other(5 /* using 5 */)) }", expect![["fn foo() {} fn bar() {} fn main() { bar(other(5 /* using 5 */)) }"]], ) } #[test] fn ssr_keeps_comment() { assert_ssr_transform( "foo($x) ==>> bar($x)", "fn foo() {} fn bar() {} fn main() { foo(5 /* using 5 */) }", expect![["fn foo() {} fn bar() {} fn main() { bar(5)/* using 5 */ }"]], ) } #[test] fn ssr_struct_lit() { assert_ssr_transform( "Foo{a: $a, b: $b} ==>> Foo::new($a, $b)", r#" struct Foo() {} impl Foo { fn new() {} } fn main() { Foo{b:2, a:1} } "#, expect![[r#" struct Foo() {} impl Foo { fn new() {} } fn main() { Foo::new(1, 2) } "#]], ) } #[test] fn ssr_struct_def() { assert_ssr_transform( "struct Foo { $f: $t } ==>> struct Foo($t);", r#"struct Foo { field: i32 }"#, expect![[r#"struct Foo(i32);"#]], ) } #[test] fn ignores_whitespace() { assert_matches("1+2", "fn f() -> i32 {1 + 2}", &["1 + 2"]); assert_matches("1 + 2", "fn f() -> i32 {1+2}", &["1+2"]); } #[test] fn no_match() { assert_no_match("1 + 3", "fn f() -> i32 {1 + 2}"); } #[test] fn match_fn_definition() { assert_matches("fn $a($b: $t) {$c}", "fn f(a: i32) {bar()}", &["fn f(a: i32) {bar()}"]); } #[test] fn match_struct_definition() { let code = r#" struct Option {} struct Bar {} struct Foo {name: Option}"#; assert_matches("struct $n {$f: Option}", code, &["struct Foo {name: Option}"]); } #[test] fn match_expr() { let code = r#" fn foo() {} fn f() -> i32 {foo(40 + 2, 42)}"#; assert_matches("foo($a, $b)", code, &["foo(40 + 2, 42)"]); assert_no_match("foo($a, $b, $c)", code); assert_no_match("foo($a)", code); } #[test] fn match_nested_method_calls() { assert_matches( "$a.z().z().z()", "fn f() {h().i().j().z().z().z().d().e()}", &["h().i().j().z().z().z()"], ); } // Make sure that our node matching semantics don't differ within macro calls. #[test] fn match_nested_method_calls_with_macro_call() { assert_matches( "$a.z().z().z()", r#" macro_rules! m1 { ($a:expr) => {$a}; } fn f() {m1!(h().i().j().z().z().z().d().e())}"#, &["h().i().j().z().z().z()"], ); } #[test] fn match_complex_expr() { let code = r#" fn foo() {} fn bar() {} fn f() -> i32 {foo(bar(40, 2), 42)}"#; assert_matches("foo($a, $b)", code, &["foo(bar(40, 2), 42)"]); assert_no_match("foo($a, $b, $c)", code); assert_no_match("foo($a)", code); assert_matches("bar($a, $b)", code, &["bar(40, 2)"]); } // Trailing commas in the code should be ignored. #[test] fn match_with_trailing_commas() { // Code has comma, pattern doesn't. assert_matches("foo($a, $b)", "fn foo() {} fn f() {foo(1, 2,);}", &["foo(1, 2,)"]); assert_matches("Foo{$a, $b}", "struct Foo {} fn f() {Foo{1, 2,};}", &["Foo{1, 2,}"]); // Pattern has comma, code doesn't. assert_matches("foo($a, $b,)", "fn foo() {} fn f() {foo(1, 2);}", &["foo(1, 2)"]); assert_matches("Foo{$a, $b,}", "struct Foo {} fn f() {Foo{1, 2};}", &["Foo{1, 2}"]); } #[test] fn match_type() { assert_matches("i32", "fn f() -> i32 {1 + 2}", &["i32"]); assert_matches( "Option<$a>", "struct Option {} fn f() -> Option {42}", &["Option"], ); assert_no_match( "Option<$a>", "struct Option {} struct Result {} fn f() -> Result {42}", ); } #[test] fn match_struct_instantiation() { let code = r#" struct Foo {bar: i32, baz: i32} fn f() {Foo {bar: 1, baz: 2}}"#; assert_matches("Foo {bar: 1, baz: 2}", code, &["Foo {bar: 1, baz: 2}"]); // Now with placeholders for all parts of the struct. assert_matches("Foo {$a: $b, $c: $d}", code, &["Foo {bar: 1, baz: 2}"]); assert_matches("Foo {}", "struct Foo {} fn f() {Foo {}}", &["Foo {}"]); } #[test] fn match_path() { let code = r#" mod foo { pub(crate) fn bar() {} } fn f() {foo::bar(42)}"#; assert_matches("foo::bar", code, &["foo::bar"]); assert_matches("$a::bar", code, &["foo::bar"]); assert_matches("foo::$b", code, &["foo::bar"]); } #[test] fn match_pattern() { assert_matches("Some($a)", "struct Some(); fn f() {if let Some(x) = foo() {}}", &["Some(x)"]); } // If our pattern has a full path, e.g. a::b::c() and the code has c(), but c resolves to // a::b::c, then we should match. #[test] fn match_fully_qualified_fn_path() { let code = r#" mod a { pub(crate) mod b { pub(crate) fn c(_: i32) {} } } use a::b::c; fn f1() { c(42); } "#; assert_matches("a::b::c($a)", code, &["c(42)"]); } #[test] fn match_resolved_type_name() { let code = r#" mod m1 { pub(crate) mod m2 { pub(crate) trait Foo {} } } mod m3 { trait Foo {} fn f1(f: Option<&dyn Foo>) {} } mod m4 { use crate::m1::m2::Foo; fn f1(f: Option<&dyn Foo>) {} } "#; assert_matches("m1::m2::Foo<$t>", code, &["Foo"]); } #[test] fn type_arguments_within_path() { cov_mark::check!(type_arguments_within_path); let code = r#" mod foo { pub(crate) struct Bar {t: T} impl Bar { pub(crate) fn baz() {} } } fn f1() {foo::Bar::::baz();} "#; assert_no_match("foo::Bar::::baz()", code); assert_matches("foo::Bar::::baz()", code, &["foo::Bar::::baz()"]); } #[test] fn literal_constraint() { cov_mark::check!(literal_constraint); let code = r#" enum Option { Some(T), None } use Option::Some; fn f1() { let x1 = Some(42); let x2 = Some("foo"); let x3 = Some(x1); let x4 = Some(40 + 2); let x5 = Some(true); } "#; assert_matches("Some(${a:kind(literal)})", code, &["Some(42)", "Some(\"foo\")", "Some(true)"]); assert_matches("Some(${a:not(kind(literal))})", code, &["Some(x1)", "Some(40 + 2)"]); } #[test] fn match_reordered_struct_instantiation() { assert_matches( "Foo {aa: 1, b: 2, ccc: 3}", "struct Foo {} fn f() {Foo {b: 2, ccc: 3, aa: 1}}", &["Foo {b: 2, ccc: 3, aa: 1}"], ); assert_no_match("Foo {a: 1}", "struct Foo {} fn f() {Foo {b: 1}}"); assert_no_match("Foo {a: 1}", "struct Foo {} fn f() {Foo {a: 2}}"); assert_no_match("Foo {a: 1, b: 2}", "struct Foo {} fn f() {Foo {a: 1}}"); assert_no_match("Foo {a: 1, b: 2}", "struct Foo {} fn f() {Foo {b: 2}}"); assert_no_match("Foo {a: 1, }", "struct Foo {} fn f() {Foo {a: 1, b: 2}}"); assert_no_match("Foo {a: 1, z: 9}", "struct Foo {} fn f() {Foo {a: 1}}"); } #[test] fn match_macro_invocation() { assert_matches( "foo!($a)", "macro_rules! foo {() => {}} fn() {foo(foo!(foo()))}", &["foo!(foo())"], ); assert_matches( "foo!(41, $a, 43)", "macro_rules! foo {() => {}} fn() {foo!(41, 42, 43)}", &["foo!(41, 42, 43)"], ); assert_no_match("foo!(50, $a, 43)", "macro_rules! foo {() => {}} fn() {foo!(41, 42, 43}"); assert_no_match("foo!(41, $a, 50)", "macro_rules! foo {() => {}} fn() {foo!(41, 42, 43}"); assert_matches( "foo!($a())", "macro_rules! foo {() => {}} fn() {foo!(bar())}", &["foo!(bar())"], ); } // When matching within a macro expansion, we only allow matches of nodes that originated from // the macro call, not from the macro definition. #[test] fn no_match_expression_from_macro() { assert_no_match( "$a.clone()", r#" macro_rules! m1 { () => {42.clone()} } fn f1() {m1!()} "#, ); } // We definitely don't want to allow matching of an expression that part originates from the // macro call `42` and part from the macro definition `.clone()`. #[test] fn no_match_split_expression() { assert_no_match( "$a.clone()", r#" macro_rules! m1 { ($x:expr) => {$x.clone()} } fn f1() {m1!(42)} "#, ); } #[test] fn replace_function_call() { // This test also makes sure that we ignore empty-ranges. assert_ssr_transform( "foo() ==>> bar()", "fn foo() {$0$0} fn bar() {} fn f1() {foo(); foo();}", expect![["fn foo() {} fn bar() {} fn f1() {bar(); bar();}"]], ); } #[test] fn replace_function_call_with_placeholders() { assert_ssr_transform( "foo($a, $b) ==>> bar($b, $a)", "fn foo() {} fn bar() {} fn f1() {foo(5, 42)}", expect![["fn foo() {} fn bar() {} fn f1() {bar(42, 5)}"]], ); } #[test] fn replace_nested_function_calls() { assert_ssr_transform( "foo($a) ==>> bar($a)", "fn foo() {} fn bar() {} fn f1() {foo(foo(42))}", expect![["fn foo() {} fn bar() {} fn f1() {bar(bar(42))}"]], ); } #[test] fn replace_associated_function_call() { assert_ssr_transform( "Foo::new() ==>> Bar::new()", r#" struct Foo {} impl Foo { fn new() {} } struct Bar {} impl Bar { fn new() {} } fn f1() {Foo::new();} "#, expect![[r#" struct Foo {} impl Foo { fn new() {} } struct Bar {} impl Bar { fn new() {} } fn f1() {Bar::new();} "#]], ); } #[test] fn replace_associated_trait_default_function_call() { cov_mark::check!(replace_associated_trait_default_function_call); assert_ssr_transform( "Bar2::foo() ==>> Bar2::foo2()", r#" trait Foo { fn foo() {} } pub(crate) struct Bar {} impl Foo for Bar {} pub(crate) struct Bar2 {} impl Foo for Bar2 {} impl Bar2 { fn foo2() {} } fn main() { Bar::foo(); Bar2::foo(); } "#, expect![[r#" trait Foo { fn foo() {} } pub(crate) struct Bar {} impl Foo for Bar {} pub(crate) struct Bar2 {} impl Foo for Bar2 {} impl Bar2 { fn foo2() {} } fn main() { Bar::foo(); Bar2::foo2(); } "#]], ); } #[test] fn replace_associated_trait_constant() { cov_mark::check!(replace_associated_trait_constant); assert_ssr_transform( "Bar2::VALUE ==>> Bar2::VALUE_2222", r#" trait Foo { const VALUE: i32; const VALUE_2222: i32; } pub(crate) struct Bar {} impl Foo for Bar { const VALUE: i32 = 1; const VALUE_2222: i32 = 2; } pub(crate) struct Bar2 {} impl Foo for Bar2 { const VALUE: i32 = 1; const VALUE_2222: i32 = 2; } impl Bar2 { fn foo2() {} } fn main() { Bar::VALUE; Bar2::VALUE; } "#, expect![[r#" trait Foo { const VALUE: i32; const VALUE_2222: i32; } pub(crate) struct Bar {} impl Foo for Bar { const VALUE: i32 = 1; const VALUE_2222: i32 = 2; } pub(crate) struct Bar2 {} impl Foo for Bar2 { const VALUE: i32 = 1; const VALUE_2222: i32 = 2; } impl Bar2 { fn foo2() {} } fn main() { Bar::VALUE; Bar2::VALUE_2222; } "#]], ); } #[test] fn replace_path_in_different_contexts() { // Note the $0 inside module a::b which marks the point where the rule is interpreted. We // replace foo with bar, but both need different path qualifiers in different contexts. In f4, // foo is unqualified because of a use statement, however the replacement needs to be fully // qualified. assert_ssr_transform( "c::foo() ==>> c::bar()", r#" mod a { pub(crate) mod b {$0 pub(crate) mod c { pub(crate) fn foo() {} pub(crate) fn bar() {} fn f1() { foo() } } fn f2() { c::foo() } } fn f3() { b::c::foo() } } use a::b::c::foo; fn f4() { foo() } "#, expect![[r#" mod a { pub(crate) mod b { pub(crate) mod c { pub(crate) fn foo() {} pub(crate) fn bar() {} fn f1() { bar() } } fn f2() { c::bar() } } fn f3() { b::c::bar() } } use a::b::c::foo; fn f4() { a::b::c::bar() } "#]], ); } #[test] fn replace_associated_function_with_generics() { assert_ssr_transform( "c::Foo::<$a>::new() ==>> d::Bar::<$a>::default()", r#" mod c { pub(crate) struct Foo {v: T} impl Foo { pub(crate) fn new() {} } fn f1() { Foo::::new(); } } mod d { pub(crate) struct Bar {v: T} impl Bar { pub(crate) fn default() {} } fn f1() { super::c::Foo::::new(); } } "#, expect![[r#" mod c { pub(crate) struct Foo {v: T} impl Foo { pub(crate) fn new() {} } fn f1() { crate::d::Bar::::default(); } } mod d { pub(crate) struct Bar {v: T} impl Bar { pub(crate) fn default() {} } fn f1() { Bar::::default(); } } "#]], ); } #[test] fn replace_type() { assert_ssr_transform( "Result<(), $a> ==>> Option<$a>", "struct Result {} struct Option {} fn f1() -> Result<(), Vec> {foo()}", expect![[ "struct Result {} struct Option {} fn f1() -> Option> {foo()}" ]], ); assert_ssr_transform( "dyn Trait<$a> ==>> DynTrait<$a>", r#" trait Trait {} struct DynTrait {} fn f1() -> dyn Trait> {foo()} "#, expect![[r#" trait Trait {} struct DynTrait {} fn f1() -> DynTrait> {foo()} "#]], ); } #[test] fn replace_macro_invocations() { assert_ssr_transform( "try_!($a) ==>> $a?", "macro_rules! try_ {() => {}} fn f1() -> Result<(), E> {bar(try_!(foo()));}", expect![["macro_rules! try_ {() => {}} fn f1() -> Result<(), E> {bar(foo()?);}"]], ); // FIXME: Figure out why this doesn't work anymore // assert_ssr_transform( // "foo!($a($b)) ==>> foo($b, $a)", // "macro_rules! foo {() => {}} fn f1() {foo!(abc(def() + 2));}", // expect![["macro_rules! foo {() => {}} fn f1() {foo(def() + 2, abc);}"]], // ); } #[test] fn replace_binary_op() { assert_ssr_transform( "$a + $b ==>> $b + $a", "fn f() {2 * 3 + 4 * 5}", expect![["fn f() {4 * 5 + 2 * 3}"]], ); assert_ssr_transform( "$a + $b ==>> $b + $a", "fn f() {1 + 2 + 3 + 4}", expect![[r#"fn f() {4 + (3 + (2 + 1))}"#]], ); } #[test] fn match_binary_op() { assert_matches("$a + $b", "fn f() {1 + 2 + 3 + 4}", &["1 + 2", "1 + 2 + 3", "1 + 2 + 3 + 4"]); } #[test] fn multiple_rules() { assert_ssr_transforms( &["$a + 1 ==>> add_one($a)", "$a + $b ==>> add($a, $b)"], "fn add() {} fn add_one() {} fn f() -> i32 {3 + 2 + 1}", expect![["fn add() {} fn add_one() {} fn f() -> i32 {add_one(add(3, 2))}"]], ) } #[test] fn multiple_rules_with_nested_matches() { assert_ssr_transforms( &["foo1($a) ==>> bar1($a)", "foo2($a) ==>> bar2($a)"], r#" fn foo1() {} fn foo2() {} fn bar1() {} fn bar2() {} fn f() {foo1(foo2(foo1(foo2(foo1(42)))))} "#, expect![[r#" fn foo1() {} fn foo2() {} fn bar1() {} fn bar2() {} fn f() {bar1(bar2(bar1(bar2(bar1(42)))))} "#]], ) } #[test] fn match_within_macro_invocation() { let code = r#" macro_rules! foo { ($a:stmt; $b:expr) => { $b }; } struct A {} impl A { fn bar() {} } fn f1() { let aaa = A {}; foo!(macro_ignores_this(); aaa.bar()); } "#; assert_matches("$a.bar()", code, &["aaa.bar()"]); } #[test] fn replace_within_macro_expansion() { assert_ssr_transform( "$a.foo() ==>> bar($a)", r#" macro_rules! macro1 { ($a:expr) => {$a} } fn bar() {} fn f() {macro1!(5.x().foo().o2())} "#, expect![[r#" macro_rules! macro1 { ($a:expr) => {$a} } fn bar() {} fn f() {macro1!(bar(5.x()).o2())} "#]], ) } #[test] fn replace_outside_and_within_macro_expansion() { assert_ssr_transform( "foo($a) ==>> bar($a)", r#" fn foo() {} fn bar() {} macro_rules! macro1 { ($a:expr) => {$a} } fn f() {foo(foo(macro1!(foo(foo(42)))))} "#, expect![[r#" fn foo() {} fn bar() {} macro_rules! macro1 { ($a:expr) => {$a} } fn f() {bar(bar(macro1!(bar(bar(42)))))} "#]], ) } #[test] fn preserves_whitespace_within_macro_expansion() { assert_ssr_transform( "$a + $b ==>> $b - $a", r#" macro_rules! macro1 { ($a:expr) => {$a} } fn f() {macro1!(1 * 2 + 3 + 4)} "#, expect![[r#" macro_rules! macro1 { ($a:expr) => {$a} } fn f() {macro1!(4 - (3 - 1 * 2))} "#]], ) } #[test] fn add_parenthesis_when_necessary() { assert_ssr_transform( "foo($a) ==>> $a.to_string()", r#" fn foo(_: i32) {} fn bar3(v: i32) { foo(1 + 2); foo(-v); } "#, expect![[r#" fn foo(_: i32) {} fn bar3(v: i32) { (1 + 2).to_string(); (-v).to_string(); } "#]], ) } #[test] fn match_failure_reasons() { let code = r#" fn bar() {} macro_rules! foo { ($a:expr) => { 1 + $a + 2 }; } fn f1() { bar(1, 2); foo!(5 + 43.to_string() + 5); } "#; assert_match_failure_reason( "bar($a, 3)", code, "bar(1, 2)", r#"Pattern wanted token '3' (INT_NUMBER), but code had token '2' (INT_NUMBER)"#, ); assert_match_failure_reason( "42.to_string()", code, "43.to_string()", r#"Pattern wanted token '42' (INT_NUMBER), but code had token '43' (INT_NUMBER)"#, ); } #[test] fn overlapping_possible_matches() { // There are three possible matches here, however the middle one, `foo(foo(foo(42)))` shouldn't // match because it overlaps with the outer match. The inner match is permitted since it's is // contained entirely within the placeholder of the outer match. assert_matches( "foo(foo($a))", "fn foo() {} fn main() {foo(foo(foo(foo(42))))}", &["foo(foo(42))", "foo(foo(foo(foo(42))))"], ); } #[test] fn use_declaration_with_braces() { // It would be OK for a path rule to match and alter a use declaration. We shouldn't mess it up // though. In particular, we must not change `use foo::{baz, bar}` to `use foo::{baz, // foo2::bar2}`. cov_mark::check!(use_declaration_with_braces); assert_ssr_transform( "foo::bar ==>> foo2::bar2", r#" mod foo { pub(crate) fn bar() {} pub(crate) fn baz() {} } mod foo2 { pub(crate) fn bar2() {} } use foo::{baz, bar}; fn main() { bar() } "#, expect![[" mod foo { pub(crate) fn bar() {} pub(crate) fn baz() {} } mod foo2 { pub(crate) fn bar2() {} } use foo::{baz, bar}; fn main() { foo2::bar2() } "]], ) } #[test] fn ufcs_matches_method_call() { let code = r#" struct Foo {} impl Foo { fn new(_: i32) -> Foo { Foo {} } fn do_stuff(&self, _: i32) {} } struct Bar {} impl Bar { fn new(_: i32) -> Bar { Bar {} } fn do_stuff(&self, v: i32) {} } fn main() { let b = Bar {}; let f = Foo {}; b.do_stuff(1); f.do_stuff(2); Foo::new(4).do_stuff(3); // Too many / too few args - should never match f.do_stuff(2, 10); f.do_stuff(); } "#; assert_matches("Foo::do_stuff($a, $b)", code, &["f.do_stuff(2)", "Foo::new(4).do_stuff(3)"]); // The arguments needs special handling in the case of a function call matching a method call // and the first argument is different. assert_matches("Foo::do_stuff($a, 2)", code, &["f.do_stuff(2)"]); assert_matches("Foo::do_stuff(Foo::new(4), $b)", code, &["Foo::new(4).do_stuff(3)"]); assert_ssr_transform( "Foo::do_stuff(Foo::new($a), $b) ==>> Bar::new($b).do_stuff($a)", code, expect![[r#" struct Foo {} impl Foo { fn new(_: i32) -> Foo { Foo {} } fn do_stuff(&self, _: i32) {} } struct Bar {} impl Bar { fn new(_: i32) -> Bar { Bar {} } fn do_stuff(&self, v: i32) {} } fn main() { let b = Bar {}; let f = Foo {}; b.do_stuff(1); f.do_stuff(2); Bar::new(3).do_stuff(4); // Too many / too few args - should never match f.do_stuff(2, 10); f.do_stuff(); } "#]], ); } #[test] fn pattern_is_a_single_segment_path() { cov_mark::check!(pattern_is_a_single_segment_path); // The first function should not be altered because the `foo` in scope at the cursor position is // a different `foo`. This case is special because "foo" can be parsed as a pattern (IDENT_PAT -> // NAME -> IDENT), which contains no path. If we're not careful we'll end up matching the `foo` // in `let foo` from the first function. Whether we should match the `let foo` in the second // function is less clear. At the moment, we don't. Doing so sounds like a rename operation, // which isn't really what SSR is for, especially since the replacement `bar` must be able to be // resolved, which means if we rename `foo` we'll get a name collision. assert_ssr_transform( "foo ==>> bar", r#" fn f1() -> i32 { let foo = 1; let bar = 2; foo } fn f1() -> i32 { let foo = 1; let bar = 2; foo$0 } "#, expect![[r#" fn f1() -> i32 { let foo = 1; let bar = 2; foo } fn f1() -> i32 { let foo = 1; let bar = 2; bar } "#]], ); } #[test] fn replace_local_variable_reference() { // The pattern references a local variable `foo` in the block containing the cursor. We should // only replace references to this variable `foo`, not other variables that just happen to have // the same name. cov_mark::check!(cursor_after_semicolon); assert_ssr_transform( "foo + $a ==>> $a - foo", r#" fn bar1() -> i32 { let mut res = 0; let foo = 5; res += foo + 1; let foo = 10; res += foo + 2;$0 res += foo + 3; let foo = 15; res += foo + 4; res } "#, expect![[r#" fn bar1() -> i32 { let mut res = 0; let foo = 5; res += foo + 1; let foo = 10; res += 2 - foo; res += 3 - foo; let foo = 15; res += foo + 4; res } "#]], ) } #[test] fn replace_path_within_selection() { assert_ssr_transform( "foo ==>> bar", r#" fn main() { let foo = 41; let bar = 42; do_stuff(foo); do_stuff(foo);$0 do_stuff(foo); do_stuff(foo);$0 do_stuff(foo); }"#, expect![[r#" fn main() { let foo = 41; let bar = 42; do_stuff(foo); do_stuff(foo); do_stuff(bar); do_stuff(bar); do_stuff(foo); }"#]], ); } #[test] fn replace_nonpath_within_selection() { cov_mark::check!(replace_nonpath_within_selection); assert_ssr_transform( "$a + $b ==>> $b * $a", r#" fn main() { let v = 1 + 2;$0 let v2 = 3 + 3; let v3 = 4 + 5;$0 let v4 = 6 + 7; }"#, expect![[r#" fn main() { let v = 1 + 2; let v2 = 3 * 3; let v3 = 5 * 4; let v4 = 6 + 7; }"#]], ); } #[test] fn replace_self() { // `foo(self)` occurs twice in the code, however only the first occurrence is the `self` that's // in scope where the rule is invoked. assert_ssr_transform( "foo(self) ==>> bar(self)", r#" struct S1 {} fn foo(_: &S1) {} fn bar(_: &S1) {} impl S1 { fn f1(&self) { foo(self)$0 } fn f2(&self) { foo(self) } } "#, expect![[r#" struct S1 {} fn foo(_: &S1) {} fn bar(_: &S1) {} impl S1 { fn f1(&self) { bar(self) } fn f2(&self) { foo(self) } } "#]], ); } #[test] fn match_trait_method_call() { // `Bar::foo` and `Bar2::foo` resolve to the same function. Make sure we only match if the type // matches what's in the pattern. Also checks that we handle autoderef. let code = r#" pub(crate) struct Bar {} pub(crate) struct Bar2 {} pub(crate) trait Foo { fn foo(&self, _: i32) {} } impl Foo for Bar {} impl Foo for Bar2 {} fn main() { let v1 = Bar {}; let v2 = Bar2 {}; let v1_ref = &v1; let v2_ref = &v2; v1.foo(1); v2.foo(2); Bar::foo(&v1, 3); Bar2::foo(&v2, 4); v1_ref.foo(5); v2_ref.foo(6); } "#; assert_matches("Bar::foo($a, $b)", code, &["v1.foo(1)", "Bar::foo(&v1, 3)", "v1_ref.foo(5)"]); assert_matches("Bar2::foo($a, $b)", code, &["v2.foo(2)", "Bar2::foo(&v2, 4)", "v2_ref.foo(6)"]); } #[test] fn replace_autoref_autoderef_capture() { // Here we have several calls to `$a.foo()`. In the first case autoref is applied, in the // second, we already have a reference, so it isn't. When $a is used in a context where autoref // doesn't apply, we need to prefix it with `&`. Finally, we have some cases where autoderef // needs to be applied. cov_mark::check!(replace_autoref_autoderef_capture); let code = r#" struct Foo {} impl Foo { fn foo(&self) {} fn foo2(&self) {} } fn bar(_: &Foo) {} fn main() { let f = Foo {}; let fr = &f; let fr2 = &fr; let fr3 = &fr2; f.foo(); fr.foo(); fr2.foo(); fr3.foo(); } "#; assert_ssr_transform( "Foo::foo($a) ==>> bar($a)", code, expect![[r#" struct Foo {} impl Foo { fn foo(&self) {} fn foo2(&self) {} } fn bar(_: &Foo) {} fn main() { let f = Foo {}; let fr = &f; let fr2 = &fr; let fr3 = &fr2; bar(&f); bar(&*fr); bar(&**fr2); bar(&***fr3); } "#]], ); // If the placeholder is used as the receiver of another method call, then we don't need to // explicitly autoderef or autoref. assert_ssr_transform( "Foo::foo($a) ==>> $a.foo2()", code, expect![[r#" struct Foo {} impl Foo { fn foo(&self) {} fn foo2(&self) {} } fn bar(_: &Foo) {} fn main() { let f = Foo {}; let fr = &f; let fr2 = &fr; let fr3 = &fr2; f.foo2(); fr.foo2(); fr2.foo2(); fr3.foo2(); } "#]], ); } #[test] fn replace_autoref_mut() { let code = r#" struct Foo {} impl Foo { fn foo(&mut self) {} } fn bar(_: &mut Foo) {} fn main() { let mut f = Foo {}; f.foo(); let fr = &mut f; fr.foo(); } "#; assert_ssr_transform( "Foo::foo($a) ==>> bar($a)", code, expect![[r#" struct Foo {} impl Foo { fn foo(&mut self) {} } fn bar(_: &mut Foo) {} fn main() { let mut f = Foo {}; bar(&mut f); let fr = &mut f; bar(&mut *fr); } "#]], ); }