//! Implementation of find-usages functionality. //! //! It is based on the standard ide trick: first, we run a fast text search to //! get a super-set of matches. Then, we we confirm each match using precise //! name resolution. use std::mem; use base_db::{FileId, FileRange, SourceDatabase, SourceDatabaseExt}; use hir::{ AsAssocItem, DefWithBody, HasAttrs, HasSource, InFile, ModuleSource, Semantics, Visibility, }; use memchr::memmem::Finder; use nohash_hasher::IntMap; use once_cell::unsync::Lazy; use parser::SyntaxKind; use syntax::{ast, match_ast, AstNode, TextRange, TextSize}; use triomphe::Arc; use crate::{ defs::{Definition, NameClass, NameRefClass}, traits::{as_trait_assoc_def, convert_to_def_in_trait}, RootDatabase, }; #[derive(Debug, Default, Clone)] pub struct UsageSearchResult { pub references: IntMap>, } impl UsageSearchResult { pub fn is_empty(&self) -> bool { self.references.is_empty() } pub fn len(&self) -> usize { self.references.len() } pub fn iter(&self) -> impl Iterator + '_ { self.references.iter().map(|(file_id, refs)| (file_id, &**refs)) } pub fn file_ranges(&self) -> impl Iterator + '_ { self.references.iter().flat_map(|(&file_id, refs)| { refs.iter().map(move |&FileReference { range, .. }| FileRange { file_id, range }) }) } } impl IntoIterator for UsageSearchResult { type Item = (FileId, Vec); type IntoIter = > as IntoIterator>::IntoIter; fn into_iter(self) -> Self::IntoIter { self.references.into_iter() } } #[derive(Debug, Clone)] pub struct FileReference { /// The range of the reference in the original file pub range: TextRange, /// The node of the reference in the (macro-)file pub name: ast::NameLike, pub category: Option, } #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum ReferenceCategory { // FIXME: Add this variant and delete the `retain_adt_literal_usages` function. // Create Write, Read, Import, // FIXME: Some day should be able to search in doc comments. Would probably // need to switch from enum to bitflags then? // DocComment } /// Generally, `search_scope` returns files that might contain references for the element. /// For `pub(crate)` things it's a crate, for `pub` things it's a crate and dependant crates. /// In some cases, the location of the references is known to within a `TextRange`, /// e.g. for things like local variables. #[derive(Clone, Debug)] pub struct SearchScope { entries: IntMap>, } impl SearchScope { fn new(entries: IntMap>) -> SearchScope { SearchScope { entries } } /// Build a search scope spanning the entire crate graph of files. fn crate_graph(db: &RootDatabase) -> SearchScope { let mut entries = IntMap::default(); let graph = db.crate_graph(); for krate in graph.iter() { let root_file = graph[krate].root_file_id; let source_root_id = db.file_source_root(root_file); let source_root = db.source_root(source_root_id); entries.extend(source_root.iter().map(|id| (id, None))); } SearchScope { entries } } /// Build a search scope spanning all the reverse dependencies of the given crate. fn reverse_dependencies(db: &RootDatabase, of: hir::Crate) -> SearchScope { let mut entries = IntMap::default(); for rev_dep in of.transitive_reverse_dependencies(db) { let root_file = rev_dep.root_file(db); let source_root_id = db.file_source_root(root_file); let source_root = db.source_root(source_root_id); entries.extend(source_root.iter().map(|id| (id, None))); } SearchScope { entries } } /// Build a search scope spanning the given crate. fn krate(db: &RootDatabase, of: hir::Crate) -> SearchScope { let root_file = of.root_file(db); let source_root_id = db.file_source_root(root_file); let source_root = db.source_root(source_root_id); SearchScope { entries: source_root.iter().map(|id| (id, None)).collect() } } /// Build a search scope spanning the given module and all its submodules. fn module_and_children(db: &RootDatabase, module: hir::Module) -> SearchScope { let mut entries = IntMap::default(); let (file_id, range) = { let InFile { file_id, value } = module.definition_source(db); if let Some((file_id, call_source)) = file_id.original_call_node(db) { (file_id, Some(call_source.text_range())) } else { ( file_id.original_file(db), match value { ModuleSource::SourceFile(_) => None, ModuleSource::Module(it) => Some(it.syntax().text_range()), ModuleSource::BlockExpr(it) => Some(it.syntax().text_range()), }, ) } }; entries.insert(file_id, range); let mut to_visit: Vec<_> = module.children(db).collect(); while let Some(module) = to_visit.pop() { if let Some(file_id) = module.as_source_file_id(db) { entries.insert(file_id, None); } to_visit.extend(module.children(db)); } SearchScope { entries } } /// Build an empty search scope. pub fn empty() -> SearchScope { SearchScope::new(IntMap::default()) } /// Build a empty search scope spanning the given file. pub fn single_file(file: FileId) -> SearchScope { SearchScope::new(std::iter::once((file, None)).collect()) } /// Build a empty search scope spanning the text range of the given file. pub fn file_range(range: FileRange) -> SearchScope { SearchScope::new(std::iter::once((range.file_id, Some(range.range))).collect()) } /// Build a empty search scope spanning the given files. pub fn files(files: &[FileId]) -> SearchScope { SearchScope::new(files.iter().map(|f| (*f, None)).collect()) } pub fn intersection(&self, other: &SearchScope) -> SearchScope { let (mut small, mut large) = (&self.entries, &other.entries); if small.len() > large.len() { mem::swap(&mut small, &mut large) } let intersect_ranges = |r1: Option, r2: Option| -> Option> { match (r1, r2) { (None, r) | (r, None) => Some(r), (Some(r1), Some(r2)) => r1.intersect(r2).map(Some), } }; let res = small .iter() .filter_map(|(&file_id, &r1)| { let &r2 = large.get(&file_id)?; let r = intersect_ranges(r1, r2)?; Some((file_id, r)) }) .collect(); SearchScope::new(res) } } impl IntoIterator for SearchScope { type Item = (FileId, Option); type IntoIter = std::collections::hash_map::IntoIter>; fn into_iter(self) -> Self::IntoIter { self.entries.into_iter() } } impl Definition { fn search_scope(&self, db: &RootDatabase) -> SearchScope { let _p = profile::span("search_scope"); if let Definition::BuiltinType(_) = self { return SearchScope::crate_graph(db); } // def is crate root // FIXME: We don't do searches for crates currently, as a crate does not actually have a single name if let &Definition::Module(module) = self { if module.is_crate_root() { return SearchScope::reverse_dependencies(db, module.krate()); } } let module = match self.module(db) { Some(it) => it, None => return SearchScope::empty(), }; let InFile { file_id, value: module_source } = module.definition_source(db); let file_id = file_id.original_file(db); if let Definition::Local(var) = self { let def = match var.parent(db) { DefWithBody::Function(f) => f.source(db).map(|src| src.syntax().cloned()), DefWithBody::Const(c) => c.source(db).map(|src| src.syntax().cloned()), DefWithBody::Static(s) => s.source(db).map(|src| src.syntax().cloned()), DefWithBody::Variant(v) => v.source(db).map(|src| src.syntax().cloned()), // FIXME: implement DefWithBody::InTypeConst(_) => return SearchScope::empty(), }; return match def { Some(def) => SearchScope::file_range(def.as_ref().original_file_range_full(db)), None => SearchScope::single_file(file_id), }; } if let Definition::SelfType(impl_) = self { return match impl_.source(db).map(|src| src.syntax().cloned()) { Some(def) => SearchScope::file_range(def.as_ref().original_file_range_full(db)), None => SearchScope::single_file(file_id), }; } if let Definition::GenericParam(hir::GenericParam::LifetimeParam(param)) = self { let def = match param.parent(db) { hir::GenericDef::Function(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Adt(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Trait(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::TraitAlias(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::TypeAlias(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Impl(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Variant(it) => it.source(db).map(|src| src.syntax().cloned()), hir::GenericDef::Const(it) => it.source(db).map(|src| src.syntax().cloned()), }; return match def { Some(def) => SearchScope::file_range(def.as_ref().original_file_range_full(db)), None => SearchScope::single_file(file_id), }; } if let Definition::Macro(macro_def) = self { return match macro_def.kind(db) { hir::MacroKind::Declarative => { if macro_def.attrs(db).by_key("macro_export").exists() { SearchScope::reverse_dependencies(db, module.krate()) } else { SearchScope::krate(db, module.krate()) } } hir::MacroKind::BuiltIn => SearchScope::crate_graph(db), hir::MacroKind::Derive | hir::MacroKind::Attr | hir::MacroKind::ProcMacro => { SearchScope::reverse_dependencies(db, module.krate()) } }; } if let Definition::DeriveHelper(_) = self { return SearchScope::reverse_dependencies(db, module.krate()); } let vis = self.visibility(db); if let Some(Visibility::Public) = vis { return SearchScope::reverse_dependencies(db, module.krate()); } if let Some(Visibility::Module(module)) = vis { return SearchScope::module_and_children(db, module.into()); } let range = match module_source { ModuleSource::Module(m) => Some(m.syntax().text_range()), ModuleSource::BlockExpr(b) => Some(b.syntax().text_range()), ModuleSource::SourceFile(_) => None, }; match range { Some(range) => SearchScope::file_range(FileRange { file_id, range }), None => SearchScope::single_file(file_id), } } pub fn usages<'a>(self, sema: &'a Semantics<'_, RootDatabase>) -> FindUsages<'a> { FindUsages { def: self, assoc_item_container: self.as_assoc_item(sema.db).map(|a| a.container(sema.db)), sema, scope: None, include_self_kw_refs: None, search_self_mod: false, } } } #[derive(Clone)] pub struct FindUsages<'a> { def: Definition, sema: &'a Semantics<'a, RootDatabase>, scope: Option, /// The container of our definition should it be an assoc item assoc_item_container: Option, /// whether to search for the `Self` type of the definition include_self_kw_refs: Option, /// whether to search for the `self` module search_self_mod: bool, } impl FindUsages<'_> { /// Enable searching for `Self` when the definition is a type or `self` for modules. pub fn include_self_refs(mut self) -> Self { self.include_self_kw_refs = def_to_ty(self.sema, &self.def); self.search_self_mod = true; self } /// Limit the search to a given [`SearchScope`]. pub fn in_scope(self, scope: SearchScope) -> Self { self.set_scope(Some(scope)) } /// Limit the search to a given [`SearchScope`]. pub fn set_scope(mut self, scope: Option) -> Self { assert!(self.scope.is_none()); self.scope = scope; self } pub fn at_least_one(&self) -> bool { let mut found = false; self.search(&mut |_, _| { found = true; true }); found } pub fn all(self) -> UsageSearchResult { let mut res = UsageSearchResult::default(); self.search(&mut |file_id, reference| { res.references.entry(file_id).or_default().push(reference); false }); res } fn search(&self, sink: &mut dyn FnMut(FileId, FileReference) -> bool) { let _p = profile::span("FindUsages:search"); let sema = self.sema; let search_scope = { // FIXME: Is the trait scope needed for trait impl assoc items? let base = as_trait_assoc_def(sema.db, self.def).unwrap_or(self.def).search_scope(sema.db); match &self.scope { None => base, Some(scope) => base.intersection(scope), } }; let name = match self.def { // special case crate modules as these do not have a proper name Definition::Module(module) if module.is_crate_root() => { // FIXME: This assumes the crate name is always equal to its display name when it really isn't module .krate() .display_name(self.sema.db) .map(|crate_name| crate_name.crate_name().as_smol_str().clone()) } _ => { let self_kw_refs = || { self.include_self_kw_refs.as_ref().and_then(|ty| { ty.as_adt() .map(|adt| adt.name(self.sema.db)) .or_else(|| ty.as_builtin().map(|builtin| builtin.name())) }) }; // We need to unescape the name in case it is written without "r#" in earlier // editions of Rust where it isn't a keyword. self.def.name(sema.db).or_else(self_kw_refs).map(|it| it.unescaped().to_smol_str()) } }; let name = match &name { Some(s) => s.as_str(), None => return, }; let finder = &Finder::new(name); let include_self_kw_refs = self.include_self_kw_refs.as_ref().map(|ty| (ty, Finder::new("Self"))); // for<'a> |text: &'a str, name: &'a str, search_range: TextRange| -> impl Iterator + 'a { ... } fn match_indices<'a>( text: &'a str, finder: &'a Finder<'a>, search_range: TextRange, ) -> impl Iterator + 'a { finder.find_iter(text.as_bytes()).filter_map(move |idx| { let offset: TextSize = idx.try_into().unwrap(); if !search_range.contains_inclusive(offset) { return None; } Some(offset) }) } // for<'a> |scope: &'a SearchScope| -> impl Iterator, FileId, TextRange)> + 'a { ... } fn scope_files<'a>( sema: &'a Semantics<'_, RootDatabase>, scope: &'a SearchScope, ) -> impl Iterator, FileId, TextRange)> + 'a { scope.entries.iter().map(|(&file_id, &search_range)| { let text = sema.db.file_text(file_id); let search_range = search_range.unwrap_or_else(|| TextRange::up_to(TextSize::of(&*text))); (text, file_id, search_range) }) } let find_nodes = move |name: &str, node: &syntax::SyntaxNode, offset: TextSize| { node.token_at_offset(offset) .find(|it| { // `name` is stripped of raw ident prefix. See the comment on name retrieval above. it.text().trim_start_matches("r#") == name }) .into_iter() .flat_map(|token| { // FIXME: There should be optimization potential here // Currently we try to descend everything we find which // means we call `Semantics::descend_into_macros` on // every textual hit. That function is notoriously // expensive even for things that do not get down mapped // into macros. sema.descend_into_macros(token).into_iter().filter_map(|it| it.parent()) }) }; for (text, file_id, search_range) in scope_files(sema, &search_scope) { let tree = Lazy::new(move || sema.parse(file_id).syntax().clone()); // Search for occurrences of the items name for offset in match_indices(&text, finder, search_range) { for name in find_nodes(name, &tree, offset).filter_map(ast::NameLike::cast) { if match name { ast::NameLike::NameRef(name_ref) => self.found_name_ref(&name_ref, sink), ast::NameLike::Name(name) => self.found_name(&name, sink), ast::NameLike::Lifetime(lifetime) => self.found_lifetime(&lifetime, sink), } { return; } } } // Search for occurrences of the `Self` referring to our type if let Some((self_ty, finder)) = &include_self_kw_refs { for offset in match_indices(&text, finder, search_range) { for name_ref in find_nodes("Self", &tree, offset).filter_map(ast::NameRef::cast) { if self.found_self_ty_name_ref(self_ty, &name_ref, sink) { return; } } } } } // Search for `super` and `crate` resolving to our module if let Definition::Module(module) = self.def { let scope = search_scope.intersection(&SearchScope::module_and_children(self.sema.db, module)); let is_crate_root = module.is_crate_root().then(|| Finder::new("crate")); let finder = &Finder::new("super"); for (text, file_id, search_range) in scope_files(sema, &scope) { let tree = Lazy::new(move || sema.parse(file_id).syntax().clone()); for offset in match_indices(&text, finder, search_range) { for name_ref in find_nodes("super", &tree, offset).filter_map(ast::NameRef::cast) { if self.found_name_ref(&name_ref, sink) { return; } } } if let Some(finder) = &is_crate_root { for offset in match_indices(&text, finder, search_range) { for name_ref in find_nodes("crate", &tree, offset).filter_map(ast::NameRef::cast) { if self.found_name_ref(&name_ref, sink) { return; } } } } } } // search for module `self` references in our module's definition source match self.def { Definition::Module(module) if self.search_self_mod => { let src = module.definition_source(sema.db); let file_id = src.file_id.original_file(sema.db); let (file_id, search_range) = match src.value { ModuleSource::Module(m) => (file_id, Some(m.syntax().text_range())), ModuleSource::BlockExpr(b) => (file_id, Some(b.syntax().text_range())), ModuleSource::SourceFile(_) => (file_id, None), }; let search_range = if let Some(&range) = search_scope.entries.get(&file_id) { match (range, search_range) { (None, range) | (range, None) => range, (Some(range), Some(search_range)) => match range.intersect(search_range) { Some(range) => Some(range), None => return, }, } } else { return; }; let text = sema.db.file_text(file_id); let search_range = search_range.unwrap_or_else(|| TextRange::up_to(TextSize::of(&*text))); let tree = Lazy::new(|| sema.parse(file_id).syntax().clone()); let finder = &Finder::new("self"); for offset in match_indices(&text, finder, search_range) { for name_ref in find_nodes("self", &tree, offset).filter_map(ast::NameRef::cast) { if self.found_self_module_name_ref(&name_ref, sink) { return; } } } } _ => {} } } fn found_self_ty_name_ref( &self, self_ty: &hir::Type, name_ref: &ast::NameRef, sink: &mut dyn FnMut(FileId, FileReference) -> bool, ) -> bool { match NameRefClass::classify(self.sema, name_ref) { Some(NameRefClass::Definition(Definition::SelfType(impl_))) if impl_.self_ty(self.sema.db) == *self_ty => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: ast::NameLike::NameRef(name_ref.clone()), category: None, }; sink(file_id, reference) } _ => false, } } fn found_self_module_name_ref( &self, name_ref: &ast::NameRef, sink: &mut dyn FnMut(FileId, FileReference) -> bool, ) -> bool { match NameRefClass::classify(self.sema, name_ref) { Some(NameRefClass::Definition(def @ Definition::Module(_))) if def == self.def => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: ast::NameLike::NameRef(name_ref.clone()), category: is_name_ref_in_import(name_ref).then_some(ReferenceCategory::Import), }; sink(file_id, reference) } _ => false, } } fn found_lifetime( &self, lifetime: &ast::Lifetime, sink: &mut dyn FnMut(FileId, FileReference) -> bool, ) -> bool { match NameRefClass::classify_lifetime(self.sema, lifetime) { Some(NameRefClass::Definition(def)) if def == self.def => { let FileRange { file_id, range } = self.sema.original_range(lifetime.syntax()); let reference = FileReference { range, name: ast::NameLike::Lifetime(lifetime.clone()), category: None, }; sink(file_id, reference) } _ => false, } } fn found_name_ref( &self, name_ref: &ast::NameRef, sink: &mut dyn FnMut(FileId, FileReference) -> bool, ) -> bool { match NameRefClass::classify(self.sema, name_ref) { Some(NameRefClass::Definition(def)) if self.def == def // is our def a trait assoc item? then we want to find all assoc items from trait impls of our trait || matches!(self.assoc_item_container, Some(hir::AssocItemContainer::Trait(_))) && convert_to_def_in_trait(self.sema.db, def) == self.def => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: ast::NameLike::NameRef(name_ref.clone()), category: ReferenceCategory::new(&def, name_ref), }; sink(file_id, reference) } // FIXME: special case type aliases, we can't filter between impl and trait defs here as we lack the substitutions // so we always resolve all assoc type aliases to both their trait def and impl defs Some(NameRefClass::Definition(def)) if self.assoc_item_container.is_some() && matches!(self.def, Definition::TypeAlias(_)) && convert_to_def_in_trait(self.sema.db, def) == convert_to_def_in_trait(self.sema.db, self.def) => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: ast::NameLike::NameRef(name_ref.clone()), category: ReferenceCategory::new(&def, name_ref), }; sink(file_id, reference) } Some(NameRefClass::Definition(def)) if self.include_self_kw_refs.is_some() => { if self.include_self_kw_refs == def_to_ty(self.sema, &def) { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let reference = FileReference { range, name: ast::NameLike::NameRef(name_ref.clone()), category: ReferenceCategory::new(&def, name_ref), }; sink(file_id, reference) } else { false } } Some(NameRefClass::FieldShorthand { local_ref: local, field_ref: field }) => { let FileRange { file_id, range } = self.sema.original_range(name_ref.syntax()); let field = Definition::Field(field); let local = Definition::Local(local); let access = match self.def { Definition::Field(_) if field == self.def => { ReferenceCategory::new(&field, name_ref) } Definition::Local(_) if local == self.def => { ReferenceCategory::new(&local, name_ref) } _ => return false, }; let reference = FileReference { range, name: ast::NameLike::NameRef(name_ref.clone()), category: access, }; sink(file_id, reference) } _ => false, } } fn found_name( &self, name: &ast::Name, sink: &mut dyn FnMut(FileId, FileReference) -> bool, ) -> bool { match NameClass::classify(self.sema, name) { Some(NameClass::PatFieldShorthand { local_def: _, field_ref }) if matches!( self.def, Definition::Field(_) if Definition::Field(field_ref) == self.def ) => { let FileRange { file_id, range } = self.sema.original_range(name.syntax()); let reference = FileReference { range, name: ast::NameLike::Name(name.clone()), // FIXME: mutable patterns should have `Write` access category: Some(ReferenceCategory::Read), }; sink(file_id, reference) } Some(NameClass::ConstReference(def)) if self.def == def => { let FileRange { file_id, range } = self.sema.original_range(name.syntax()); let reference = FileReference { range, name: ast::NameLike::Name(name.clone()), category: None, }; sink(file_id, reference) } Some(NameClass::Definition(def)) if def != self.def => { match (&self.assoc_item_container, self.def) { // for type aliases we always want to reference the trait def and all the trait impl counterparts // FIXME: only until we can resolve them correctly, see FIXME above (Some(_), Definition::TypeAlias(_)) if convert_to_def_in_trait(self.sema.db, def) != convert_to_def_in_trait(self.sema.db, self.def) => { return false } (Some(_), Definition::TypeAlias(_)) => {} // We looking at an assoc item of a trait definition, so reference all the // corresponding assoc items belonging to this trait's trait implementations (Some(hir::AssocItemContainer::Trait(_)), _) if convert_to_def_in_trait(self.sema.db, def) == self.def => {} _ => return false, } let FileRange { file_id, range } = self.sema.original_range(name.syntax()); let reference = FileReference { range, name: ast::NameLike::Name(name.clone()), category: None, }; sink(file_id, reference) } _ => false, } } } fn def_to_ty(sema: &Semantics<'_, RootDatabase>, def: &Definition) -> Option { match def { Definition::Adt(adt) => Some(adt.ty(sema.db)), Definition::TypeAlias(it) => Some(it.ty(sema.db)), Definition::BuiltinType(it) => Some(it.ty(sema.db)), Definition::SelfType(it) => Some(it.self_ty(sema.db)), _ => None, } } impl ReferenceCategory { fn new(def: &Definition, r: &ast::NameRef) -> Option { // Only Locals and Fields have accesses for now. if !matches!(def, Definition::Local(_) | Definition::Field(_)) { return is_name_ref_in_import(r).then_some(ReferenceCategory::Import); } let mode = r.syntax().ancestors().find_map(|node| { match_ast! { match node { ast::BinExpr(expr) => { if matches!(expr.op_kind()?, ast::BinaryOp::Assignment { .. }) { // If the variable or field ends on the LHS's end then it's a Write (covers fields and locals). // FIXME: This is not terribly accurate. if let Some(lhs) = expr.lhs() { if lhs.syntax().text_range().end() == r.syntax().text_range().end() { return Some(ReferenceCategory::Write); } } } Some(ReferenceCategory::Read) }, _ => None } } }); // Default Locals and Fields to read mode.or(Some(ReferenceCategory::Read)) } } fn is_name_ref_in_import(name_ref: &ast::NameRef) -> bool { name_ref .syntax() .parent() .and_then(ast::PathSegment::cast) .and_then(|it| it.parent_path().top_path().syntax().parent()) .map_or(false, |it| it.kind() == SyntaxKind::USE_TREE) }