//! Type inference, i.e. the process of walking through the code and determining //! the type of each expression and pattern. //! //! For type inference, compare the implementations in rustc (the various //! check_* methods in librustc_typeck/check/mod.rs are a good entry point) and //! IntelliJ-Rust (org.rust.lang.core.types.infer). Our entry point for //! inference here is the `infer` function, which infers the types of all //! expressions in a given function. //! //! During inference, types (i.e. the `Ty` struct) can contain type 'variables' //! which represent currently unknown types; as we walk through the expressions, //! we might determine that certain variables need to be equal to each other, or //! to certain types. To record this, we use the union-find implementation from //! the `ena` crate, which is extracted from rustc. use std::borrow::Cow; use std::mem; use std::ops::Index; use std::sync::Arc; use rustc_hash::FxHashMap; use hir_def::{ body::Body, data::{ConstData, FunctionData}, expr::{BindingAnnotation, ExprId, PatId}, path::{path, Path}, resolver::{HasResolver, Resolver, TypeNs}, type_ref::{Mutability, TypeRef}, AdtId, AssocItemId, DefWithBodyId, FunctionId, StructFieldId, TypeAliasId, VariantId, }; use hir_expand::{diagnostics::DiagnosticSink, name::name}; use ra_arena::map::ArenaMap; use ra_prof::profile; use test_utils::tested_by; use super::{ primitive::{FloatTy, IntTy}, traits::{Guidance, Obligation, ProjectionPredicate, Solution}, ApplicationTy, InEnvironment, ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypeCtor, TypeWalk, Uncertain, }; use crate::{db::HirDatabase, infer::diagnostics::InferenceDiagnostic}; pub(crate) use unify::unify; macro_rules! ty_app { ($ctor:pat, $param:pat) => { crate::Ty::Apply(crate::ApplicationTy { ctor: $ctor, parameters: $param }) }; ($ctor:pat) => { ty_app!($ctor, _) }; } mod unify; mod path; mod expr; mod pat; mod coerce; /// The entry point of type inference. pub fn infer_query(db: &impl HirDatabase, def: DefWithBodyId) -> Arc { let _p = profile("infer_query"); let resolver = def.resolver(db); let mut ctx = InferenceContext::new(db, def, resolver); match def { DefWithBodyId::ConstId(c) => ctx.collect_const(&db.const_data(c)), DefWithBodyId::FunctionId(f) => ctx.collect_fn(&db.function_data(f)), DefWithBodyId::StaticId(s) => ctx.collect_const(&db.static_data(s)), } ctx.infer_body(); Arc::new(ctx.resolve_all()) } #[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)] enum ExprOrPatId { ExprId(ExprId), PatId(PatId), } impl_froms!(ExprOrPatId: ExprId, PatId); /// Binding modes inferred for patterns. /// https://doc.rust-lang.org/reference/patterns.html#binding-modes #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum BindingMode { Move, Ref(Mutability), } impl BindingMode { pub fn convert(annotation: BindingAnnotation) -> BindingMode { match annotation { BindingAnnotation::Unannotated | BindingAnnotation::Mutable => BindingMode::Move, BindingAnnotation::Ref => BindingMode::Ref(Mutability::Shared), BindingAnnotation::RefMut => BindingMode::Ref(Mutability::Mut), } } } impl Default for BindingMode { fn default() -> Self { BindingMode::Move } } /// A mismatch between an expected and an inferred type. #[derive(Clone, PartialEq, Eq, Debug, Hash)] pub struct TypeMismatch { pub expected: Ty, pub actual: Ty, } /// The result of type inference: A mapping from expressions and patterns to types. #[derive(Clone, PartialEq, Eq, Debug, Default)] pub struct InferenceResult { /// For each method call expr, records the function it resolves to. method_resolutions: FxHashMap, /// For each field access expr, records the field it resolves to. field_resolutions: FxHashMap, /// For each field in record literal, records the field it resolves to. record_field_resolutions: FxHashMap, /// For each struct literal, records the variant it resolves to. variant_resolutions: FxHashMap, /// For each associated item record what it resolves to assoc_resolutions: FxHashMap, diagnostics: Vec, pub type_of_expr: ArenaMap, pub type_of_pat: ArenaMap, pub(super) type_mismatches: ArenaMap, } impl InferenceResult { pub fn method_resolution(&self, expr: ExprId) -> Option { self.method_resolutions.get(&expr).copied() } pub fn field_resolution(&self, expr: ExprId) -> Option { self.field_resolutions.get(&expr).copied() } pub fn record_field_resolution(&self, expr: ExprId) -> Option { self.record_field_resolutions.get(&expr).copied() } pub fn variant_resolution_for_expr(&self, id: ExprId) -> Option { self.variant_resolutions.get(&id.into()).copied() } pub fn variant_resolution_for_pat(&self, id: PatId) -> Option { self.variant_resolutions.get(&id.into()).copied() } pub fn assoc_resolutions_for_expr(&self, id: ExprId) -> Option { self.assoc_resolutions.get(&id.into()).copied() } pub fn assoc_resolutions_for_pat(&self, id: PatId) -> Option { self.assoc_resolutions.get(&id.into()).copied() } pub fn type_mismatch_for_expr(&self, expr: ExprId) -> Option<&TypeMismatch> { self.type_mismatches.get(expr) } pub fn add_diagnostics( &self, db: &impl HirDatabase, owner: FunctionId, sink: &mut DiagnosticSink, ) { self.diagnostics.iter().for_each(|it| it.add_to(db, owner, sink)) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, expr: ExprId) -> &Ty { self.type_of_expr.get(expr).unwrap_or(&Ty::Unknown) } } impl Index for InferenceResult { type Output = Ty; fn index(&self, pat: PatId) -> &Ty { self.type_of_pat.get(pat).unwrap_or(&Ty::Unknown) } } /// The inference context contains all information needed during type inference. #[derive(Clone, Debug)] struct InferenceContext<'a, D: HirDatabase> { db: &'a D, owner: DefWithBodyId, body: Arc, resolver: Resolver, table: unify::InferenceTable, trait_env: Arc, obligations: Vec, result: InferenceResult, /// The return type of the function being inferred. return_ty: Ty, /// Impls of `CoerceUnsized` used in coercion. /// (from_ty_ctor, to_ty_ctor) => coerce_generic_index // FIXME: Use trait solver for this. // Chalk seems unable to work well with builtin impl of `Unsize` now. coerce_unsized_map: FxHashMap<(TypeCtor, TypeCtor), usize>, } impl<'a, D: HirDatabase> InferenceContext<'a, D> { fn new(db: &'a D, owner: DefWithBodyId, resolver: Resolver) -> Self { InferenceContext { result: InferenceResult::default(), table: unify::InferenceTable::new(), obligations: Vec::default(), return_ty: Ty::Unknown, // set in collect_fn_signature trait_env: TraitEnvironment::lower(db, &resolver), coerce_unsized_map: Self::init_coerce_unsized_map(db, &resolver), db, owner, body: db.body(owner.into()), resolver, } } fn resolve_all(mut self) -> InferenceResult { // FIXME resolve obligations as well (use Guidance if necessary) let mut result = mem::replace(&mut self.result, InferenceResult::default()); for ty in result.type_of_expr.values_mut() { let resolved = self.table.resolve_ty_completely(mem::replace(ty, Ty::Unknown)); *ty = resolved; } for ty in result.type_of_pat.values_mut() { let resolved = self.table.resolve_ty_completely(mem::replace(ty, Ty::Unknown)); *ty = resolved; } result } fn write_expr_ty(&mut self, expr: ExprId, ty: Ty) { self.result.type_of_expr.insert(expr, ty); } fn write_method_resolution(&mut self, expr: ExprId, func: FunctionId) { self.result.method_resolutions.insert(expr, func); } fn write_field_resolution(&mut self, expr: ExprId, field: StructFieldId) { self.result.field_resolutions.insert(expr, field); } fn write_variant_resolution(&mut self, id: ExprOrPatId, variant: VariantId) { self.result.variant_resolutions.insert(id, variant); } fn write_assoc_resolution(&mut self, id: ExprOrPatId, item: AssocItemId) { self.result.assoc_resolutions.insert(id, item.into()); } fn write_pat_ty(&mut self, pat: PatId, ty: Ty) { self.result.type_of_pat.insert(pat, ty); } fn push_diagnostic(&mut self, diagnostic: InferenceDiagnostic) { self.result.diagnostics.push(diagnostic); } fn make_ty(&mut self, type_ref: &TypeRef) -> Ty { let ty = Ty::from_hir( self.db, // FIXME use right resolver for block &self.resolver, type_ref, ); let ty = self.insert_type_vars(ty); self.normalize_associated_types_in(ty) } /// Replaces `impl Trait` in `ty` by type variables and obligations for /// those variables. This is done for function arguments when calling a /// function, and for return types when inside the function body, i.e. in /// the cases where the `impl Trait` is 'transparent'. In other cases, `impl /// Trait` is represented by `Ty::Opaque`. fn insert_vars_for_impl_trait(&mut self, ty: Ty) -> Ty { ty.fold(&mut |ty| match ty { Ty::Opaque(preds) => { tested_by!(insert_vars_for_impl_trait); let var = self.table.new_type_var(); let var_subst = Substs::builder(1).push(var.clone()).build(); self.obligations.extend( preds .iter() .map(|pred| pred.clone().subst_bound_vars(&var_subst)) .filter_map(Obligation::from_predicate), ); var } _ => ty, }) } /// Replaces Ty::Unknown by a new type var, so we can maybe still infer it. fn insert_type_vars_shallow(&mut self, ty: Ty) -> Ty { match ty { Ty::Unknown => self.table.new_type_var(), Ty::Apply(ApplicationTy { ctor: TypeCtor::Int(Uncertain::Unknown), .. }) => { self.table.new_integer_var() } Ty::Apply(ApplicationTy { ctor: TypeCtor::Float(Uncertain::Unknown), .. }) => { self.table.new_float_var() } _ => ty, } } fn insert_type_vars(&mut self, ty: Ty) -> Ty { ty.fold(&mut |ty| self.insert_type_vars_shallow(ty)) } fn resolve_obligations_as_possible(&mut self) { let obligations = mem::replace(&mut self.obligations, Vec::new()); for obligation in obligations { let in_env = InEnvironment::new(self.trait_env.clone(), obligation.clone()); let canonicalized = self.canonicalizer().canonicalize_obligation(in_env); let solution = self .db .trait_solve(self.resolver.krate().unwrap().into(), canonicalized.value.clone()); match solution { Some(Solution::Unique(substs)) => { canonicalized.apply_solution(self, substs.0); } Some(Solution::Ambig(Guidance::Definite(substs))) => { canonicalized.apply_solution(self, substs.0); self.obligations.push(obligation); } Some(_) => { // FIXME use this when trying to resolve everything at the end self.obligations.push(obligation); } None => { // FIXME obligation cannot be fulfilled => diagnostic } }; } } fn unify(&mut self, ty1: &Ty, ty2: &Ty) -> bool { self.table.unify(ty1, ty2) } /// Resolves the type as far as currently possible, replacing type variables /// by their known types. All types returned by the infer_* functions should /// be resolved as far as possible, i.e. contain no type variables with /// known type. fn resolve_ty_as_possible(&mut self, ty: Ty) -> Ty { self.resolve_obligations_as_possible(); self.table.resolve_ty_as_possible(ty) } fn resolve_ty_shallow<'b>(&mut self, ty: &'b Ty) -> Cow<'b, Ty> { self.table.resolve_ty_shallow(ty) } fn resolve_associated_type(&mut self, inner_ty: Ty, assoc_ty: Option) -> Ty { self.resolve_associated_type_with_params(inner_ty, assoc_ty, &[]) } fn resolve_associated_type_with_params( &mut self, inner_ty: Ty, assoc_ty: Option, params: &[Ty], ) -> Ty { match assoc_ty { Some(res_assoc_ty) => { let ty = self.table.new_type_var(); let mut builder = Substs::builder(1 + params.len()).push(inner_ty); for ty in params { builder = builder.push(ty.clone()); } let projection = ProjectionPredicate { ty: ty.clone(), projection_ty: ProjectionTy { associated_ty: res_assoc_ty, parameters: builder.build(), }, }; self.obligations.push(Obligation::Projection(projection)); self.resolve_ty_as_possible(ty) } None => Ty::Unknown, } } /// Recurses through the given type, normalizing associated types mentioned /// in it by replacing them by type variables and registering obligations to /// resolve later. This should be done once for every type we get from some /// type annotation (e.g. from a let type annotation, field type or function /// call). `make_ty` handles this already, but e.g. for field types we need /// to do it as well. fn normalize_associated_types_in(&mut self, ty: Ty) -> Ty { let ty = self.resolve_ty_as_possible(ty); ty.fold(&mut |ty| match ty { Ty::Projection(proj_ty) => self.normalize_projection_ty(proj_ty), _ => ty, }) } fn normalize_projection_ty(&mut self, proj_ty: ProjectionTy) -> Ty { let var = self.table.new_type_var(); let predicate = ProjectionPredicate { projection_ty: proj_ty, ty: var.clone() }; let obligation = Obligation::Projection(predicate); self.obligations.push(obligation); var } fn resolve_variant(&mut self, path: Option<&Path>) -> (Ty, Option) { let path = match path { Some(path) => path, None => return (Ty::Unknown, None), }; let resolver = &self.resolver; // FIXME: this should resolve assoc items as well, see this example: // https://play.rust-lang.org/?gist=087992e9e22495446c01c0d4e2d69521 match resolver.resolve_path_in_type_ns_fully(self.db, path.mod_path()) { Some(TypeNs::AdtId(AdtId::StructId(strukt))) => { let substs = Ty::substs_from_path(self.db, resolver, path, strukt.into()); let ty = self.db.ty(strukt.into()); let ty = self.insert_type_vars(ty.apply_substs(substs)); (ty, Some(strukt.into())) } Some(TypeNs::EnumVariantId(var)) => { let substs = Ty::substs_from_path(self.db, resolver, path, var.into()); let ty = self.db.ty(var.parent.into()); let ty = self.insert_type_vars(ty.apply_substs(substs)); (ty, Some(var.into())) } Some(_) | None => (Ty::Unknown, None), } } fn collect_const(&mut self, data: &ConstData) { self.return_ty = self.make_ty(&data.type_ref); } fn collect_fn(&mut self, data: &FunctionData) { let body = Arc::clone(&self.body); // avoid borrow checker problem for (type_ref, pat) in data.params.iter().zip(body.params.iter()) { let ty = self.make_ty(type_ref); self.infer_pat(*pat, &ty, BindingMode::default()); } let return_ty = self.make_ty(&data.ret_type); self.return_ty = self.insert_vars_for_impl_trait(return_ty); } fn infer_body(&mut self) { self.infer_expr(self.body.body_expr, &Expectation::has_type(self.return_ty.clone())); } fn resolve_into_iter_item(&self) -> Option { let path = path![std::iter::IntoIterator]; let trait_ = self.resolver.resolve_known_trait(self.db, &path)?; self.db.trait_data(trait_).associated_type_by_name(&name![Item]) } fn resolve_ops_try_ok(&self) -> Option { let path = path![std::ops::Try]; let trait_ = self.resolver.resolve_known_trait(self.db, &path)?; self.db.trait_data(trait_).associated_type_by_name(&name![Ok]) } fn resolve_ops_neg_output(&self) -> Option { let path = path![std::ops::Neg]; let trait_ = self.resolver.resolve_known_trait(self.db, &path)?; self.db.trait_data(trait_).associated_type_by_name(&name![Output]) } fn resolve_ops_not_output(&self) -> Option { let path = path![std::ops::Not]; let trait_ = self.resolver.resolve_known_trait(self.db, &path)?; self.db.trait_data(trait_).associated_type_by_name(&name![Output]) } fn resolve_future_future_output(&self) -> Option { let path = path![std::future::Future]; let trait_ = self.resolver.resolve_known_trait(self.db, &path)?; self.db.trait_data(trait_).associated_type_by_name(&name![Output]) } fn resolve_boxed_box(&self) -> Option { let path = path![std::boxed::Box]; let struct_ = self.resolver.resolve_known_struct(self.db, &path)?; Some(struct_.into()) } fn resolve_range_full(&self) -> Option { let path = path![std::ops::RangeFull]; let struct_ = self.resolver.resolve_known_struct(self.db, &path)?; Some(struct_.into()) } fn resolve_range(&self) -> Option { let path = path![std::ops::Range]; let struct_ = self.resolver.resolve_known_struct(self.db, &path)?; Some(struct_.into()) } fn resolve_range_inclusive(&self) -> Option { let path = path![std::ops::RangeInclusive]; let struct_ = self.resolver.resolve_known_struct(self.db, &path)?; Some(struct_.into()) } fn resolve_range_from(&self) -> Option { let path = path![std::ops::RangeFrom]; let struct_ = self.resolver.resolve_known_struct(self.db, &path)?; Some(struct_.into()) } fn resolve_range_to(&self) -> Option { let path = path![std::ops::RangeTo]; let struct_ = self.resolver.resolve_known_struct(self.db, &path)?; Some(struct_.into()) } fn resolve_range_to_inclusive(&self) -> Option { let path = path![std::ops::RangeToInclusive]; let struct_ = self.resolver.resolve_known_struct(self.db, &path)?; Some(struct_.into()) } fn resolve_ops_index_output(&self) -> Option { let path = path![std::ops::Index]; let trait_ = self.resolver.resolve_known_trait(self.db, &path)?; self.db.trait_data(trait_).associated_type_by_name(&name![Output]) } } /// The kinds of placeholders we need during type inference. There's separate /// values for general types, and for integer and float variables. The latter /// two are used for inference of literal values (e.g. `100` could be one of /// several integer types). #[derive(Clone, Copy, PartialEq, Eq, Hash, Debug)] pub enum InferTy { TypeVar(unify::TypeVarId), IntVar(unify::TypeVarId), FloatVar(unify::TypeVarId), MaybeNeverTypeVar(unify::TypeVarId), } impl InferTy { fn to_inner(self) -> unify::TypeVarId { match self { InferTy::TypeVar(ty) | InferTy::IntVar(ty) | InferTy::FloatVar(ty) | InferTy::MaybeNeverTypeVar(ty) => ty, } } fn fallback_value(self) -> Ty { match self { InferTy::TypeVar(..) => Ty::Unknown, InferTy::IntVar(..) => Ty::simple(TypeCtor::Int(Uncertain::Known(IntTy::i32()))), InferTy::FloatVar(..) => Ty::simple(TypeCtor::Float(Uncertain::Known(FloatTy::f64()))), InferTy::MaybeNeverTypeVar(..) => Ty::simple(TypeCtor::Never), } } } /// When inferring an expression, we propagate downward whatever type hint we /// are able in the form of an `Expectation`. #[derive(Clone, PartialEq, Eq, Debug)] struct Expectation { ty: Ty, // FIXME: In some cases, we need to be aware whether the expectation is that // the type match exactly what we passed, or whether it just needs to be // coercible to the expected type. See Expectation::rvalue_hint in rustc. } impl Expectation { /// The expectation that the type of the expression needs to equal the given /// type. fn has_type(ty: Ty) -> Self { Expectation { ty } } /// This expresses no expectation on the type. fn none() -> Self { Expectation { ty: Ty::Unknown } } } mod diagnostics { use hir_def::{expr::ExprId, src::HasSource, FunctionId, Lookup}; use hir_expand::diagnostics::DiagnosticSink; use crate::{db::HirDatabase, diagnostics::NoSuchField}; #[derive(Debug, PartialEq, Eq, Clone)] pub(super) enum InferenceDiagnostic { NoSuchField { expr: ExprId, field: usize }, } impl InferenceDiagnostic { pub(super) fn add_to( &self, db: &impl HirDatabase, owner: FunctionId, sink: &mut DiagnosticSink, ) { match self { InferenceDiagnostic::NoSuchField { expr, field } => { let file = owner.lookup(db).source(db).file_id; let (_, source_map) = db.body_with_source_map(owner.into()); let field = source_map.field_syntax(*expr, *field); sink.push(NoSuchField { file, field }) } } } } }