//! See `CompletionContext` structure. use std::iter; use base_db::SourceDatabaseExt; use hir::{ HasAttrs, Local, Name, PathResolution, ScopeDef, Semantics, SemanticsScope, Type, TypeInfo, }; use ide_db::{ active_parameter::ActiveParameter, base_db::{FilePosition, SourceDatabase}, famous_defs::FamousDefs, RootDatabase, }; use rustc_hash::{FxHashMap, FxHashSet}; use syntax::{ algo::{find_node_at_offset, non_trivia_sibling}, ast::{self, AttrKind, HasName, NameOrNameRef}, match_ast, AstNode, NodeOrToken, SyntaxKind::{self, *}, SyntaxNode, SyntaxToken, TextRange, TextSize, T, }; use text_edit::Indel; use crate::{ patterns::{ determine_location, determine_prev_sibling, is_in_loop_body, is_in_token_of_for_loop, previous_token, ImmediateLocation, ImmediatePrevSibling, }, CompletionConfig, }; const COMPLETION_MARKER: &str = "intellijRulezz"; #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub(crate) enum PatternRefutability { Refutable, Irrefutable, } pub(crate) enum Visible { Yes, Editable, No, } #[derive(Copy, Clone, Debug, PartialEq, Eq)] pub(super) enum PathKind { Expr, Type, Attr { kind: AttrKind, annotated_item_kind: Option }, Derive, Mac, Pat, Vis { has_in_token: bool }, Use, } #[derive(Debug)] pub(crate) struct PathCompletionCtx { /// If this is a call with () already there (or {} in case of record patterns) pub(super) has_call_parens: bool, /// Whether this path stars with a `::`. pub(super) is_absolute_path: bool, /// The qualifier of the current path if it exists. pub(super) qualifier: Option, pub(super) kind: Option, /// Whether the path segment has type args or not. pub(super) has_type_args: bool, /// `true` if we are a statement or a last expr in the block. pub(super) can_be_stmt: bool, pub(super) in_loop_body: bool, } #[derive(Debug)] pub(crate) struct PathQualifierCtx { pub(crate) path: ast::Path, pub(crate) resolution: Option, /// Whether this path consists solely of `super` segments pub(crate) is_super_chain: bool, /// Whether the qualifier comes from a use tree parent or not pub(crate) use_tree_parent: bool, } #[derive(Debug)] pub(super) struct PatternContext { pub(super) refutability: PatternRefutability, pub(super) param_ctx: Option<(ast::ParamList, ast::Param, ParamKind)>, pub(super) has_type_ascription: bool, pub(super) parent_pat: Option, pub(super) ref_token: Option, pub(super) mut_token: Option, } #[derive(Debug)] pub(super) enum LifetimeContext { LifetimeParam { is_decl: bool, param: ast::LifetimeParam }, Lifetime, LabelRef, LabelDef, } #[derive(Debug)] #[allow(dead_code)] pub(super) enum NameContext { Const, ConstParam, Enum, Function, IdentPat, MacroDef, MacroRules, /// Fake node Module(ast::Module), RecordField, Rename, SelfParam, Static, Struct, Trait, TypeAlias, TypeParam, Union, Variant, } #[derive(Clone, Debug, PartialEq, Eq)] pub(crate) enum ParamKind { Function(ast::Fn), Closure(ast::ClosureExpr), } /// `CompletionContext` is created early during completion to figure out, where /// exactly is the cursor, syntax-wise. #[derive(Debug)] pub(crate) struct CompletionContext<'a> { pub(super) sema: Semantics<'a, RootDatabase>, pub(super) scope: SemanticsScope<'a>, pub(super) db: &'a RootDatabase, pub(super) config: &'a CompletionConfig, pub(super) position: FilePosition, /// The token before the cursor, in the original file. pub(super) original_token: SyntaxToken, /// The token before the cursor, in the macro-expanded file. pub(super) token: SyntaxToken, /// The crate of the current file. pub(super) krate: hir::Crate, /// The module of the `scope`. pub(super) module: hir::Module, /// The expected name of what we are completing. /// This is usually the parameter name of the function argument we are completing. pub(super) expected_name: Option, /// The expected type of what we are completing. pub(super) expected_type: Option, /// The parent function of the cursor position if it exists. pub(super) function_def: Option, /// The parent impl of the cursor position if it exists. pub(super) impl_def: Option, /// The NameLike under the cursor in the original file if it exists. pub(super) name_syntax: Option, /// Are we completing inside a let statement with a missing semicolon? pub(super) incomplete_let: bool, pub(super) completion_location: Option, pub(super) prev_sibling: Option, pub(super) fake_attribute_under_caret: Option, pub(super) previous_token: Option, pub(super) name_ctx: Option, pub(super) lifetime_ctx: Option, pub(super) pattern_ctx: Option, pub(super) path_context: Option, pub(super) existing_derives: FxHashSet, pub(super) locals: FxHashMap, } impl<'a> CompletionContext<'a> { /// The range of the identifier that is being completed. pub(crate) fn source_range(&self) -> TextRange { // check kind of macro-expanded token, but use range of original token let kind = self.token.kind(); match kind { CHAR => { // assume we are completing a lifetime but the user has only typed the ' cov_mark::hit!(completes_if_lifetime_without_idents); TextRange::at(self.original_token.text_range().start(), TextSize::from(1)) } IDENT | LIFETIME_IDENT | UNDERSCORE => self.original_token.text_range(), _ if kind.is_keyword() => self.original_token.text_range(), _ => TextRange::empty(self.position.offset), } } pub(crate) fn previous_token_is(&self, kind: SyntaxKind) -> bool { self.previous_token.as_ref().map_or(false, |tok| tok.kind() == kind) } pub(crate) fn famous_defs(&self) -> FamousDefs { FamousDefs(&self.sema, self.krate) } pub(crate) fn dot_receiver(&self) -> Option<&ast::Expr> { match &self.completion_location { Some( ImmediateLocation::MethodCall { receiver, .. } | ImmediateLocation::FieldAccess { receiver, .. }, ) => receiver.as_ref(), _ => None, } } pub(crate) fn has_dot_receiver(&self) -> bool { matches!( &self.completion_location, Some(ImmediateLocation::FieldAccess { receiver, .. } | ImmediateLocation::MethodCall { receiver,.. }) if receiver.is_some() ) } pub(crate) fn expects_assoc_item(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::Trait | ImmediateLocation::Impl)) } pub(crate) fn expects_variant(&self) -> bool { matches!(self.name_ctx, Some(NameContext::Variant)) } pub(crate) fn expects_non_trait_assoc_item(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::Impl)) } pub(crate) fn expects_item(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::ItemList)) } pub(crate) fn expects_generic_arg(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::GenericArgList(_))) } pub(crate) fn has_block_expr_parent(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::StmtList)) } pub(crate) fn expects_ident_ref_expr(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::RefExpr)) } pub(crate) fn expect_field(&self) -> bool { matches!(self.completion_location, Some(ImmediateLocation::TupleField)) || matches!(self.name_ctx, Some(NameContext::RecordField)) } pub(crate) fn has_impl_or_trait_prev_sibling(&self) -> bool { matches!( self.prev_sibling, Some(ImmediatePrevSibling::ImplDefType | ImmediatePrevSibling::TraitDefName) ) } pub(crate) fn has_impl_prev_sibling(&self) -> bool { matches!(self.prev_sibling, Some(ImmediatePrevSibling::ImplDefType)) } pub(crate) fn has_visibility_prev_sibling(&self) -> bool { matches!(self.prev_sibling, Some(ImmediatePrevSibling::Visibility)) } pub(crate) fn after_if(&self) -> bool { matches!(self.prev_sibling, Some(ImmediatePrevSibling::IfExpr)) } pub(crate) fn is_path_disallowed(&self) -> bool { self.previous_token_is(T![unsafe]) || matches!( self.prev_sibling, Some(ImmediatePrevSibling::Attribute | ImmediatePrevSibling::Visibility) ) || matches!( self.completion_location, Some(ImmediateLocation::RecordPat(_) | ImmediateLocation::RecordExpr(_)) ) || matches!(self.name_ctx, Some(NameContext::Module(_) | NameContext::Rename)) } pub(crate) fn expects_expression(&self) -> bool { matches!(self.path_context, Some(PathCompletionCtx { kind: Some(PathKind::Expr), .. })) } pub(crate) fn expects_type(&self) -> bool { matches!(self.path_context, Some(PathCompletionCtx { kind: Some(PathKind::Type), .. })) } pub(crate) fn path_is_call(&self) -> bool { self.path_context.as_ref().map_or(false, |it| it.has_call_parens) } pub(crate) fn is_non_trivial_path(&self) -> bool { matches!( self.path_context, Some( PathCompletionCtx { is_absolute_path: true, .. } | PathCompletionCtx { qualifier: Some(_), .. } ) ) } pub(crate) fn path_qual(&self) -> Option<&ast::Path> { self.path_context.as_ref().and_then(|it| it.qualifier.as_ref().map(|it| &it.path)) } pub(crate) fn path_kind(&self) -> Option { self.path_context.as_ref().and_then(|it| it.kind) } pub(crate) fn is_immediately_after_macro_bang(&self) -> bool { self.token.kind() == BANG && self.token.parent().map_or(false, |it| it.kind() == MACRO_CALL) } /// Checks if an item is visible and not `doc(hidden)` at the completion site. pub(crate) fn is_visible(&self, item: &I) -> Visible where I: hir::HasVisibility + hir::HasAttrs + hir::HasCrate + Copy, { self.is_visible_impl(&item.visibility(self.db), &item.attrs(self.db), item.krate(self.db)) } pub(crate) fn is_scope_def_hidden(&self, scope_def: ScopeDef) -> bool { if let (Some(attrs), Some(krate)) = (scope_def.attrs(self.db), scope_def.krate(self.db)) { return self.is_doc_hidden(&attrs, krate); } false } /// Check if an item is `#[doc(hidden)]`. pub(crate) fn is_item_hidden(&self, item: &hir::ItemInNs) -> bool { let attrs = item.attrs(self.db); let krate = item.krate(self.db); match (attrs, krate) { (Some(attrs), Some(krate)) => self.is_doc_hidden(&attrs, krate), _ => false, } } /// Whether the given trait is an operator trait or not. pub(crate) fn is_ops_trait(&self, trait_: hir::Trait) -> bool { match trait_.attrs(self.db).lang() { Some(lang) => OP_TRAIT_LANG_NAMES.contains(&lang.as_str()), None => false, } } /// A version of [`SemanticsScope::process_all_names`] that filters out `#[doc(hidden)]` items. pub(crate) fn process_all_names(&self, f: &mut dyn FnMut(Name, ScopeDef)) { let _p = profile::span("CompletionContext::process_all_names"); self.scope.process_all_names(&mut |name, def| { if self.is_scope_def_hidden(def) { return; } f(name, def); }); } pub(crate) fn process_all_names_raw(&self, f: &mut dyn FnMut(Name, ScopeDef)) { let _p = profile::span("CompletionContext::process_all_names_raw"); self.scope.process_all_names(&mut |name, def| f(name, def)); } fn is_visible_impl( &self, vis: &hir::Visibility, attrs: &hir::Attrs, defining_crate: hir::Crate, ) -> Visible { if !vis.is_visible_from(self.db, self.module.into()) { if !self.config.enable_private_editable { return Visible::No; } // If the definition location is editable, also show private items let root_file = defining_crate.root_file(self.db); let source_root_id = self.db.file_source_root(root_file); let is_editable = !self.db.source_root(source_root_id).is_library; return if is_editable { Visible::Editable } else { Visible::No }; } if self.is_doc_hidden(attrs, defining_crate) { Visible::No } else { Visible::Yes } } fn is_doc_hidden(&self, attrs: &hir::Attrs, defining_crate: hir::Crate) -> bool { // `doc(hidden)` items are only completed within the defining crate. self.krate != defining_crate && attrs.has_doc_hidden() } } // CompletionContext construction impl<'a> CompletionContext<'a> { pub(super) fn new( db: &'a RootDatabase, position @ FilePosition { file_id, offset }: FilePosition, config: &'a CompletionConfig, ) -> Option> { let _p = profile::span("CompletionContext::new"); let sema = Semantics::new(db); let original_file = sema.parse(file_id); // Insert a fake ident to get a valid parse tree. We will use this file // to determine context, though the original_file will be used for // actual completion. let file_with_fake_ident = { let parse = db.parse(file_id); let edit = Indel::insert(offset, COMPLETION_MARKER.to_string()); parse.reparse(&edit).tree() }; let fake_ident_token = file_with_fake_ident.syntax().token_at_offset(offset).right_biased()?; let original_token = original_file.syntax().token_at_offset(offset).left_biased()?; let token = sema.descend_into_macros_single(original_token.clone()); let scope = sema.scope_at_offset(&token.parent()?, offset)?; let krate = scope.krate(); let module = scope.module(); let mut locals = FxHashMap::default(); scope.process_all_names(&mut |name, scope| { if let ScopeDef::Local(local) = scope { locals.insert(name, local); } }); let mut ctx = CompletionContext { sema, scope, db, config, position, original_token, token, krate, module, expected_name: None, expected_type: None, function_def: None, impl_def: None, name_syntax: None, lifetime_ctx: None, pattern_ctx: None, name_ctx: None, completion_location: None, prev_sibling: None, fake_attribute_under_caret: None, previous_token: None, path_context: None, locals, incomplete_let: false, existing_derives: Default::default(), }; ctx.expand_and_fill( original_file.syntax().clone(), file_with_fake_ident.syntax().clone(), offset, fake_ident_token, ); Some(ctx) } /// Expand attributes and macro calls at the current cursor position for both the original file /// and fake file repeatedly. As soon as one of the two expansions fail we stop so the original /// and speculative states stay in sync. fn expand_and_fill( &mut self, mut original_file: SyntaxNode, mut speculative_file: SyntaxNode, mut offset: TextSize, mut fake_ident_token: SyntaxToken, ) { let _p = profile::span("CompletionContext::expand_and_fill"); let mut derive_ctx = None; 'expansion: loop { let parent_item = |item: &ast::Item| item.syntax().ancestors().skip(1).find_map(ast::Item::cast); let ancestor_items = iter::successors( Option::zip( find_node_at_offset::(&original_file, offset), find_node_at_offset::(&speculative_file, offset), ), |(a, b)| parent_item(a).zip(parent_item(b)), ); // first try to expand attributes as these are always the outermost macro calls 'ancestors: for (actual_item, item_with_fake_ident) in ancestor_items { match ( self.sema.expand_attr_macro(&actual_item), self.sema.speculative_expand_attr_macro( &actual_item, &item_with_fake_ident, fake_ident_token.clone(), ), ) { // maybe parent items have attributes, so continue walking the ancestors (None, None) => continue 'ancestors, // successful expansions (Some(actual_expansion), Some((fake_expansion, fake_mapped_token))) => { let new_offset = fake_mapped_token.text_range().start(); if new_offset > actual_expansion.text_range().end() { // offset outside of bounds from the original expansion, // stop here to prevent problems from happening break 'expansion; } original_file = actual_expansion; speculative_file = fake_expansion; fake_ident_token = fake_mapped_token; offset = new_offset; continue 'expansion; } // exactly one expansion failed, inconsistent state so stop expanding completely _ => break 'expansion, } } // No attributes have been expanded, so look for macro_call! token trees or derive token trees let orig_tt = match find_node_at_offset::(&original_file, offset) { Some(it) => it, None => break 'expansion, }; let spec_tt = match find_node_at_offset::(&speculative_file, offset) { Some(it) => it, None => break 'expansion, }; // Expand pseudo-derive expansion if let (Some(orig_attr), Some(spec_attr)) = ( orig_tt.syntax().parent().and_then(ast::Meta::cast).and_then(|it| it.parent_attr()), spec_tt.syntax().parent().and_then(ast::Meta::cast).and_then(|it| it.parent_attr()), ) { if let (Some(actual_expansion), Some((fake_expansion, fake_mapped_token))) = ( self.sema.expand_derive_as_pseudo_attr_macro(&orig_attr), self.sema.speculative_expand_derive_as_pseudo_attr_macro( &orig_attr, &spec_attr, fake_ident_token.clone(), ), ) { derive_ctx = Some(( actual_expansion, fake_expansion, fake_mapped_token.text_range().start(), orig_attr, )); } // at this point we won't have any more successful expansions, so stop break 'expansion; } // Expand fn-like macro calls if let (Some(actual_macro_call), Some(macro_call_with_fake_ident)) = ( orig_tt.syntax().ancestors().find_map(ast::MacroCall::cast), spec_tt.syntax().ancestors().find_map(ast::MacroCall::cast), ) { let mac_call_path0 = actual_macro_call.path().as_ref().map(|s| s.syntax().text()); let mac_call_path1 = macro_call_with_fake_ident.path().as_ref().map(|s| s.syntax().text()); // inconsistent state, stop expanding if mac_call_path0 != mac_call_path1 { break 'expansion; } let speculative_args = match macro_call_with_fake_ident.token_tree() { Some(tt) => tt, None => break 'expansion, }; match ( self.sema.expand(&actual_macro_call), self.sema.speculative_expand( &actual_macro_call, &speculative_args, fake_ident_token.clone(), ), ) { // successful expansions (Some(actual_expansion), Some((fake_expansion, fake_mapped_token))) => { let new_offset = fake_mapped_token.text_range().start(); if new_offset > actual_expansion.text_range().end() { // offset outside of bounds from the original expansion, // stop here to prevent problems from happening break 'expansion; } original_file = actual_expansion; speculative_file = fake_expansion; fake_ident_token = fake_mapped_token; offset = new_offset; continue 'expansion; } // at least on expansion failed, we won't have anything to expand from this point // onwards so break out _ => break 'expansion, } } // none of our states have changed so stop the loop break 'expansion; } self.fill(&original_file, speculative_file, offset, derive_ctx); } /// Calculate the expected type and name of the cursor position. fn expected_type_and_name(&self) -> (Option, Option) { let mut node = match self.token.parent() { Some(it) => it, None => return (None, None), }; loop { break match_ast! { match node { ast::LetStmt(it) => { cov_mark::hit!(expected_type_let_with_leading_char); cov_mark::hit!(expected_type_let_without_leading_char); let ty = it.pat() .and_then(|pat| self.sema.type_of_pat(&pat)) .or_else(|| it.initializer().and_then(|it| self.sema.type_of_expr(&it))) .map(TypeInfo::original); let name = match it.pat() { Some(ast::Pat::IdentPat(ident)) => ident.name().map(NameOrNameRef::Name), Some(_) | None => None, }; (ty, name) }, ast::LetExpr(it) => { cov_mark::hit!(expected_type_if_let_without_leading_char); let ty = it.pat() .and_then(|pat| self.sema.type_of_pat(&pat)) .or_else(|| it.expr().and_then(|it| self.sema.type_of_expr(&it))) .map(TypeInfo::original); (ty, None) }, ast::ArgList(_) => { cov_mark::hit!(expected_type_fn_param); ActiveParameter::at_token( &self.sema, self.token.clone(), ).map(|ap| { let name = ap.ident().map(NameOrNameRef::Name); let ty = if has_ref(&self.token) { cov_mark::hit!(expected_type_fn_param_ref); ap.ty.remove_ref() } else { Some(ap.ty) }; (ty, name) }) .unwrap_or((None, None)) }, ast::RecordExprFieldList(it) => { // wouldn't try {} be nice... (|| { if self.token.kind() == T![..] || self.token.prev_token().map(|t| t.kind()) == Some(T![..]) { cov_mark::hit!(expected_type_struct_func_update); let record_expr = it.syntax().parent().and_then(ast::RecordExpr::cast)?; let ty = self.sema.type_of_expr(&record_expr.into())?; Some(( Some(ty.original), None )) } else { cov_mark::hit!(expected_type_struct_field_without_leading_char); let expr_field = self.token.prev_sibling_or_token()? .into_node() .and_then(ast::RecordExprField::cast)?; let (_, _, ty) = self.sema.resolve_record_field(&expr_field)?; Some(( Some(ty), expr_field.field_name().map(NameOrNameRef::NameRef), )) } })().unwrap_or((None, None)) }, ast::RecordExprField(it) => { if let Some(expr) = it.expr() { cov_mark::hit!(expected_type_struct_field_with_leading_char); ( self.sema.type_of_expr(&expr).map(TypeInfo::original), it.field_name().map(NameOrNameRef::NameRef), ) } else { cov_mark::hit!(expected_type_struct_field_followed_by_comma); let ty = self.sema.resolve_record_field(&it) .map(|(_, _, ty)| ty); ( ty, it.field_name().map(NameOrNameRef::NameRef), ) } }, ast::MatchExpr(it) => { cov_mark::hit!(expected_type_match_arm_without_leading_char); let ty = it.expr().and_then(|e| self.sema.type_of_expr(&e)).map(TypeInfo::original); (ty, None) }, ast::IfExpr(it) => { let ty = it.condition() .and_then(|e| self.sema.type_of_expr(&e)) .map(TypeInfo::original); (ty, None) }, ast::IdentPat(it) => { cov_mark::hit!(expected_type_if_let_with_leading_char); cov_mark::hit!(expected_type_match_arm_with_leading_char); let ty = self.sema.type_of_pat(&ast::Pat::from(it)).map(TypeInfo::original); (ty, None) }, ast::Fn(it) => { cov_mark::hit!(expected_type_fn_ret_with_leading_char); cov_mark::hit!(expected_type_fn_ret_without_leading_char); let def = self.sema.to_def(&it); (def.map(|def| def.ret_type(self.db)), None) }, ast::ClosureExpr(it) => { let ty = self.sema.type_of_expr(&it.into()); ty.and_then(|ty| ty.original.as_callable(self.db)) .map(|c| (Some(c.return_type()), None)) .unwrap_or((None, None)) }, ast::ParamList(_) => (None, None), ast::Stmt(_) => (None, None), ast::Item(_) => (None, None), _ => { match node.parent() { Some(n) => { node = n; continue; }, None => (None, None), } }, } }; } } /// Fill the completion context, this is what does semantic reasoning about the surrounding context /// of the completion location. fn fill( &mut self, original_file: &SyntaxNode, file_with_fake_ident: SyntaxNode, offset: TextSize, derive_ctx: Option<(SyntaxNode, SyntaxNode, TextSize, ast::Attr)>, ) { let fake_ident_token = file_with_fake_ident.token_at_offset(offset).right_biased().unwrap(); let syntax_element = NodeOrToken::Token(fake_ident_token); if is_in_token_of_for_loop(syntax_element.clone()) { // for pat $0 // there is nothing to complete here except `in` keyword // don't bother populating the context // FIXME: the completion calculations should end up good enough // such that this special case becomes unnecessary return; } self.previous_token = previous_token(syntax_element.clone()); self.fake_attribute_under_caret = syntax_element.ancestors().find_map(ast::Attr::cast); self.incomplete_let = syntax_element.ancestors().take(6).find_map(ast::LetStmt::cast).map_or(false, |it| { it.syntax().text_range().end() == syntax_element.text_range().end() }); (self.expected_type, self.expected_name) = self.expected_type_and_name(); // Overwrite the path kind for derives if let Some((original_file, file_with_fake_ident, offset, origin_attr)) = derive_ctx { self.existing_derives = self .sema .resolve_derive_macro(&origin_attr) .into_iter() .flatten() .flatten() .collect(); if let Some(ast::NameLike::NameRef(name_ref)) = find_node_at_offset(&file_with_fake_ident, offset) { self.name_syntax = find_node_at_offset(&original_file, name_ref.syntax().text_range().start()); if let Some((path_ctx, _)) = Self::classify_name_ref(&self.sema, &original_file, name_ref) { self.path_context = Some(PathCompletionCtx { kind: Some(PathKind::Derive), ..path_ctx }); } } return; } let name_like = match find_node_at_offset(&file_with_fake_ident, offset) { Some(it) => it, None => return, }; self.completion_location = determine_location(&self.sema, original_file, offset, &name_like); self.prev_sibling = determine_prev_sibling(&name_like); self.name_syntax = find_node_at_offset(original_file, name_like.syntax().text_range().start()); self.impl_def = self .sema .token_ancestors_with_macros(self.token.clone()) .take_while(|it| it.kind() != SOURCE_FILE && it.kind() != MODULE) .find_map(ast::Impl::cast); self.function_def = self .sema .token_ancestors_with_macros(self.token.clone()) .take_while(|it| it.kind() != SOURCE_FILE && it.kind() != MODULE) .find_map(ast::Fn::cast); match name_like { ast::NameLike::Lifetime(lifetime) => { self.lifetime_ctx = Self::classify_lifetime(&self.sema, original_file, lifetime); } ast::NameLike::NameRef(name_ref) => { if let Some((path_ctx, pat_ctx)) = Self::classify_name_ref(&self.sema, original_file, name_ref) { self.path_context = Some(path_ctx); self.pattern_ctx = pat_ctx; } } ast::NameLike::Name(name) => { if let Some((name_ctx, pat_ctx)) = Self::classify_name(&self.sema, original_file, name) { self.pattern_ctx = pat_ctx; self.name_ctx = Some(name_ctx); } } } } fn classify_lifetime( _sema: &Semantics, _original_file: &SyntaxNode, lifetime: ast::Lifetime, ) -> Option { let parent = lifetime.syntax().parent()?; if parent.kind() == ERROR { return None; } Some(match_ast! { match parent { ast::LifetimeParam(param) => LifetimeContext::LifetimeParam { is_decl: param.lifetime().as_ref() == Some(&lifetime), param }, ast::BreakExpr(_) => LifetimeContext::LabelRef, ast::ContinueExpr(_) => LifetimeContext::LabelRef, ast::Label(_) => LifetimeContext::LabelDef, _ => LifetimeContext::Lifetime, } }) } fn classify_name( _sema: &Semantics, original_file: &SyntaxNode, name: ast::Name, ) -> Option<(NameContext, Option)> { let parent = name.syntax().parent()?; let mut pat_ctx = None; let name_ctx = match_ast! { match parent { ast::Const(_) => NameContext::Const, ast::ConstParam(_) => NameContext::ConstParam, ast::Enum(_) => NameContext::Enum, ast::Fn(_) => NameContext::Function, ast::IdentPat(bind_pat) => { let is_name_in_field_pat = bind_pat .syntax() .parent() .and_then(ast::RecordPatField::cast) .map_or(false, |pat_field| pat_field.name_ref().is_none()); if !is_name_in_field_pat { pat_ctx = Some(pattern_context_for(original_file, bind_pat.into())); } NameContext::IdentPat }, ast::MacroDef(_) => NameContext::MacroDef, ast::MacroRules(_) => NameContext::MacroRules, ast::Module(module) => NameContext::Module(module), ast::RecordField(_) => NameContext::RecordField, ast::Rename(_) => NameContext::Rename, ast::SelfParam(_) => NameContext::SelfParam, ast::Static(_) => NameContext::Static, ast::Struct(_) => NameContext::Struct, ast::Trait(_) => NameContext::Trait, ast::TypeAlias(_) => NameContext::TypeAlias, ast::TypeParam(_) => NameContext::TypeParam, ast::Union(_) => NameContext::Union, ast::Variant(_) => NameContext::Variant, _ => return None, } }; Some((name_ctx, pat_ctx)) } fn classify_name_ref( sema: &Semantics, original_file: &SyntaxNode, name_ref: ast::NameRef, ) -> Option<(PathCompletionCtx, Option)> { let parent = name_ref.syntax().parent()?; let segment = ast::PathSegment::cast(parent)?; let path = segment.parent_path(); let mut path_ctx = PathCompletionCtx { has_call_parens: false, is_absolute_path: false, qualifier: None, has_type_args: false, can_be_stmt: false, in_loop_body: false, kind: None, }; let mut pat_ctx = None; path_ctx.in_loop_body = is_in_loop_body(name_ref.syntax()); path_ctx.kind = path.syntax().ancestors().find_map(|it| { // using Option> as extra controlflow let kind = match_ast! { match it { ast::PathType(_) => Some(PathKind::Type), ast::PathExpr(it) => { path_ctx.has_call_parens = it.syntax().parent().map_or(false, |it| ast::CallExpr::can_cast(it.kind())); Some(PathKind::Expr) }, ast::TupleStructPat(it) => { path_ctx.has_call_parens = true; pat_ctx = Some(pattern_context_for(original_file, it.into())); Some(PathKind::Pat) }, ast::RecordPat(it) => { path_ctx.has_call_parens = true; pat_ctx = Some(pattern_context_for(original_file, it.into())); Some(PathKind::Pat) }, ast::PathPat(it) => { pat_ctx = Some(pattern_context_for(original_file, it.into())); Some(PathKind::Pat) }, ast::MacroCall(it) => it.excl_token().and(Some(PathKind::Mac)), ast::Meta(meta) => (|| { let attr = meta.parent_attr()?; let kind = attr.kind(); let attached = attr.syntax().parent()?; let is_trailing_outer_attr = kind != AttrKind::Inner && non_trivia_sibling(attr.syntax().clone().into(), syntax::Direction::Next).is_none(); let annotated_item_kind = if is_trailing_outer_attr { None } else { Some(attached.kind()) }; Some(PathKind::Attr { kind, annotated_item_kind, }) })(), ast::Visibility(it) => Some(PathKind::Vis { has_in_token: it.in_token().is_some() }), ast::UseTree(_) => Some(PathKind::Use), _ => return None, } }; Some(kind) }).flatten(); path_ctx.has_type_args = segment.generic_arg_list().is_some(); if let Some((path, use_tree_parent)) = path_or_use_tree_qualifier(&path) { if !use_tree_parent { path_ctx.is_absolute_path = path.top_path().segment().map_or(false, |it| it.coloncolon_token().is_some()); } let path = path .segment() .and_then(|it| find_node_in_file(original_file, &it)) .map(|it| it.parent_path()); path_ctx.qualifier = path.map(|path| { let res = sema.resolve_path(&path); let is_super_chain = iter::successors(Some(path.clone()), |p| p.qualifier()) .all(|p| p.segment().and_then(|s| s.super_token()).is_some()); PathQualifierCtx { path, resolution: res, is_super_chain, use_tree_parent } }); return Some((path_ctx, pat_ctx)); } if let Some(segment) = path.segment() { if segment.coloncolon_token().is_some() { path_ctx.is_absolute_path = true; return Some((path_ctx, pat_ctx)); } } // Find either enclosing expr statement (thing with `;`) or a // block. If block, check that we are the last expr. path_ctx.can_be_stmt = name_ref .syntax() .ancestors() .find_map(|node| { if let Some(stmt) = ast::ExprStmt::cast(node.clone()) { return Some(stmt.syntax().text_range() == name_ref.syntax().text_range()); } if let Some(stmt_list) = ast::StmtList::cast(node) { return Some( stmt_list.tail_expr().map(|e| e.syntax().text_range()) == Some(name_ref.syntax().text_range()), ); } None }) .unwrap_or(false); Some((path_ctx, pat_ctx)) } } fn pattern_context_for(original_file: &SyntaxNode, pat: ast::Pat) -> PatternContext { let mut is_param = None; let (refutability, has_type_ascription) = pat .syntax() .ancestors() .skip_while(|it| ast::Pat::can_cast(it.kind())) .next() .map_or((PatternRefutability::Irrefutable, false), |node| { let refutability = match_ast! { match node { ast::LetStmt(let_) => return (PatternRefutability::Irrefutable, let_.ty().is_some()), ast::Param(param) => { let has_type_ascription = param.ty().is_some(); is_param = (|| { let fake_param_list = param.syntax().parent().and_then(ast::ParamList::cast)?; let param_list = find_node_in_file_compensated(original_file, &fake_param_list)?; let param_list_owner = param_list.syntax().parent()?; let kind = match_ast! { match param_list_owner { ast::ClosureExpr(closure) => ParamKind::Closure(closure), ast::Fn(fn_) => ParamKind::Function(fn_), _ => return None, } }; Some((param_list, param, kind)) })(); return (PatternRefutability::Irrefutable, has_type_ascription) }, ast::MatchArm(_) => PatternRefutability::Refutable, ast::LetExpr(_) => PatternRefutability::Refutable, ast::ForExpr(_) => PatternRefutability::Irrefutable, _ => PatternRefutability::Irrefutable, } }; (refutability, false) }); let (ref_token, mut_token) = match &pat { ast::Pat::IdentPat(it) => (it.ref_token(), it.mut_token()), _ => (None, None), }; PatternContext { refutability, param_ctx: is_param, has_type_ascription, parent_pat: pat.syntax().parent().and_then(ast::Pat::cast), mut_token, ref_token, } } /// Attempts to find `node` inside `syntax` via `node`'s text range. fn find_node_in_file(syntax: &SyntaxNode, node: &N) -> Option { let syntax_range = syntax.text_range(); let range = node.syntax().text_range(); let intersection = range.intersect(syntax_range)?; syntax.covering_element(intersection).ancestors().find_map(N::cast) } /// Attempts to find `node` inside `syntax` via `node`'s text range while compensating /// for the offset introduced by the fake ident. /// This is wrong if `node` comes before the insertion point! Use `find_node_in_file` instead. fn find_node_in_file_compensated(syntax: &SyntaxNode, node: &N) -> Option { let syntax_range = syntax.text_range(); let range = node.syntax().text_range(); let end = range.end().checked_sub(TextSize::try_from(COMPLETION_MARKER.len()).ok()?)?; if end < range.start() { return None; } let range = TextRange::new(range.start(), end); // our inserted ident could cause `range` to be go outside of the original syntax, so cap it let intersection = range.intersect(syntax_range)?; syntax.covering_element(intersection).ancestors().find_map(N::cast) } fn path_or_use_tree_qualifier(path: &ast::Path) -> Option<(ast::Path, bool)> { if let Some(qual) = path.qualifier() { return Some((qual, false)); } let use_tree_list = path.syntax().ancestors().find_map(ast::UseTreeList::cast)?; let use_tree = use_tree_list.syntax().parent().and_then(ast::UseTree::cast)?; Some((use_tree.path()?, true)) } fn has_ref(token: &SyntaxToken) -> bool { let mut token = token.clone(); for skip in [IDENT, WHITESPACE, T![mut]] { if token.kind() == skip { token = match token.prev_token() { Some(it) => it, None => return false, } } } token.kind() == T![&] } const OP_TRAIT_LANG_NAMES: &[&str] = &[ "add_assign", "add", "bitand_assign", "bitand", "bitor_assign", "bitor", "bitxor_assign", "bitxor", "deref_mut", "deref", "div_assign", "div", "eq", "fn_mut", "fn_once", "fn", "index_mut", "index", "mul_assign", "mul", "neg", "not", "partial_ord", "rem_assign", "rem", "shl_assign", "shl", "shr_assign", "shr", "sub", ]; #[cfg(test)] mod tests { use expect_test::{expect, Expect}; use hir::HirDisplay; use crate::tests::{position, TEST_CONFIG}; use super::CompletionContext; fn check_expected_type_and_name(ra_fixture: &str, expect: Expect) { let (db, pos) = position(ra_fixture); let config = TEST_CONFIG; let completion_context = CompletionContext::new(&db, pos, &config).unwrap(); let ty = completion_context .expected_type .map(|t| t.display_test(&db).to_string()) .unwrap_or("?".to_owned()); let name = completion_context .expected_name .map_or_else(|| "?".to_owned(), |name| name.to_string()); expect.assert_eq(&format!("ty: {}, name: {}", ty, name)); } #[test] fn expected_type_let_without_leading_char() { cov_mark::check!(expected_type_let_without_leading_char); check_expected_type_and_name( r#" fn foo() { let x: u32 = $0; } "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_let_with_leading_char() { cov_mark::check!(expected_type_let_with_leading_char); check_expected_type_and_name( r#" fn foo() { let x: u32 = c$0; } "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_let_pat() { check_expected_type_and_name( r#" fn foo() { let x$0 = 0u32; } "#, expect![[r#"ty: u32, name: ?"#]], ); check_expected_type_and_name( r#" fn foo() { let $0 = 0u32; } "#, expect![[r#"ty: u32, name: ?"#]], ); } #[test] fn expected_type_fn_param() { cov_mark::check!(expected_type_fn_param); check_expected_type_and_name( r#" fn foo() { bar($0); } fn bar(x: u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); check_expected_type_and_name( r#" fn foo() { bar(c$0); } fn bar(x: u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_fn_param_ref() { cov_mark::check!(expected_type_fn_param_ref); check_expected_type_and_name( r#" fn foo() { bar(&$0); } fn bar(x: &u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); check_expected_type_and_name( r#" fn foo() { bar(&mut $0); } fn bar(x: &mut u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); check_expected_type_and_name( r#" fn foo() { bar(& c$0); } fn bar(x: &u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); check_expected_type_and_name( r#" fn foo() { bar(&mut c$0); } fn bar(x: &mut u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); check_expected_type_and_name( r#" fn foo() { bar(&c$0); } fn bar(x: &u32) {} "#, expect![[r#"ty: u32, name: x"#]], ); } #[test] fn expected_type_struct_field_without_leading_char() { cov_mark::check!(expected_type_struct_field_without_leading_char); check_expected_type_and_name( r#" struct Foo { a: u32 } fn foo() { Foo { a: $0 }; } "#, expect![[r#"ty: u32, name: a"#]], ) } #[test] fn expected_type_struct_field_followed_by_comma() { cov_mark::check!(expected_type_struct_field_followed_by_comma); check_expected_type_and_name( r#" struct Foo { a: u32 } fn foo() { Foo { a: $0, }; } "#, expect![[r#"ty: u32, name: a"#]], ) } #[test] fn expected_type_generic_struct_field() { check_expected_type_and_name( r#" struct Foo { a: T } fn foo() -> Foo { Foo { a: $0 } } "#, expect![[r#"ty: u32, name: a"#]], ) } #[test] fn expected_type_struct_field_with_leading_char() { cov_mark::check!(expected_type_struct_field_with_leading_char); check_expected_type_and_name( r#" struct Foo { a: u32 } fn foo() { Foo { a: c$0 }; } "#, expect![[r#"ty: u32, name: a"#]], ); } #[test] fn expected_type_match_arm_without_leading_char() { cov_mark::check!(expected_type_match_arm_without_leading_char); check_expected_type_and_name( r#" enum E { X } fn foo() { match E::X { $0 } } "#, expect![[r#"ty: E, name: ?"#]], ); } #[test] fn expected_type_match_arm_with_leading_char() { cov_mark::check!(expected_type_match_arm_with_leading_char); check_expected_type_and_name( r#" enum E { X } fn foo() { match E::X { c$0 } } "#, expect![[r#"ty: E, name: ?"#]], ); } #[test] fn expected_type_if_let_without_leading_char() { cov_mark::check!(expected_type_if_let_without_leading_char); check_expected_type_and_name( r#" enum Foo { Bar, Baz, Quux } fn foo() { let f = Foo::Quux; if let $0 = f { } } "#, expect![[r#"ty: Foo, name: ?"#]], ) } #[test] fn expected_type_if_let_with_leading_char() { cov_mark::check!(expected_type_if_let_with_leading_char); check_expected_type_and_name( r#" enum Foo { Bar, Baz, Quux } fn foo() { let f = Foo::Quux; if let c$0 = f { } } "#, expect![[r#"ty: Foo, name: ?"#]], ) } #[test] fn expected_type_fn_ret_without_leading_char() { cov_mark::check!(expected_type_fn_ret_without_leading_char); check_expected_type_and_name( r#" fn foo() -> u32 { $0 } "#, expect![[r#"ty: u32, name: ?"#]], ) } #[test] fn expected_type_fn_ret_with_leading_char() { cov_mark::check!(expected_type_fn_ret_with_leading_char); check_expected_type_and_name( r#" fn foo() -> u32 { c$0 } "#, expect![[r#"ty: u32, name: ?"#]], ) } #[test] fn expected_type_fn_ret_fn_ref_fully_typed() { check_expected_type_and_name( r#" fn foo() -> u32 { foo$0 } "#, expect![[r#"ty: u32, name: ?"#]], ) } #[test] fn expected_type_closure_param_return() { // FIXME: make this work with `|| $0` check_expected_type_and_name( r#" //- minicore: fn fn foo() { bar(|| a$0); } fn bar(f: impl FnOnce() -> u32) {} "#, expect![[r#"ty: u32, name: ?"#]], ); } #[test] fn expected_type_generic_function() { check_expected_type_and_name( r#" fn foo() { bar::($0); } fn bar(t: T) {} "#, expect![[r#"ty: u32, name: t"#]], ); } #[test] fn expected_type_generic_method() { check_expected_type_and_name( r#" fn foo() { S(1u32).bar($0); } struct S(T); impl S { fn bar(self, t: T) {} } "#, expect![[r#"ty: u32, name: t"#]], ); } #[test] fn expected_type_functional_update() { cov_mark::check!(expected_type_struct_func_update); check_expected_type_and_name( r#" struct Foo { field: u32 } fn foo() { Foo { ..$0 } } "#, expect![[r#"ty: Foo, name: ?"#]], ); } #[test] fn expected_type_param_pat() { check_expected_type_and_name( r#" struct Foo { field: u32 } fn foo(a$0: Foo) {} "#, expect![[r#"ty: Foo, name: ?"#]], ); check_expected_type_and_name( r#" struct Foo { field: u32 } fn foo($0: Foo) {} "#, // FIXME make this work, currently fails due to pattern recovery eating the `:` expect![[r#"ty: ?, name: ?"#]], ); } }