//! Flycheck provides the functionality needed to run `cargo check` or //! another compatible command (f.x. clippy) in a background thread and provide //! LSP diagnostics based on the output of the command. use std::{ fmt, io::{self, BufRead, BufReader}, path::PathBuf, process::{self, Command, Stdio}, time::Duration, }; use crossbeam_channel::{never, select, unbounded, Receiver, Sender}; use serde::Deserialize; use stdx::JodChild; pub use cargo_metadata::diagnostic::{ Applicability, Diagnostic, DiagnosticCode, DiagnosticLevel, DiagnosticSpan, DiagnosticSpanMacroExpansion, }; #[derive(Clone, Debug, PartialEq, Eq)] pub enum FlycheckConfig { CargoCommand { command: String, target_triple: Option, all_targets: bool, no_default_features: bool, all_features: bool, features: Vec, extra_args: Vec, }, CustomCommand { command: String, args: Vec, }, } impl fmt::Display for FlycheckConfig { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { FlycheckConfig::CargoCommand { command, .. } => write!(f, "cargo {}", command), FlycheckConfig::CustomCommand { command, args } => { write!(f, "{} {}", command, args.join(" ")) } } } } /// Flycheck wraps the shared state and communication machinery used for /// running `cargo check` (or other compatible command) and providing /// diagnostics based on the output. /// The spawned thread is shut down when this struct is dropped. #[derive(Debug)] pub struct FlycheckHandle { // XXX: drop order is significant sender: Sender, thread: jod_thread::JoinHandle, } impl FlycheckHandle { pub fn spawn( id: usize, sender: Box, config: FlycheckConfig, workspace_root: PathBuf, ) -> FlycheckHandle { let actor = FlycheckActor::new(id, sender, config, workspace_root); let (sender, receiver) = unbounded::(); let thread = jod_thread::Builder::new() .name("FlycheckThread".to_owned()) .spawn(move || actor.run(receiver)) .expect("failed to spawn thread"); FlycheckHandle { sender, thread } } /// Schedule a re-start of the cargo check worker. pub fn update(&self) { self.sender.send(Restart).unwrap(); } } pub enum Message { /// Request adding a diagnostic with fixes included to a file AddDiagnostic { workspace_root: PathBuf, diagnostic: Diagnostic }, /// Request check progress notification to client Progress { /// Flycheck instance ID id: usize, progress: Progress, }, } impl fmt::Debug for Message { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { Message::AddDiagnostic { workspace_root, diagnostic } => f .debug_struct("AddDiagnostic") .field("workspace_root", workspace_root) .field("diagnostic_code", &diagnostic.code.as_ref().map(|it| &it.code)) .finish(), Message::Progress { id, progress } => { f.debug_struct("Progress").field("id", id).field("progress", progress).finish() } } } } #[derive(Debug)] pub enum Progress { DidStart, DidCheckCrate(String), DidFinish(io::Result<()>), DidCancel, } struct Restart; struct FlycheckActor { id: usize, sender: Box, config: FlycheckConfig, workspace_root: PathBuf, /// WatchThread exists to wrap around the communication needed to be able to /// run `cargo check` without blocking. Currently the Rust standard library /// doesn't provide a way to read sub-process output without blocking, so we /// have to wrap sub-processes output handling in a thread and pass messages /// back over a channel. cargo_handle: Option, } enum Event { Restart(Restart), CheckEvent(Option), } impl FlycheckActor { fn new( id: usize, sender: Box, config: FlycheckConfig, workspace_root: PathBuf, ) -> FlycheckActor { FlycheckActor { id, sender, config, workspace_root, cargo_handle: None } } fn progress(&self, progress: Progress) { self.send(Message::Progress { id: self.id, progress }); } fn next_event(&self, inbox: &Receiver) -> Option { let check_chan = self.cargo_handle.as_ref().map(|cargo| &cargo.receiver); select! { recv(inbox) -> msg => msg.ok().map(Event::Restart), recv(check_chan.unwrap_or(&never())) -> msg => Some(Event::CheckEvent(msg.ok())), } } fn run(mut self, inbox: Receiver) { while let Some(event) = self.next_event(&inbox) { match event { Event::Restart(Restart) => { while let Ok(Restart) = inbox.recv_timeout(Duration::from_millis(50)) {} self.cancel_check_process(); let mut command = self.check_command(); log::info!("restart flycheck {:?}", command); command.stdout(Stdio::piped()).stderr(Stdio::null()).stdin(Stdio::null()); if let Ok(child) = command.spawn().map(JodChild) { self.cargo_handle = Some(CargoHandle::spawn(child)); self.progress(Progress::DidStart); } } Event::CheckEvent(None) => { // Watcher finished, replace it with a never channel to // avoid busy-waiting. let cargo_handle = self.cargo_handle.take().unwrap(); let res = cargo_handle.join(); if res.is_err() { log::error!( "Flycheck failed to run the following command: {:?}", self.check_command() ) } self.progress(Progress::DidFinish(res)); } Event::CheckEvent(Some(message)) => match message { CargoMessage::CompilerArtifact(msg) => { self.progress(Progress::DidCheckCrate(msg.target.name)); } CargoMessage::Diagnostic(msg) => { self.send(Message::AddDiagnostic { workspace_root: self.workspace_root.clone(), diagnostic: msg, }); } }, } } // If we rerun the thread, we need to discard the previous check results first self.cancel_check_process(); } fn cancel_check_process(&mut self) { if self.cargo_handle.take().is_some() { self.progress(Progress::DidCancel); } } fn check_command(&self) -> Command { let mut cmd = match &self.config { FlycheckConfig::CargoCommand { command, target_triple, no_default_features, all_targets, all_features, extra_args, features, } => { let mut cmd = Command::new(toolchain::cargo()); cmd.arg(command); cmd.current_dir(&self.workspace_root); cmd.args(&["--workspace", "--message-format=json", "--manifest-path"]) .arg(self.workspace_root.join("Cargo.toml")); if let Some(target) = target_triple { cmd.args(&["--target", target.as_str()]); } if *all_targets { cmd.arg("--all-targets"); } if *all_features { cmd.arg("--all-features"); } else { if *no_default_features { cmd.arg("--no-default-features"); } if !features.is_empty() { cmd.arg("--features"); cmd.arg(features.join(" ")); } } cmd.args(extra_args); cmd } FlycheckConfig::CustomCommand { command, args } => { let mut cmd = Command::new(command); cmd.args(args); cmd } }; cmd.current_dir(&self.workspace_root); cmd } fn send(&self, check_task: Message) { (self.sender)(check_task) } } struct CargoHandle { child: JodChild, #[allow(unused)] thread: jod_thread::JoinHandle>, receiver: Receiver, } impl CargoHandle { fn spawn(mut child: JodChild) -> CargoHandle { let child_stdout = child.stdout.take().unwrap(); let (sender, receiver) = unbounded(); let actor = CargoActor::new(child_stdout, sender); let thread = jod_thread::Builder::new() .name("CargoHandleThread".to_owned()) .spawn(move || actor.run()) .expect("failed to spawn thread"); CargoHandle { child, thread, receiver } } fn join(mut self) -> io::Result<()> { // It is okay to ignore the result, as it only errors if the process is already dead let _ = self.child.kill(); let exit_status = self.child.wait()?; let read_at_least_one_message = self.thread.join()?; if !exit_status.success() && !read_at_least_one_message { // FIXME: Read the stderr to display the reason, see `read2()` reference in PR comment: // https://github.com/rust-analyzer/rust-analyzer/pull/3632#discussion_r395605298 return Err(io::Error::new( io::ErrorKind::Other, format!( "Cargo watcher failed, the command produced no valid metadata (exit code: {:?})", exit_status ), )); } Ok(()) } } struct CargoActor { child_stdout: process::ChildStdout, sender: Sender, } impl CargoActor { fn new(child_stdout: process::ChildStdout, sender: Sender) -> CargoActor { CargoActor { child_stdout, sender } } fn run(self) -> io::Result { // We manually read a line at a time, instead of using serde's // stream deserializers, because the deserializer cannot recover // from an error, resulting in it getting stuck, because we try to // be resilient against failures. // // Because cargo only outputs one JSON object per line, we can // simply skip a line if it doesn't parse, which just ignores any // erroneus output. let stdout = BufReader::new(self.child_stdout); let mut read_at_least_one_message = false; for message in stdout.lines() { let message = match message { Ok(message) => message, Err(err) => { log::error!("Invalid json from cargo check, ignoring ({})", err); continue; } }; read_at_least_one_message = true; // Try to deserialize a message from Cargo or Rustc. let mut deserializer = serde_json::Deserializer::from_str(&message); deserializer.disable_recursion_limit(); if let Ok(message) = JsonMessage::deserialize(&mut deserializer) { match message { // Skip certain kinds of messages to only spend time on what's useful JsonMessage::Cargo(message) => match message { cargo_metadata::Message::CompilerArtifact(artifact) if !artifact.fresh => { self.sender.send(CargoMessage::CompilerArtifact(artifact)).unwrap() } cargo_metadata::Message::CompilerMessage(msg) => { self.sender.send(CargoMessage::Diagnostic(msg.message)).unwrap() } cargo_metadata::Message::CompilerArtifact(_) | cargo_metadata::Message::BuildScriptExecuted(_) | cargo_metadata::Message::BuildFinished(_) | cargo_metadata::Message::TextLine(_) | _ => (), }, JsonMessage::Rustc(message) => { self.sender.send(CargoMessage::Diagnostic(message)).unwrap() } } } } Ok(read_at_least_one_message) } } enum CargoMessage { CompilerArtifact(cargo_metadata::Artifact), Diagnostic(Diagnostic), } #[derive(Deserialize)] #[serde(untagged)] enum JsonMessage { Cargo(cargo_metadata::Message), Rustc(Diagnostic), }