//! Patterns telling us certain facts about current syntax element, they are used in completion context use syntax::{ algo::non_trivia_sibling, ast::{self, LoopBodyOwner}, match_ast, AstNode, Direction, NodeOrToken, SyntaxElement, SyntaxKind::{self, *}, SyntaxNode, SyntaxToken, T, }; #[cfg(test)] use crate::test_utils::{check_pattern_is_applicable, check_pattern_is_not_applicable}; pub(crate) fn has_trait_parent(element: SyntaxElement) -> bool { not_same_range_ancestor(element) .filter(|it| it.kind() == ASSOC_ITEM_LIST) .and_then(|it| it.parent()) .filter(|it| it.kind() == TRAIT) .is_some() } #[test] fn test_has_trait_parent() { check_pattern_is_applicable(r"trait A { f$0 }", has_trait_parent); } pub(crate) fn has_impl_parent(element: SyntaxElement) -> bool { not_same_range_ancestor(element) .filter(|it| it.kind() == ASSOC_ITEM_LIST) .and_then(|it| it.parent()) .filter(|it| it.kind() == IMPL) .is_some() } #[test] fn test_has_impl_parent() { check_pattern_is_applicable(r"impl A { f$0 }", has_impl_parent); } pub(crate) fn inside_impl_trait_block(element: SyntaxElement) -> bool { // Here we search `impl` keyword up through the all ancestors, unlike in `has_impl_parent`, // where we only check the first parent with different text range. element .ancestors() .find(|it| it.kind() == IMPL) .map(|it| ast::Impl::cast(it).unwrap()) .map(|it| it.trait_().is_some()) .unwrap_or(false) } #[test] fn test_inside_impl_trait_block() { check_pattern_is_applicable(r"impl Foo for Bar { f$0 }", inside_impl_trait_block); check_pattern_is_applicable(r"impl Foo for Bar { fn f$0 }", inside_impl_trait_block); check_pattern_is_not_applicable(r"impl A { f$0 }", inside_impl_trait_block); check_pattern_is_not_applicable(r"impl A { fn f$0 }", inside_impl_trait_block); } pub(crate) fn has_field_list_parent(element: SyntaxElement) -> bool { not_same_range_ancestor(element).filter(|it| it.kind() == RECORD_FIELD_LIST).is_some() } #[test] fn test_has_field_list_parent() { check_pattern_is_applicable(r"struct Foo { f$0 }", has_field_list_parent); check_pattern_is_applicable(r"struct Foo { f$0 pub f: i32}", has_field_list_parent); } pub(crate) fn has_block_expr_parent(element: SyntaxElement) -> bool { not_same_range_ancestor(element).filter(|it| it.kind() == BLOCK_EXPR).is_some() } #[test] fn test_has_block_expr_parent() { check_pattern_is_applicable(r"fn my_fn() { let a = 2; f$0 }", has_block_expr_parent); } pub(crate) fn has_bind_pat_parent(element: SyntaxElement) -> bool { element.ancestors().any(|it| it.kind() == IDENT_PAT) } #[test] fn test_has_bind_pat_parent() { check_pattern_is_applicable(r"fn my_fn(m$0) {}", has_bind_pat_parent); check_pattern_is_applicable(r"fn my_fn() { let m$0 }", has_bind_pat_parent); } pub(crate) fn has_ref_parent(element: SyntaxElement) -> bool { not_same_range_ancestor(element) .filter(|it| it.kind() == REF_PAT || it.kind() == REF_EXPR) .is_some() } #[test] fn test_has_ref_parent() { check_pattern_is_applicable(r"fn my_fn(&m$0) {}", has_ref_parent); check_pattern_is_applicable(r"fn my() { let &m$0 }", has_ref_parent); } pub(crate) fn has_item_list_or_source_file_parent(element: SyntaxElement) -> bool { let it = element .ancestors() .take_while(|it| it.text_range() == element.text_range()) .last() .map(|it| (it.kind(), it.parent())); match it { Some((_, Some(it))) => it.kind() == SOURCE_FILE || it.kind() == ITEM_LIST, Some((MACRO_ITEMS, None) | (SOURCE_FILE, None)) => true, _ => false, } } #[test] fn test_has_item_list_or_source_file_parent() { check_pattern_is_applicable(r"i$0", has_item_list_or_source_file_parent); check_pattern_is_applicable(r"mod foo { f$0 }", has_item_list_or_source_file_parent); } pub(crate) fn is_match_arm(element: SyntaxElement) -> bool { not_same_range_ancestor(element.clone()).filter(|it| it.kind() == MATCH_ARM).is_some() && previous_sibling_or_ancestor_sibling(element) .and_then(|it| it.into_token()) .filter(|it| it.kind() == FAT_ARROW) .is_some() } #[test] fn test_is_match_arm() { check_pattern_is_applicable(r"fn my_fn() { match () { () => m$0 } }", is_match_arm); } pub(crate) fn previous_token(element: SyntaxElement) -> Option { element.into_token().and_then(|it| previous_non_trivia_token(it)) } /// Check if the token previous to the previous one is `for`. /// For example, `for _ i$0` => true. pub(crate) fn for_is_prev2(element: SyntaxElement) -> bool { element .into_token() .and_then(|it| previous_non_trivia_token(it)) .and_then(|it| previous_non_trivia_token(it)) .filter(|it| it.kind() == T![for]) .is_some() } #[test] fn test_for_is_prev2() { check_pattern_is_applicable(r"for i i$0", for_is_prev2); } pub(crate) fn has_prev_sibling(element: SyntaxElement, kind: SyntaxKind) -> bool { previous_sibling_or_ancestor_sibling(element).filter(|it| it.kind() == kind).is_some() } #[test] fn test_has_impl_as_prev_sibling() { check_pattern_is_applicable(r"impl A w$0 {}", |it| has_prev_sibling(it, IMPL)); } pub(crate) fn is_in_loop_body(element: SyntaxElement) -> bool { element .ancestors() .take_while(|it| it.kind() != FN && it.kind() != CLOSURE_EXPR) .find_map(|it| { let loop_body = match_ast! { match it { ast::ForExpr(it) => it.loop_body(), ast::WhileExpr(it) => it.loop_body(), ast::LoopExpr(it) => it.loop_body(), _ => None, } }; loop_body.filter(|it| it.syntax().text_range().contains_range(element.text_range())) }) .is_some() } fn not_same_range_ancestor(element: SyntaxElement) -> Option { element .ancestors() .take_while(|it| it.text_range() == element.text_range()) .last() .and_then(|it| it.parent()) } fn previous_non_trivia_token(token: SyntaxToken) -> Option { let mut token = token.prev_token(); while let Some(inner) = token.clone() { if !inner.kind().is_trivia() { return Some(inner); } else { token = inner.prev_token(); } } None } fn previous_sibling_or_ancestor_sibling(element: SyntaxElement) -> Option { let token_sibling = non_trivia_sibling(element.clone(), Direction::Prev); if let Some(sibling) = token_sibling { Some(sibling) } else { // if not trying to find first ancestor which has such a sibling let range = element.text_range(); let top_node = element.ancestors().take_while(|it| it.text_range() == range).last()?; let prev_sibling_node = top_node.ancestors().find(|it| { non_trivia_sibling(NodeOrToken::Node(it.to_owned()), Direction::Prev).is_some() })?; non_trivia_sibling(NodeOrToken::Node(prev_sibling_node), Direction::Prev) } }