//! The core of the module-level name resolution algorithm. //! //! `DefCollector::collect` contains the fixed-point iteration loop which //! resolves imports and expands macros. use hir_expand::{ builtin_derive::find_builtin_derive, builtin_macro::find_builtin_macro, name::{self, AsName, Name}, HirFileId, MacroCallId, MacroCallKind, MacroDefId, MacroDefKind, MacroFileKind, }; use ra_cfg::CfgOptions; use ra_db::{CrateId, FileId}; use ra_syntax::ast; use rustc_hash::{FxHashMap, FxHashSet}; use test_utils::tested_by; use crate::{ attr::Attrs, db::DefDatabase, nameres::{ diagnostics::DefDiagnostic, mod_resolution::ModDir, path_resolution::ReachedFixedPoint, raw, BuiltinShadowMode, CrateDefMap, ModuleData, ModuleOrigin, Resolution, ResolveMode, }, path::{Path, PathKind}, per_ns::PerNs, AdtId, AstId, AstItemDef, ConstLoc, ContainerId, EnumId, EnumVariantId, FunctionLoc, ImplId, Intern, LocalImportId, LocalModuleId, LocationCtx, ModuleDefId, ModuleId, StaticLoc, StructId, TraitId, TypeAliasLoc, UnionId, }; pub(super) fn collect_defs(db: &impl DefDatabase, mut def_map: CrateDefMap) -> CrateDefMap { let crate_graph = db.crate_graph(); // populate external prelude for dep in crate_graph.dependencies(def_map.krate) { let dep_def_map = db.crate_def_map(dep.crate_id); log::debug!("crate dep {:?} -> {:?}", dep.name, dep.crate_id); def_map.extern_prelude.insert( dep.as_name(), ModuleId { krate: dep.crate_id, local_id: dep_def_map.root }.into(), ); // look for the prelude // If the dependency defines a prelude, we overwrite an already defined // prelude. This is necessary to import the "std" prelude if a crate // depends on both "core" and "std". let dep_def_map = db.crate_def_map(dep.crate_id); if dep_def_map.prelude.is_some() { def_map.prelude = dep_def_map.prelude; } } let cfg_options = crate_graph.cfg_options(def_map.krate); let mut collector = DefCollector { db, def_map, glob_imports: FxHashMap::default(), unresolved_imports: Vec::new(), unexpanded_macros: Vec::new(), unexpanded_attribute_macros: Vec::new(), mod_dirs: FxHashMap::default(), macro_stack_monitor: MacroStackMonitor::default(), poison_macros: FxHashSet::default(), cfg_options, }; collector.collect(); collector.finish() } #[derive(Default)] struct MacroStackMonitor { counts: FxHashMap, /// Mainly use for test validator: Option bool>>, } impl MacroStackMonitor { fn increase(&mut self, macro_def_id: MacroDefId) { *self.counts.entry(macro_def_id).or_default() += 1; } fn decrease(&mut self, macro_def_id: MacroDefId) { *self.counts.entry(macro_def_id).or_default() -= 1; } fn is_poison(&self, macro_def_id: MacroDefId) -> bool { let cur = *self.counts.get(¯o_def_id).unwrap_or(&0); if let Some(validator) = &self.validator { validator(cur) } else { cur > 100 } } } /// Walks the tree of module recursively struct DefCollector<'a, DB> { db: &'a DB, def_map: CrateDefMap, glob_imports: FxHashMap>, unresolved_imports: Vec<(LocalModuleId, LocalImportId, raw::ImportData)>, unexpanded_macros: Vec<(LocalModuleId, AstId, Path)>, unexpanded_attribute_macros: Vec<(LocalModuleId, AstId, Path)>, mod_dirs: FxHashMap, /// Some macro use `$tt:tt which mean we have to handle the macro perfectly /// To prevent stack overflow, we add a deep counter here for prevent that. macro_stack_monitor: MacroStackMonitor, /// Some macros are not well-behavior, which leads to infinite loop /// e.g. macro_rules! foo { ($ty:ty) => { foo!($ty); } } /// We mark it down and skip it in collector /// /// FIXME: /// Right now it only handle a poison macro in a single crate, /// such that if other crate try to call that macro, /// the whole process will do again until it became poisoned in that crate. /// We should handle this macro set globally /// However, do we want to put it as a global variable? poison_macros: FxHashSet, cfg_options: &'a CfgOptions, } impl DefCollector<'_, DB> where DB: DefDatabase, { fn collect(&mut self) { let crate_graph = self.db.crate_graph(); let file_id = crate_graph.crate_root(self.def_map.krate); let raw_items = self.db.raw_items(file_id.into()); let module_id = self.def_map.root; self.def_map.modules[module_id].origin = ModuleOrigin::CrateRoot { definition: file_id }; ModCollector { def_collector: &mut *self, module_id, file_id: file_id.into(), raw_items: &raw_items, mod_dir: ModDir::root(), } .collect(raw_items.items()); // main name resolution fixed-point loop. let mut i = 0; loop { self.db.check_canceled(); match (self.resolve_imports(), self.resolve_macros()) { (ReachedFixedPoint::Yes, ReachedFixedPoint::Yes) => break, _ => i += 1, } if i == 1000 { log::error!("name resolution is stuck"); break; } } let unresolved_imports = std::mem::replace(&mut self.unresolved_imports, Vec::new()); // show unresolved imports in completion, etc for (module_id, import, import_data) in unresolved_imports { self.record_resolved_import(module_id, PerNs::none(), import, &import_data) } } /// Define a macro with `macro_rules`. /// /// It will define the macro in legacy textual scope, and if it has `#[macro_export]`, /// then it is also defined in the root module scope. /// You can `use` or invoke it by `crate::macro_name` anywhere, before or after the definition. /// /// It is surprising that the macro will never be in the current module scope. /// These code fails with "unresolved import/macro", /// ```rust,compile_fail /// mod m { macro_rules! foo { () => {} } } /// use m::foo as bar; /// ``` /// /// ```rust,compile_fail /// macro_rules! foo { () => {} } /// self::foo!(); /// crate::foo!(); /// ``` /// /// Well, this code compiles, because the plain path `foo` in `use` is searched /// in the legacy textual scope only. /// ```rust /// macro_rules! foo { () => {} } /// use foo as bar; /// ``` fn define_macro( &mut self, module_id: LocalModuleId, name: Name, macro_: MacroDefId, export: bool, ) { // Textual scoping self.define_legacy_macro(module_id, name.clone(), macro_); // Module scoping // In Rust, `#[macro_export]` macros are unconditionally visible at the // crate root, even if the parent modules is **not** visible. if export { self.update( self.def_map.root, None, &[(name, Resolution { def: PerNs::macros(macro_), import: None })], ); } } /// Define a legacy textual scoped macro in module /// /// We use a map `legacy_macros` to store all legacy textual scoped macros visable per module. /// It will clone all macros from parent legacy scope, whose definition is prior to /// the definition of current module. /// And also, `macro_use` on a module will import all legacy macros visable inside to /// current legacy scope, with possible shadowing. fn define_legacy_macro(&mut self, module_id: LocalModuleId, name: Name, macro_: MacroDefId) { // Always shadowing self.def_map.modules[module_id].scope.legacy_macros.insert(name, macro_); } /// Import macros from `#[macro_use] extern crate`. fn import_macros_from_extern_crate( &mut self, current_module_id: LocalModuleId, import: &raw::ImportData, ) { log::debug!( "importing macros from extern crate: {:?} ({:?})", import, self.def_map.edition, ); let res = self.def_map.resolve_name_in_extern_prelude( &import .path .as_ident() .expect("extern crate should have been desugared to one-element path"), ); if let Some(ModuleDefId::ModuleId(m)) = res.take_types() { tested_by!(macro_rules_from_other_crates_are_visible_with_macro_use); self.import_all_macros_exported(current_module_id, m.krate); } } /// Import all exported macros from another crate /// /// Exported macros are just all macros in the root module scope. /// Note that it contains not only all `#[macro_export]` macros, but also all aliases /// created by `use` in the root module, ignoring the visibility of `use`. fn import_all_macros_exported(&mut self, current_module_id: LocalModuleId, krate: CrateId) { let def_map = self.db.crate_def_map(krate); for (name, def) in def_map[def_map.root].scope.macros() { // `macro_use` only bring things into legacy scope. self.define_legacy_macro(current_module_id, name.clone(), def); } } fn resolve_imports(&mut self) -> ReachedFixedPoint { let mut imports = std::mem::replace(&mut self.unresolved_imports, Vec::new()); let mut resolved = Vec::new(); imports.retain(|(module_id, import, import_data)| { let (def, fp) = self.resolve_import(*module_id, import_data); if fp == ReachedFixedPoint::Yes { resolved.push((*module_id, def, *import, import_data.clone())) } fp == ReachedFixedPoint::No }); self.unresolved_imports = imports; // Resolves imports, filling-in module scopes let result = if resolved.is_empty() { ReachedFixedPoint::Yes } else { ReachedFixedPoint::No }; for (module_id, def, import, import_data) in resolved { self.record_resolved_import(module_id, def, import, &import_data) } result } fn resolve_import( &self, module_id: LocalModuleId, import: &raw::ImportData, ) -> (PerNs, ReachedFixedPoint) { log::debug!("resolving import: {:?} ({:?})", import, self.def_map.edition); if import.is_extern_crate { let res = self.def_map.resolve_name_in_extern_prelude( &import .path .as_ident() .expect("extern crate should have been desugared to one-element path"), ); (res, ReachedFixedPoint::Yes) } else { let res = self.def_map.resolve_path_fp_with_macro( self.db, ResolveMode::Import, module_id, &import.path, BuiltinShadowMode::Module, ); (res.resolved_def, res.reached_fixedpoint) } } fn record_resolved_import( &mut self, module_id: LocalModuleId, def: PerNs, import_id: LocalImportId, import: &raw::ImportData, ) { if import.is_glob { log::debug!("glob import: {:?}", import); match def.take_types() { Some(ModuleDefId::ModuleId(m)) => { if import.is_prelude { tested_by!(std_prelude); self.def_map.prelude = Some(m); } else if m.krate != self.def_map.krate { tested_by!(glob_across_crates); // glob import from other crate => we can just import everything once let item_map = self.db.crate_def_map(m.krate); let scope = &item_map[m.local_id].scope; // Module scoped macros is included let items = scope .items .iter() .map(|(name, res)| (name.clone(), res.clone())) .collect::>(); self.update(module_id, Some(import_id), &items); } else { // glob import from same crate => we do an initial // import, and then need to propagate any further // additions let scope = &self.def_map[m.local_id].scope; // Module scoped macros is included let items = scope .items .iter() .map(|(name, res)| (name.clone(), res.clone())) .collect::>(); self.update(module_id, Some(import_id), &items); // record the glob import in case we add further items let glob = self.glob_imports.entry(m.local_id).or_default(); if !glob.iter().any(|it| *it == (module_id, import_id)) { glob.push((module_id, import_id)); } } } Some(ModuleDefId::AdtId(AdtId::EnumId(e))) => { tested_by!(glob_enum); // glob import from enum => just import all the variants let enum_data = self.db.enum_data(e); let resolutions = enum_data .variants .iter() .filter_map(|(local_id, variant_data)| { let name = variant_data.name.clone(); let variant = EnumVariantId { parent: e, local_id }; let res = Resolution { def: PerNs::both(variant.into(), variant.into()), import: Some(import_id), }; Some((name, res)) }) .collect::>(); self.update(module_id, Some(import_id), &resolutions); } Some(d) => { log::debug!("glob import {:?} from non-module/enum {:?}", import, d); } None => { log::debug!("glob import {:?} didn't resolve as type", import); } } } else { match import.path.segments.last() { Some(last_segment) => { let name = import.alias.clone().unwrap_or_else(|| last_segment.name.clone()); log::debug!("resolved import {:?} ({:?}) to {:?}", name, import, def); // extern crates in the crate root are special-cased to insert entries into the extern prelude: rust-lang/rust#54658 if import.is_extern_crate && module_id == self.def_map.root { if let Some(def) = def.take_types() { self.def_map.extern_prelude.insert(name.clone(), def); } } let resolution = Resolution { def, import: Some(import_id) }; self.update(module_id, Some(import_id), &[(name, resolution)]); } None => tested_by!(bogus_paths), } } } fn update( &mut self, module_id: LocalModuleId, import: Option, resolutions: &[(Name, Resolution)], ) { self.update_recursive(module_id, import, resolutions, 0) } fn update_recursive( &mut self, module_id: LocalModuleId, import: Option, resolutions: &[(Name, Resolution)], depth: usize, ) { if depth > 100 { // prevent stack overflows (but this shouldn't be possible) panic!("infinite recursion in glob imports!"); } let module_items = &mut self.def_map.modules[module_id].scope; let mut changed = false; for (name, res) in resolutions { let existing = module_items.items.entry(name.clone()).or_default(); if existing.def.types.is_none() && res.def.types.is_some() { existing.def.types = res.def.types; existing.import = import.or(res.import); changed = true; } if existing.def.values.is_none() && res.def.values.is_some() { existing.def.values = res.def.values; existing.import = import.or(res.import); changed = true; } if existing.def.macros.is_none() && res.def.macros.is_some() { existing.def.macros = res.def.macros; existing.import = import.or(res.import); changed = true; } if existing.def.is_none() && res.def.is_none() && existing.import.is_none() && res.import.is_some() { existing.import = res.import; } } if !changed { return; } let glob_imports = self .glob_imports .get(&module_id) .into_iter() .flat_map(|v| v.iter()) .cloned() .collect::>(); for (glob_importing_module, glob_import) in glob_imports { // We pass the glob import so that the tracked import in those modules is that glob import self.update_recursive(glob_importing_module, Some(glob_import), resolutions, depth + 1); } } fn resolve_macros(&mut self) -> ReachedFixedPoint { let mut macros = std::mem::replace(&mut self.unexpanded_macros, Vec::new()); let mut attribute_macros = std::mem::replace(&mut self.unexpanded_attribute_macros, Vec::new()); let mut resolved = Vec::new(); let mut res = ReachedFixedPoint::Yes; macros.retain(|(module_id, ast_id, path)| { let resolved_res = self.def_map.resolve_path_fp_with_macro( self.db, ResolveMode::Other, *module_id, path, BuiltinShadowMode::Module, ); if let Some(def) = resolved_res.resolved_def.take_macros() { let call_id = def.as_call_id(self.db, MacroCallKind::FnLike(*ast_id)); resolved.push((*module_id, call_id, def)); res = ReachedFixedPoint::No; return false; } true }); attribute_macros.retain(|(module_id, ast_id, path)| { let resolved_res = self.resolve_attribute_macro(path); if let Some(def) = resolved_res { let call_id = def.as_call_id(self.db, MacroCallKind::Attr(*ast_id)); resolved.push((*module_id, call_id, def)); res = ReachedFixedPoint::No; return false; } true }); self.unexpanded_macros = macros; self.unexpanded_attribute_macros = attribute_macros; for (module_id, macro_call_id, macro_def_id) in resolved { self.collect_macro_expansion(module_id, macro_call_id, macro_def_id); } res } fn resolve_attribute_macro(&self, path: &Path) -> Option { // FIXME this is currently super hacky, just enough to support the // built-in derives if let Some(name) = path.as_ident() { // FIXME this should actually be handled with the normal name // resolution; the std lib defines built-in stubs for the derives, // but these are new-style `macro`s, which we don't support yet if let Some(def_id) = find_builtin_derive(name) { return Some(def_id); } } None } fn collect_macro_expansion( &mut self, module_id: LocalModuleId, macro_call_id: MacroCallId, macro_def_id: MacroDefId, ) { if self.poison_macros.contains(¯o_def_id) { return; } self.macro_stack_monitor.increase(macro_def_id); if !self.macro_stack_monitor.is_poison(macro_def_id) { let file_id: HirFileId = macro_call_id.as_file(MacroFileKind::Items); let raw_items = self.db.raw_items(file_id); let mod_dir = self.mod_dirs[&module_id].clone(); ModCollector { def_collector: &mut *self, file_id, module_id, raw_items: &raw_items, mod_dir, } .collect(raw_items.items()); } else { log::error!("Too deep macro expansion: {:?}", macro_call_id); self.poison_macros.insert(macro_def_id); } self.macro_stack_monitor.decrease(macro_def_id); } fn finish(self) -> CrateDefMap { self.def_map } } /// Walks a single module, populating defs, imports and macros struct ModCollector<'a, D> { def_collector: D, module_id: LocalModuleId, file_id: HirFileId, raw_items: &'a raw::RawItems, mod_dir: ModDir, } impl ModCollector<'_, &'_ mut DefCollector<'_, DB>> where DB: DefDatabase, { fn collect(&mut self, items: &[raw::RawItem]) { // Note: don't assert that inserted value is fresh: it's simply not true // for macros. self.def_collector.mod_dirs.insert(self.module_id, self.mod_dir.clone()); // Prelude module is always considered to be `#[macro_use]`. if let Some(prelude_module) = self.def_collector.def_map.prelude { if prelude_module.krate != self.def_collector.def_map.krate { tested_by!(prelude_is_macro_use); self.def_collector.import_all_macros_exported(self.module_id, prelude_module.krate); } } // This should be processed eagerly instead of deferred to resolving. // `#[macro_use] extern crate` is hoisted to imports macros before collecting // any other items. for item in items { if self.is_cfg_enabled(&item.attrs) { if let raw::RawItemKind::Import(import_id) = item.kind { let import = self.raw_items[import_id].clone(); if import.is_extern_crate && import.is_macro_use { self.def_collector.import_macros_from_extern_crate(self.module_id, &import); } } } } for item in items { if self.is_cfg_enabled(&item.attrs) { match item.kind { raw::RawItemKind::Module(m) => { self.collect_module(&self.raw_items[m], &item.attrs) } raw::RawItemKind::Import(import_id) => self .def_collector .unresolved_imports .push((self.module_id, import_id, self.raw_items[import_id].clone())), raw::RawItemKind::Def(def) => { self.define_def(&self.raw_items[def], &item.attrs) } raw::RawItemKind::Macro(mac) => self.collect_macro(&self.raw_items[mac]), raw::RawItemKind::Impl(imp) => { let module = ModuleId { krate: self.def_collector.def_map.krate, local_id: self.module_id, }; let ctx = LocationCtx::new(self.def_collector.db, module, self.file_id); let imp_id = ImplId::from_ast_id(ctx, self.raw_items[imp].ast_id); self.def_collector.def_map.modules[self.module_id].impls.push(imp_id) } } } } } fn collect_module(&mut self, module: &raw::ModuleData, attrs: &Attrs) { let path_attr = attrs.by_key("path").string_value(); let is_macro_use = attrs.by_key("macro_use").exists(); match module { // inline module, just recurse raw::ModuleData::Definition { name, items, ast_id } => { let module_id = self.push_child_module(name.clone(), AstId::new(self.file_id, *ast_id), None); ModCollector { def_collector: &mut *self.def_collector, module_id, file_id: self.file_id, raw_items: self.raw_items, mod_dir: self.mod_dir.descend_into_definition(name, path_attr), } .collect(&*items); if is_macro_use { self.import_all_legacy_macros(module_id); } } // out of line module, resolve, parse and recurse raw::ModuleData::Declaration { name, ast_id } => { let ast_id = AstId::new(self.file_id, *ast_id); match self.mod_dir.resolve_declaration( self.def_collector.db, self.file_id, name, path_attr, ) { Ok((file_id, mod_dir)) => { let module_id = self.push_child_module(name.clone(), ast_id, Some(file_id)); let raw_items = self.def_collector.db.raw_items(file_id.into()); ModCollector { def_collector: &mut *self.def_collector, module_id, file_id: file_id.into(), raw_items: &raw_items, mod_dir, } .collect(raw_items.items()); if is_macro_use { self.import_all_legacy_macros(module_id); } } Err(candidate) => self.def_collector.def_map.diagnostics.push( DefDiagnostic::UnresolvedModule { module: self.module_id, declaration: ast_id, candidate, }, ), }; } } } fn push_child_module( &mut self, name: Name, declaration: AstId, definition: Option, ) -> LocalModuleId { let modules = &mut self.def_collector.def_map.modules; let res = modules.alloc(ModuleData::default()); modules[res].parent = Some(self.module_id); modules[res].origin = ModuleOrigin::not_sure_file(definition, declaration); modules[res].scope.legacy_macros = modules[self.module_id].scope.legacy_macros.clone(); modules[self.module_id].children.insert(name.clone(), res); let resolution = Resolution { def: PerNs::types( ModuleId { krate: self.def_collector.def_map.krate, local_id: res }.into(), ), import: None, }; self.def_collector.update(self.module_id, None, &[(name, resolution)]); res } fn define_def(&mut self, def: &raw::DefData, attrs: &Attrs) { let module = ModuleId { krate: self.def_collector.def_map.krate, local_id: self.module_id }; let ctx = LocationCtx::new(self.def_collector.db, module, self.file_id); // FIXME: check attrs to see if this is an attribute macro invocation; // in which case we don't add the invocation, just a single attribute // macro invocation self.collect_derives(attrs, def); let name = def.name.clone(); let def: PerNs = match def.kind { raw::DefKind::Function(ast_id) => { let def = FunctionLoc { container: ContainerId::ModuleId(module), ast_id: AstId::new(self.file_id, ast_id), } .intern(self.def_collector.db); PerNs::values(def.into()) } raw::DefKind::Struct(ast_id) => { let id = StructId::from_ast_id(ctx, ast_id).into(); PerNs::both(id, id) } raw::DefKind::Union(ast_id) => { let id = UnionId::from_ast_id(ctx, ast_id).into(); PerNs::both(id, id) } raw::DefKind::Enum(ast_id) => PerNs::types(EnumId::from_ast_id(ctx, ast_id).into()), raw::DefKind::Const(ast_id) => { let def = ConstLoc { container: ContainerId::ModuleId(module), ast_id: AstId::new(self.file_id, ast_id), } .intern(self.def_collector.db); PerNs::values(def.into()) } raw::DefKind::Static(ast_id) => { let def = StaticLoc { container: module, ast_id: AstId::new(self.file_id, ast_id) } .intern(self.def_collector.db); PerNs::values(def.into()) } raw::DefKind::Trait(ast_id) => PerNs::types(TraitId::from_ast_id(ctx, ast_id).into()), raw::DefKind::TypeAlias(ast_id) => { let def = TypeAliasLoc { container: ContainerId::ModuleId(module), ast_id: AstId::new(self.file_id, ast_id), } .intern(self.def_collector.db); PerNs::types(def.into()) } }; let resolution = Resolution { def, import: None }; self.def_collector.update(self.module_id, None, &[(name, resolution)]) } fn collect_derives(&mut self, attrs: &Attrs, def: &raw::DefData) { for derive_subtree in attrs.by_key("derive").tt_values() { // for #[derive(Copy, Clone)], `derive_subtree` is the `(Copy, Clone)` subtree for tt in &derive_subtree.token_trees { let ident = match &tt { tt::TokenTree::Leaf(tt::Leaf::Ident(ident)) => ident, tt::TokenTree::Leaf(tt::Leaf::Punct(_)) => continue, // , is ok _ => continue, // anything else would be an error (which we currently ignore) }; let path = Path::from_tt_ident(ident); let ast_id = AstId::new(self.file_id, def.kind.ast_id()); self.def_collector.unexpanded_attribute_macros.push((self.module_id, ast_id, path)); } } } fn collect_macro(&mut self, mac: &raw::MacroData) { let ast_id = AstId::new(self.file_id, mac.ast_id); // Case 0: builtin macros if mac.builtin { if let Some(name) = &mac.name { let krate = self.def_collector.def_map.krate; if let Some(macro_id) = find_builtin_macro(name, krate, ast_id) { self.def_collector.define_macro( self.module_id, name.clone(), macro_id, mac.export, ); return; } } } // Case 1: macro rules, define a macro in crate-global mutable scope if is_macro_rules(&mac.path) { if let Some(name) = &mac.name { let macro_id = MacroDefId { ast_id: Some(ast_id), krate: Some(self.def_collector.def_map.krate), kind: MacroDefKind::Declarative, }; self.def_collector.define_macro(self.module_id, name.clone(), macro_id, mac.export); } return; } // Case 2: try to resolve in legacy scope and expand macro_rules, triggering // recursive item collection. if let Some(macro_def) = mac.path.as_ident().and_then(|name| { self.def_collector.def_map[self.module_id].scope.get_legacy_macro(&name) }) { let macro_call_id = macro_def.as_call_id(self.def_collector.db, MacroCallKind::FnLike(ast_id)); self.def_collector.collect_macro_expansion(self.module_id, macro_call_id, macro_def); return; } // Case 3: resolve in module scope, expand during name resolution. // We rewrite simple path `macro_name` to `self::macro_name` to force resolve in module scope only. let mut path = mac.path.clone(); if path.is_ident() { path.kind = PathKind::Self_; } self.def_collector.unexpanded_macros.push((self.module_id, ast_id, path)); } fn import_all_legacy_macros(&mut self, module_id: LocalModuleId) { let macros = self.def_collector.def_map[module_id].scope.legacy_macros.clone(); for (name, macro_) in macros { self.def_collector.define_legacy_macro(self.module_id, name.clone(), macro_); } } fn is_cfg_enabled(&self, attrs: &Attrs) -> bool { // FIXME: handle cfg_attr :-) attrs .by_key("cfg") .tt_values() .all(|tt| self.def_collector.cfg_options.is_cfg_enabled(tt) != Some(false)) } } fn is_macro_rules(path: &Path) -> bool { path.as_ident() == Some(&name::MACRO_RULES) } #[cfg(test)] mod tests { use ra_arena::Arena; use ra_db::{fixture::WithFixture, SourceDatabase}; use rustc_hash::FxHashSet; use crate::{db::DefDatabase, test_db::TestDB}; use super::*; fn do_collect_defs( db: &impl DefDatabase, def_map: CrateDefMap, monitor: MacroStackMonitor, ) -> (CrateDefMap, FxHashSet) { let mut collector = DefCollector { db, def_map, glob_imports: FxHashMap::default(), unresolved_imports: Vec::new(), unexpanded_macros: Vec::new(), unexpanded_attribute_macros: Vec::new(), mod_dirs: FxHashMap::default(), macro_stack_monitor: monitor, poison_macros: FxHashSet::default(), cfg_options: &CfgOptions::default(), }; collector.collect(); (collector.def_map, collector.poison_macros) } fn do_limited_resolve( code: &str, limit: u32, poison_limit: u32, ) -> (CrateDefMap, FxHashSet) { let (db, _file_id) = TestDB::with_single_file(&code); let krate = db.test_crate(); let def_map = { let edition = db.crate_graph().edition(krate); let mut modules: Arena = Arena::default(); let root = modules.alloc(ModuleData::default()); CrateDefMap { krate, edition, extern_prelude: FxHashMap::default(), prelude: None, root, modules, diagnostics: Vec::new(), } }; let mut monitor = MacroStackMonitor::default(); monitor.validator = Some(Box::new(move |count| { assert!(count < limit); count >= poison_limit })); do_collect_defs(&db, def_map, monitor) } #[test] fn test_macro_expand_limit_width() { do_limited_resolve( r#" macro_rules! foo { ($($ty:ty)*) => { foo!($($ty)*, $($ty)*); } } foo!(KABOOM); "#, 16, 1000, ); } #[test] fn test_macro_expand_poisoned() { let (_, poison_macros) = do_limited_resolve( r#" macro_rules! foo { ($ty:ty) => { foo!($ty); } } foo!(KABOOM); "#, 100, 16, ); assert_eq!(poison_macros.len(), 1); } #[test] fn test_macro_expand_normal() { let (_, poison_macros) = do_limited_resolve( r#" macro_rules! foo { ($ident:ident) => { struct $ident {} } } foo!(Bar); "#, 16, 16, ); assert_eq!(poison_macros.len(), 0); } }