//! This module handles fuzzy-searching of functions, structs and other symbols //! by name across the whole workspace and dependencies. //! //! It works by building an incrementally-updated text-search index of all //! symbols. The backbone of the index is the **awesome** `fst` crate by //! @BurntSushi. //! //! In a nutshell, you give a set of strings to `fst`, and it builds a //! finite state machine describing this set of strings. The strings which //! could fuzzy-match a pattern can also be described by a finite state machine. //! What is freaking cool is that you can now traverse both state machines in //! lock-step to enumerate the strings which are both in the input set and //! fuzz-match the query. Or, more formally, given two languages described by //! FSTs, one can build a product FST which describes the intersection of the //! languages. //! //! `fst` does not support cheap updating of the index, but it supports unioning //! of state machines. So, to account for changing source code, we build an FST //! for each library (which is assumed to never change) and an FST for each Rust //! file in the current workspace, and run a query against the union of all //! those FSTs. use std::{ cmp::Ordering, fmt, hash::{Hash, Hasher}, mem, sync::Arc, }; use base_db::{ salsa::{self, ParallelDatabase}, CrateId, FileRange, SourceDatabaseExt, SourceRootId, Upcast, }; use either::Either; use fst::{self, Streamer}; use hir::{ db::{DefDatabase, HirDatabase}, AdtId, AssocContainerId, AssocItemId, AssocItemLoc, DefHasSource, DefWithBodyId, HasSource, HirFileId, ImplId, InFile, ItemLoc, ItemTreeNode, Lookup, MacroDef, ModuleDefId, ModuleId, Semantics, TraitId, }; use rayon::prelude::*; use rustc_hash::FxHashSet; use syntax::{ast::HasName, AstNode, SmolStr, SyntaxNode, SyntaxNodePtr}; use crate::RootDatabase; #[derive(Debug)] pub struct Query { query: String, lowercased: String, only_types: bool, libs: bool, exact: bool, case_sensitive: bool, limit: usize, } impl Query { pub fn new(query: String) -> Query { let lowercased = query.to_lowercase(); Query { query, lowercased, only_types: false, libs: false, exact: false, case_sensitive: false, limit: usize::max_value(), } } pub fn only_types(&mut self) { self.only_types = true; } pub fn libs(&mut self) { self.libs = true; } pub fn exact(&mut self) { self.exact = true; } pub fn case_sensitive(&mut self) { self.case_sensitive = true; } pub fn limit(&mut self, limit: usize) { self.limit = limit } } #[salsa::query_group(SymbolsDatabaseStorage)] pub trait SymbolsDatabase: HirDatabase + SourceDatabaseExt + Upcast { /// The symbol index for a given module. These modules should only be in source roots that /// are inside local_roots. fn module_symbols(&self, module_id: ModuleId) -> Arc; /// The symbol index for a given source root within library_roots. fn library_symbols(&self, source_root_id: SourceRootId) -> Arc; /// The set of "local" (that is, from the current workspace) roots. /// Files in local roots are assumed to change frequently. #[salsa::input] fn local_roots(&self) -> Arc>; /// The set of roots for crates.io libraries. /// Files in libraries are assumed to never change. #[salsa::input] fn library_roots(&self) -> Arc>; } fn library_symbols(db: &dyn SymbolsDatabase, source_root_id: SourceRootId) -> Arc { let _p = profile::span("library_symbols"); // todo: this could be parallelized, once I figure out how to do that... let symbols = db .source_root_crates(source_root_id) .iter() .flat_map(|&krate| module_ids_for_crate(db.upcast(), krate)) // we specifically avoid calling SymbolsDatabase::module_symbols here, even they do the same thing, // as the index for a library is not going to really ever change, and we do not want to store each // module's index in salsa. .map(|module_id| SymbolCollector::collect(db, module_id)) .flatten() .collect(); Arc::new(SymbolIndex::new(symbols)) } fn module_symbols(db: &dyn SymbolsDatabase, module_id: ModuleId) -> Arc { let _p = profile::span("module_symbols"); let symbols = SymbolCollector::collect(db, module_id); Arc::new(SymbolIndex::new(symbols)) } /// Need to wrap Snapshot to provide `Clone` impl for `map_with` struct Snap(DB); impl Snap> { fn new(db: &DB) -> Self { Self(db.snapshot()) } } impl Clone for Snap> { fn clone(&self) -> Snap> { Snap(self.0.snapshot()) } } impl std::ops::Deref for Snap { type Target = DB; fn deref(&self) -> &Self::Target { &self.0 } } // Feature: Workspace Symbol // // Uses fuzzy-search to find types, modules and functions by name across your // project and dependencies. This is **the** most useful feature, which improves code // navigation tremendously. It mostly works on top of the built-in LSP // functionality, however `#` and `*` symbols can be used to narrow down the // search. Specifically, // // - `Foo` searches for `Foo` type in the current workspace // - `foo#` searches for `foo` function in the current workspace // - `Foo*` searches for `Foo` type among dependencies, including `stdlib` // - `foo#*` searches for `foo` function among dependencies // // That is, `#` switches from "types" to all symbols, `*` switches from the current // workspace to dependencies. // // Note that filtering does not currently work in VSCode due to the editor never // sending the special symbols to the language server. Instead, you can configure // the filtering via the `rust-analyzer.workspace.symbol.search.scope` and // `rust-analyzer.workspace.symbol.search.kind` settings. // // |=== // | Editor | Shortcut // // | VS Code | kbd:[Ctrl+T] // |=== pub fn world_symbols(db: &RootDatabase, query: Query) -> Vec { let _p = profile::span("world_symbols").detail(|| query.query.clone()); let indices = if query.libs { db.library_roots() .par_iter() .map_with(Snap::new(db), |snap, &root| snap.library_symbols(root)) .collect() } else { let mut module_ids = Vec::new(); for &root in db.local_roots().iter() { let crates = db.source_root_crates(root); for &krate in crates.iter() { module_ids.extend(module_ids_for_crate(db, krate)); } } module_ids .par_iter() .map_with(Snap::new(db), |snap, &module_id| snap.module_symbols(module_id)) .collect() }; query.search(indices) } pub fn crate_symbols(db: &RootDatabase, krate: CrateId, query: Query) -> Vec { let _p = profile::span("crate_symbols").detail(|| format!("{:?}", query)); let module_ids = module_ids_for_crate(db, krate); let indices: Vec<_> = module_ids .par_iter() .map_with(Snap::new(db), |snap, &module_id| snap.module_symbols(module_id)) .collect(); query.search(indices) } fn module_ids_for_crate(db: &dyn DefDatabase, krate: CrateId) -> Vec { let def_map = db.crate_def_map(krate); def_map.modules().map(|(id, _)| def_map.module_id(id)).collect() } pub fn index_resolve(db: &RootDatabase, name: &str) -> Vec { let mut query = Query::new(name.to_string()); query.exact(); query.limit(4); world_symbols(db, query) } #[derive(Default)] pub struct SymbolIndex { symbols: Vec, map: fst::Map>, } impl fmt::Debug for SymbolIndex { fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { f.debug_struct("SymbolIndex").field("n_symbols", &self.symbols.len()).finish() } } impl PartialEq for SymbolIndex { fn eq(&self, other: &SymbolIndex) -> bool { self.symbols == other.symbols } } impl Eq for SymbolIndex {} impl Hash for SymbolIndex { fn hash(&self, hasher: &mut H) { self.symbols.hash(hasher) } } impl SymbolIndex { fn new(mut symbols: Vec) -> SymbolIndex { fn cmp(lhs: &FileSymbol, rhs: &FileSymbol) -> Ordering { let lhs_chars = lhs.name.chars().map(|c| c.to_ascii_lowercase()); let rhs_chars = rhs.name.chars().map(|c| c.to_ascii_lowercase()); lhs_chars.cmp(rhs_chars) } symbols.par_sort_by(cmp); let mut builder = fst::MapBuilder::memory(); let mut last_batch_start = 0; for idx in 0..symbols.len() { if let Some(next_symbol) = symbols.get(idx + 1) { if cmp(&symbols[last_batch_start], next_symbol) == Ordering::Equal { continue; } } let start = last_batch_start; let end = idx + 1; last_batch_start = end; let key = symbols[start].name.as_str().to_ascii_lowercase(); let value = SymbolIndex::range_to_map_value(start, end); builder.insert(key, value).unwrap(); } let map = fst::Map::new(builder.into_inner().unwrap()).unwrap(); SymbolIndex { symbols, map } } pub fn len(&self) -> usize { self.symbols.len() } pub fn memory_size(&self) -> usize { self.map.as_fst().size() + self.symbols.len() * mem::size_of::() } fn range_to_map_value(start: usize, end: usize) -> u64 { debug_assert![start <= (std::u32::MAX as usize)]; debug_assert![end <= (std::u32::MAX as usize)]; ((start as u64) << 32) | end as u64 } fn map_value_to_range(value: u64) -> (usize, usize) { let end = value as u32 as usize; let start = (value >> 32) as usize; (start, end) } } impl Query { pub(crate) fn search(self, indices: Vec>) -> Vec { let _p = profile::span("symbol_index::Query::search"); let mut op = fst::map::OpBuilder::new(); for file_symbols in &indices { let automaton = fst::automaton::Subsequence::new(&self.lowercased); op = op.add(file_symbols.map.search(automaton)) } let mut stream = op.union(); let mut res = Vec::new(); while let Some((_, indexed_values)) = stream.next() { for indexed_value in indexed_values { let symbol_index = &indices[indexed_value.index]; let (start, end) = SymbolIndex::map_value_to_range(indexed_value.value); for symbol in &symbol_index.symbols[start..end] { if self.only_types && !symbol.kind.is_type() { continue; } if self.exact { if symbol.name != self.query { continue; } } else if self.case_sensitive { if self.query.chars().any(|c| !symbol.name.contains(c)) { continue; } } res.push(symbol.clone()); if res.len() >= self.limit { return res; } } } } res } } /// The actual data that is stored in the index. It should be as compact as /// possible. #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub struct FileSymbol { pub name: SmolStr, pub loc: DeclarationLocation, pub kind: FileSymbolKind, pub container_name: Option, } #[derive(Debug, Clone, PartialEq, Eq, Hash)] pub struct DeclarationLocation { /// The file id for both the `ptr` and `name_ptr`. pub hir_file_id: HirFileId, /// This points to the whole syntax node of the declaration. pub ptr: SyntaxNodePtr, /// This points to the [`syntax::ast::Name`] identifier of the declaration. pub name_ptr: SyntaxNodePtr, } impl DeclarationLocation { pub fn syntax(&self, semantics: &Semantics<'_, RootDatabase>) -> Option { let root = semantics.parse_or_expand(self.hir_file_id)?; Some(self.ptr.to_node(&root)) } pub fn original_range(&self, semantics: &Semantics<'_, RootDatabase>) -> Option { find_original_file_range(semantics, self.hir_file_id, &self.ptr) } pub fn original_name_range( &self, semantics: &Semantics<'_, RootDatabase>, ) -> Option { find_original_file_range(semantics, self.hir_file_id, &self.name_ptr) } } fn find_original_file_range( semantics: &Semantics<'_, RootDatabase>, file_id: HirFileId, ptr: &SyntaxNodePtr, ) -> Option { let root = semantics.parse_or_expand(file_id)?; let node = ptr.to_node(&root); let node = InFile::new(file_id, &node); Some(node.original_file_range(semantics.db.upcast())) } #[derive(PartialEq, Eq, Hash, Clone, Copy, Debug)] pub enum FileSymbolKind { Const, Enum, Function, Macro, Module, Static, Struct, Trait, TypeAlias, Union, } impl FileSymbolKind { fn is_type(self: FileSymbolKind) -> bool { matches!( self, FileSymbolKind::Struct | FileSymbolKind::Enum | FileSymbolKind::Trait | FileSymbolKind::TypeAlias | FileSymbolKind::Union ) } } /// Represents an outstanding module that the symbol collector must collect symbols from. struct SymbolCollectorWork { module_id: ModuleId, parent: Option, } struct SymbolCollector<'a> { db: &'a dyn SymbolsDatabase, symbols: Vec, work: Vec, container_name_stack: Vec, } /// Given a [`ModuleId`] and a [`SymbolsDatabase`], use the DefMap for the module's crate to collect all symbols that should be /// indexed for the given module. impl<'a> SymbolCollector<'a> { fn collect(db: &dyn SymbolsDatabase, module_id: ModuleId) -> Vec { let mut symbol_collector = SymbolCollector { db, symbols: Default::default(), container_name_stack: Default::default(), // The initial work is the root module we're collecting, additional work will // be populated as we traverse the module's definitions. work: vec![SymbolCollectorWork { module_id, parent: None }], }; while let Some(work) = symbol_collector.work.pop() { symbol_collector.do_work(work); } symbol_collector.symbols } fn do_work(&mut self, work: SymbolCollectorWork) { self.db.unwind_if_cancelled(); let parent_name = work.parent.and_then(|id| self.def_with_body_id_name(id)); self.with_container_name(parent_name, |s| s.collect_from_module(work.module_id)); } fn collect_from_module(&mut self, module_id: ModuleId) { let def_map = module_id.def_map(self.db.upcast()); let module_data = &def_map[module_id.local_id]; let scope = &module_data.scope; for module_def_id in scope.declarations() { match module_def_id { ModuleDefId::ModuleId(id) => self.push_module(id), ModuleDefId::FunctionId(id) => { self.push_decl_assoc(id, FileSymbolKind::Function); self.collect_from_body(id); } ModuleDefId::AdtId(AdtId::StructId(id)) => { self.push_decl(id, FileSymbolKind::Struct) } ModuleDefId::AdtId(AdtId::EnumId(id)) => self.push_decl(id, FileSymbolKind::Enum), ModuleDefId::AdtId(AdtId::UnionId(id)) => self.push_decl(id, FileSymbolKind::Union), ModuleDefId::ConstId(id) => { self.push_decl_assoc(id, FileSymbolKind::Const); self.collect_from_body(id); } ModuleDefId::StaticId(id) => { self.push_decl(id, FileSymbolKind::Static); self.collect_from_body(id); } ModuleDefId::TraitId(id) => { self.push_decl(id, FileSymbolKind::Trait); self.collect_from_trait(id); } ModuleDefId::TypeAliasId(id) => { self.push_decl_assoc(id, FileSymbolKind::TypeAlias); } // Don't index these. ModuleDefId::BuiltinType(_) => {} ModuleDefId::EnumVariantId(_) => {} } } for impl_id in scope.impls() { self.collect_from_impl(impl_id); } for const_id in scope.unnamed_consts() { self.collect_from_body(const_id); } for macro_def_id in scope.macro_declarations() { self.push_decl_macro(macro_def_id.into()); } } fn collect_from_body(&mut self, body_id: impl Into) { let body_id = body_id.into(); let body = self.db.body(body_id); // Descend into the blocks and enqueue collection of all modules within. for (_, def_map) in body.blocks(self.db.upcast()) { for (id, _) in def_map.modules() { self.work.push(SymbolCollectorWork { module_id: def_map.module_id(id), parent: Some(body_id), }); } } } fn collect_from_impl(&mut self, impl_id: ImplId) { let impl_data = self.db.impl_data(impl_id); for &assoc_item_id in &impl_data.items { self.push_assoc_item(assoc_item_id) } } fn collect_from_trait(&mut self, trait_id: TraitId) { let trait_data = self.db.trait_data(trait_id); self.with_container_name(trait_data.name.as_text(), |s| { for &(_, assoc_item_id) in &trait_data.items { s.push_assoc_item(assoc_item_id); } }); } fn with_container_name(&mut self, container_name: Option, f: impl FnOnce(&mut Self)) { if let Some(container_name) = container_name { self.container_name_stack.push(container_name); f(self); self.container_name_stack.pop(); } else { f(self); } } fn current_container_name(&self) -> Option { self.container_name_stack.last().cloned() } fn def_with_body_id_name(&self, body_id: DefWithBodyId) -> Option { match body_id { DefWithBodyId::FunctionId(id) => Some( id.lookup(self.db.upcast()).source(self.db.upcast()).value.name()?.text().into(), ), DefWithBodyId::StaticId(id) => Some( id.lookup(self.db.upcast()).source(self.db.upcast()).value.name()?.text().into(), ), DefWithBodyId::ConstId(id) => Some( id.lookup(self.db.upcast()).source(self.db.upcast()).value.name()?.text().into(), ), } } fn push_assoc_item(&mut self, assoc_item_id: AssocItemId) { match assoc_item_id { AssocItemId::FunctionId(id) => self.push_decl_assoc(id, FileSymbolKind::Function), AssocItemId::ConstId(id) => self.push_decl_assoc(id, FileSymbolKind::Const), AssocItemId::TypeAliasId(id) => self.push_decl_assoc(id, FileSymbolKind::TypeAlias), } } fn push_decl_assoc(&mut self, id: L, kind: FileSymbolKind) where L: Lookup>, T: ItemTreeNode, ::Source: HasName, { fn container_name(db: &dyn DefDatabase, container: AssocContainerId) -> Option { match container { AssocContainerId::ModuleId(module_id) => { let def_map = module_id.def_map(db); let module_data = &def_map[module_id.local_id]; module_data .origin .declaration() .and_then(|s| s.to_node(db.upcast()).name().map(|n| n.text().into())) } AssocContainerId::TraitId(trait_id) => { let loc = trait_id.lookup(db); let source = loc.source(db); source.value.name().map(|n| n.text().into()) } AssocContainerId::ImplId(_) => None, } } self.push_file_symbol(|s| { let loc = id.lookup(s.db.upcast()); let source = loc.source(s.db.upcast()); let name_node = source.value.name()?; let container_name = container_name(s.db.upcast(), loc.container).or_else(|| s.current_container_name()); Some(FileSymbol { name: name_node.text().into(), kind, container_name, loc: DeclarationLocation { hir_file_id: source.file_id, ptr: SyntaxNodePtr::new(source.value.syntax()), name_ptr: SyntaxNodePtr::new(name_node.syntax()), }, }) }) } fn push_decl(&mut self, id: L, kind: FileSymbolKind) where L: Lookup>, T: ItemTreeNode, ::Source: HasName, { self.push_file_symbol(|s| { let loc = id.lookup(s.db.upcast()); let source = loc.source(s.db.upcast()); let name_node = source.value.name()?; Some(FileSymbol { name: name_node.text().into(), kind, container_name: s.current_container_name(), loc: DeclarationLocation { hir_file_id: source.file_id, ptr: SyntaxNodePtr::new(source.value.syntax()), name_ptr: SyntaxNodePtr::new(name_node.syntax()), }, }) }) } fn push_module(&mut self, module_id: ModuleId) { self.push_file_symbol(|s| { let def_map = module_id.def_map(s.db.upcast()); let module_data = &def_map[module_id.local_id]; let declaration = module_data.origin.declaration()?; let module = declaration.to_node(s.db.upcast()); let name_node = module.name()?; Some(FileSymbol { name: name_node.text().into(), kind: FileSymbolKind::Module, container_name: s.current_container_name(), loc: DeclarationLocation { hir_file_id: declaration.file_id, ptr: SyntaxNodePtr::new(module.syntax()), name_ptr: SyntaxNodePtr::new(name_node.syntax()), }, }) }) } fn push_decl_macro(&mut self, macro_def: MacroDef) { self.push_file_symbol(|s| { let name = macro_def.name(s.db.upcast())?.as_text()?; let source = macro_def.source(s.db.upcast())?; let (ptr, name_ptr) = match source.value { Either::Left(m) => { (SyntaxNodePtr::new(m.syntax()), SyntaxNodePtr::new(m.name()?.syntax())) } Either::Right(f) => { (SyntaxNodePtr::new(f.syntax()), SyntaxNodePtr::new(f.name()?.syntax())) } }; Some(FileSymbol { name, kind: FileSymbolKind::Macro, container_name: s.current_container_name(), loc: DeclarationLocation { hir_file_id: source.file_id, name_ptr, ptr }, }) }) } fn push_file_symbol(&mut self, f: impl FnOnce(&Self) -> Option) { if let Some(file_symbol) = f(self) { self.symbols.push(file_symbol); } } } #[cfg(test)] mod tests { use base_db::fixture::WithFixture; use expect_test::expect_file; use super::*; #[test] fn test_symbol_index_collection() { let (db, _) = RootDatabase::with_many_files( r#" //- /main.rs macro_rules! macro_rules_macro { () => {} }; macro Macro { } struct Struct; enum Enum { A, B } union Union {} impl Struct { fn impl_fn() {} } trait Trait { fn trait_fn(&self); } fn main() { struct StructInFn; } const CONST: u32 = 1; static STATIC: &'static str = "2"; type Alias = Struct; mod a_mod { struct StructInModA; } mod b_mod; //- /b_mod.rs struct StructInModB; "#, ); let symbols: Vec<_> = module_ids_for_crate(db.upcast(), db.test_crate()) .into_iter() .map(|module_id| { (module_id, SymbolCollector::collect(&db as &dyn SymbolsDatabase, module_id)) }) .collect(); expect_file!["./test_data/test_symbol_index_collection.txt"].assert_debug_eq(&symbols); } }