//! See [`PathTransform`]. use crate::helpers::mod_path_to_ast; use either::Either; use hir::{AsAssocItem, HirDisplay, SemanticsScope}; use rustc_hash::FxHashMap; use syntax::{ ast::{self, AstNode}, ted, SyntaxNode, }; /// `PathTransform` substitutes path in SyntaxNodes in bulk. /// /// This is mostly useful for IDE code generation. If you paste some existing /// code into a new context (for example, to add method overrides to an `impl` /// block), you generally want to appropriately qualify the names, and sometimes /// you might want to substitute generic parameters as well: /// /// ``` /// mod x { /// pub struct A; /// pub trait T { fn foo(&self, _: U) -> A; } /// } /// /// mod y { /// use x::T; /// /// impl T<()> for () { /// // If we invoke **Add Missing Members** here, we want to copy-paste `foo`. /// // But we want a slightly-modified version of it: /// fn foo(&self, _: ()) -> x::A<()> {} /// } /// } /// ``` pub struct PathTransform<'a> { generic_def: hir::GenericDef, substs: Vec, target_scope: &'a SemanticsScope<'a>, source_scope: &'a SemanticsScope<'a>, } impl<'a> PathTransform<'a> { pub fn trait_impl( target_scope: &'a SemanticsScope<'a>, source_scope: &'a SemanticsScope<'a>, trait_: hir::Trait, impl_: ast::Impl, ) -> PathTransform<'a> { PathTransform { source_scope, target_scope, generic_def: trait_.into(), substs: get_syntactic_substs(impl_).unwrap_or_default(), } } pub fn function_call( target_scope: &'a SemanticsScope<'a>, source_scope: &'a SemanticsScope<'a>, function: hir::Function, generic_arg_list: ast::GenericArgList, ) -> PathTransform<'a> { PathTransform { source_scope, target_scope, generic_def: function.into(), substs: get_type_args_from_arg_list(generic_arg_list).unwrap_or_default(), } } pub fn apply(&self, syntax: &SyntaxNode) { self.build_ctx().apply(syntax) } fn build_ctx(&self) -> Ctx<'a> { let db = self.source_scope.db; let target_module = self.target_scope.module(); let source_module = self.source_scope.module(); let skip = match self.generic_def { // this is a trait impl, so we need to skip the first type parameter -- this is a bit hacky hir::GenericDef::Trait(_) => 1, _ => 0, }; let substs_by_param: FxHashMap<_, _> = self .generic_def .type_params(db) .into_iter() .skip(skip) // The actual list of trait type parameters may be longer than the one // used in the `impl` block due to trailing default type parameters. // For that case we extend the `substs` with an empty iterator so we // can still hit those trailing values and check if they actually have // a default type. If they do, go for that type from `hir` to `ast` so // the resulting change can be applied correctly. .zip(self.substs.iter().map(Some).chain(std::iter::repeat(None))) .filter_map(|(k, v)| match k.split(db) { Either::Left(_) => None, Either::Right(t) => match v { Some(v) => Some((k, v.clone())), None => { let default = t.default(db)?; Some(( k, ast::make::ty( &default.display_source_code(db, source_module.into()).ok()?, ), )) } }, }) .collect(); Ctx { substs: substs_by_param, target_module, source_scope: self.source_scope } } } struct Ctx<'a> { substs: FxHashMap, target_module: hir::Module, source_scope: &'a SemanticsScope<'a>, } impl<'a> Ctx<'a> { fn apply(&self, item: &SyntaxNode) { // `transform_path` may update a node's parent and that would break the // tree traversal. Thus all paths in the tree are collected into a vec // so that such operation is safe. let paths = item .preorder() .filter_map(|event| match event { syntax::WalkEvent::Enter(_) => None, syntax::WalkEvent::Leave(node) => Some(node), }) .filter_map(ast::Path::cast) .collect::>(); for path in paths { self.transform_path(path); } } fn transform_path(&self, path: ast::Path) -> Option<()> { if path.qualifier().is_some() { return None; } if path.segment().map_or(false, |s| { s.param_list().is_some() || (s.self_token().is_some() && path.parent_path().is_none()) }) { // don't try to qualify `Fn(Foo) -> Bar` paths, they are in prelude anyway // don't try to qualify sole `self` either, they are usually locals, but are returned as modules due to namespace clashing return None; } let resolution = self.source_scope.speculative_resolve(&path)?; match resolution { hir::PathResolution::TypeParam(tp) => { if let Some(subst) = self.substs.get(&tp.merge()) { let parent = path.syntax().parent()?; if let Some(parent) = ast::Path::cast(parent.clone()) { // Path inside path means that there is an associated // type/constant on the type parameter. It is necessary // to fully qualify the type with `as Trait`. Even // though it might be unnecessary if `subst` is generic // type, always fully qualifying the path is safer // because of potential clash of associated types from // multiple traits let trait_ref = find_trait_for_assoc_item( self.source_scope, tp, parent.segment()?.name_ref()?, ) .and_then(|trait_ref| { let found_path = self.target_module.find_use_path( self.source_scope.db.upcast(), hir::ModuleDef::Trait(trait_ref), false, )?; match ast::make::ty_path(mod_path_to_ast(&found_path)) { ast::Type::PathType(path_ty) => Some(path_ty), _ => None, } }); let segment = ast::make::path_segment_ty(subst.clone(), trait_ref); let qualified = ast::make::path_from_segments(std::iter::once(segment), false); ted::replace(path.syntax(), qualified.clone_for_update().syntax()); } else if let Some(path_ty) = ast::PathType::cast(parent) { ted::replace( path_ty.syntax(), subst.clone_subtree().clone_for_update().syntax(), ); } else { ted::replace( path.syntax(), subst.clone_subtree().clone_for_update().syntax(), ); } } } hir::PathResolution::Def(def) if def.as_assoc_item(self.source_scope.db).is_none() => { if let hir::ModuleDef::Trait(_) = def { if matches!(path.segment()?.kind()?, ast::PathSegmentKind::Type { .. }) { // `speculative_resolve` resolves segments like `` into `Trait`, but just the trait name should // not be used as the replacement of the original // segment. return None; } } let found_path = self.target_module.find_use_path(self.source_scope.db.upcast(), def, false)?; let res = mod_path_to_ast(&found_path).clone_for_update(); if let Some(args) = path.segment().and_then(|it| it.generic_arg_list()) { if let Some(segment) = res.segment() { let old = segment.get_or_create_generic_arg_list(); ted::replace(old.syntax(), args.clone_subtree().syntax().clone_for_update()) } } ted::replace(path.syntax(), res.syntax()) } hir::PathResolution::Local(_) | hir::PathResolution::ConstParam(_) | hir::PathResolution::SelfType(_) | hir::PathResolution::Def(_) | hir::PathResolution::BuiltinAttr(_) | hir::PathResolution::ToolModule(_) | hir::PathResolution::DeriveHelper(_) => (), } Some(()) } } // FIXME: It would probably be nicer if we could get this via HIR (i.e. get the // trait ref, and then go from the types in the substs back to the syntax). fn get_syntactic_substs(impl_def: ast::Impl) -> Option> { let target_trait = impl_def.trait_()?; let path_type = match target_trait { ast::Type::PathType(path) => path, _ => return None, }; let generic_arg_list = path_type.path()?.segment()?.generic_arg_list()?; get_type_args_from_arg_list(generic_arg_list) } fn get_type_args_from_arg_list(generic_arg_list: ast::GenericArgList) -> Option> { let mut result = Vec::new(); for generic_arg in generic_arg_list.generic_args() { if let ast::GenericArg::TypeArg(type_arg) = generic_arg { result.push(type_arg.ty()?) } } Some(result) } fn find_trait_for_assoc_item( scope: &SemanticsScope<'_>, type_param: hir::TypeParam, assoc_item: ast::NameRef, ) -> Option { let db = scope.db; let trait_bounds = type_param.trait_bounds(db); let assoc_item_name = assoc_item.text(); for trait_ in trait_bounds { let names = trait_.items(db).into_iter().filter_map(|item| match item { hir::AssocItem::TypeAlias(ta) => Some(ta.name(db)), hir::AssocItem::Const(cst) => cst.name(db), _ => None, }); for name in names { if assoc_item_name.as_str() == name.as_text()?.as_str() { // It is fine to return the first match because in case of // multiple possibilities, the exact trait must be disambiguated // in the definition of trait being implemented, so this search // should not be needed. return Some(trait_); } } } None }