//! HIR (previously known as descriptors) provides a high-level object oriented //! access to Rust code. //! //! The principal difference between HIR and syntax trees is that HIR is bound //! to a particular crate instance. That is, it has cfg flags and features //! applied. So, the relation between syntax and HIR is many-to-one. //! //! HIR is the public API of the all of the compiler logic above syntax trees. //! It is written in "OO" style. Each type is self contained (as in, it knows it's //! parents and full context). It should be "clean code". //! //! `hir_*` crates are the implementation of the compiler logic. //! They are written in "ECS" style, with relatively little abstractions. //! Many types are not self-contained, and explicitly use local indexes, arenas, etc. //! //! `hir` is what insulates the "we don't know how to actually write an incremental compiler" //! from the ide with completions, hovers, etc. It is a (soft, internal) boundary: //! . #![recursion_limit = "512"] mod semantics; mod source_analyzer; mod from_id; mod attrs; mod has_source; pub mod diagnostics; pub mod db; mod display; use std::{iter, ops::ControlFlow, sync::Arc}; use arrayvec::ArrayVec; use base_db::{CrateDisplayName, CrateId, CrateOrigin, Edition, FileId}; use either::Either; use hir_def::{ adt::{ReprKind, VariantData}, body::{BodyDiagnostic, SyntheticSyntax}, expr::{BindingAnnotation, LabelId, Pat, PatId}, lang_item::LangItemTarget, nameres, per_ns::PerNs, resolver::{HasResolver, Resolver}, AttrDefId, ConstId, ConstParamId, EnumId, FunctionId, GenericDefId, HasModule, LifetimeParamId, LocalEnumVariantId, LocalFieldId, StaticId, StructId, TypeAliasId, TypeParamId, UnionId, }; use hir_expand::{name::name, MacroCallKind, MacroDefKind}; use hir_ty::{ autoderef, consteval::ConstExt, could_unify, diagnostics::BodyValidationDiagnostic, method_resolution::{self, TyFingerprint}, primitive::UintTy, subst_prefix, traits::FnTrait, AliasEq, AliasTy, BoundVar, CallableDefId, CallableSig, Canonical, CanonicalVarKinds, Cast, DebruijnIndex, InEnvironment, Interner, QuantifiedWhereClause, Scalar, Solution, Substitution, TraitEnvironment, TraitRefExt, Ty, TyBuilder, TyDefId, TyExt, TyKind, TyVariableKind, WhereClause, }; use itertools::Itertools; use nameres::diagnostics::DefDiagnosticKind; use once_cell::unsync::Lazy; use rustc_hash::FxHashSet; use stdx::{format_to, impl_from}; use syntax::{ ast::{self, HasAttrs as _, HasName}, AstNode, AstPtr, SmolStr, SyntaxKind, SyntaxNodePtr, }; use tt::{Ident, Leaf, Literal, TokenTree}; use crate::db::{DefDatabase, HirDatabase}; pub use crate::{ attrs::{HasAttrs, Namespace}, diagnostics::{ AddReferenceHere, AnyDiagnostic, BreakOutsideOfLoop, InactiveCode, IncorrectCase, InvalidDeriveTarget, MacroError, MalformedDerive, MismatchedArgCount, MissingFields, MissingMatchArms, MissingOkOrSomeInTailExpr, MissingUnsafe, NoSuchField, RemoveThisSemicolon, ReplaceFilterMapNextWithFindMap, UnimplementedBuiltinMacro, UnresolvedExternCrate, UnresolvedImport, UnresolvedMacroCall, UnresolvedModule, UnresolvedProcMacro, }, has_source::HasSource, semantics::{PathResolution, Semantics, SemanticsScope, TypeInfo}, }; // Be careful with these re-exports. // // `hir` is the boundary between the compiler and the IDE. It should try hard to // isolate the compiler from the ide, to allow the two to be refactored // independently. Re-exporting something from the compiler is the sure way to // breach the boundary. // // Generally, a refactoring which *removes* a name from this list is a good // idea! pub use { cfg::{CfgAtom, CfgExpr, CfgOptions}, hir_def::{ adt::StructKind, attr::{Attr, Attrs, AttrsWithOwner, Documentation}, find_path::PrefixKind, import_map, item_scope::ItemScope, item_tree::ItemTreeNode, nameres::{DefMap, ModuleData, ModuleOrigin, ModuleSource}, path::{ModPath, PathKind}, src::HasSource as DefHasSource, // xx: I don't like this shadowing of HasSource... :( type_ref::{Mutability, TypeRef}, visibility::Visibility, AdtId, AssocContainerId, AssocItemId, AssocItemLoc, DefWithBodyId, ImplId, ItemLoc, Lookup, ModuleDefId, ModuleId, TraitId, }, hir_expand::{ name::{known, Name}, ExpandResult, HirFileId, InFile, MacroDefId, MacroFile, Origin, }, hir_ty::display::HirDisplay, }; // These are negative re-exports: pub using these names is forbidden, they // should remain private to hir internals. #[allow(unused)] use { hir_def::path::Path, hir_expand::{hygiene::Hygiene, name::AsName}, }; /// hir::Crate describes a single crate. It's the main interface with which /// a crate's dependencies interact. Mostly, it should be just a proxy for the /// root module. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Crate { pub(crate) id: CrateId, } #[derive(Debug)] pub struct CrateDependency { pub krate: Crate, pub name: Name, } impl Crate { pub fn origin(self, db: &dyn HirDatabase) -> CrateOrigin { db.crate_graph()[self.id].origin.clone() } pub fn dependencies(self, db: &dyn HirDatabase) -> Vec { db.crate_graph()[self.id] .dependencies .iter() .map(|dep| { let krate = Crate { id: dep.crate_id }; let name = dep.as_name(); CrateDependency { krate, name } }) .collect() } pub fn reverse_dependencies(self, db: &dyn HirDatabase) -> Vec { let crate_graph = db.crate_graph(); crate_graph .iter() .filter(|&krate| { crate_graph[krate].dependencies.iter().any(|it| it.crate_id == self.id) }) .map(|id| Crate { id }) .collect() } pub fn transitive_reverse_dependencies(self, db: &dyn HirDatabase) -> Vec { db.crate_graph().transitive_rev_deps(self.id).into_iter().map(|id| Crate { id }).collect() } pub fn root_module(self, db: &dyn HirDatabase) -> Module { let def_map = db.crate_def_map(self.id); Module { id: def_map.module_id(def_map.root()) } } pub fn root_file(self, db: &dyn HirDatabase) -> FileId { db.crate_graph()[self.id].root_file_id } pub fn edition(self, db: &dyn HirDatabase) -> Edition { db.crate_graph()[self.id].edition } pub fn version(self, db: &dyn HirDatabase) -> Option { db.crate_graph()[self.id].version.clone() } pub fn display_name(self, db: &dyn HirDatabase) -> Option { db.crate_graph()[self.id].display_name.clone() } pub fn query_external_importables( self, db: &dyn DefDatabase, query: import_map::Query, ) -> impl Iterator> { let _p = profile::span("query_external_importables"); import_map::search_dependencies(db, self.into(), query).into_iter().map(|item| { match ItemInNs::from(item) { ItemInNs::Types(mod_id) | ItemInNs::Values(mod_id) => Either::Left(mod_id), ItemInNs::Macros(mac_id) => Either::Right(mac_id), } }) } pub fn all(db: &dyn HirDatabase) -> Vec { db.crate_graph().iter().map(|id| Crate { id }).collect() } /// Try to get the root URL of the documentation of a crate. pub fn get_html_root_url(self: &Crate, db: &dyn HirDatabase) -> Option { // Look for #![doc(html_root_url = "...")] let attrs = db.attrs(AttrDefId::ModuleId(self.root_module(db).into())); let doc_attr_q = attrs.by_key("doc"); if !doc_attr_q.exists() { return None; } let doc_url = doc_attr_q.tt_values().map(|tt| { let name = tt.token_trees.iter() .skip_while(|tt| !matches!(tt, TokenTree::Leaf(Leaf::Ident(Ident { text, ..} )) if text == "html_root_url")) .nth(2); match name { Some(TokenTree::Leaf(Leaf::Literal(Literal{ref text, ..}))) => Some(text), _ => None } }).flatten().next(); doc_url.map(|s| s.trim_matches('"').trim_end_matches('/').to_owned() + "/") } pub fn cfg(&self, db: &dyn HirDatabase) -> CfgOptions { db.crate_graph()[self.id].cfg_options.clone() } pub fn potential_cfg(&self, db: &dyn HirDatabase) -> CfgOptions { db.crate_graph()[self.id].potential_cfg_options.clone() } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Module { pub(crate) id: ModuleId, } /// The defs which can be visible in the module. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum ModuleDef { Module(Module), Function(Function), Adt(Adt), // Can't be directly declared, but can be imported. Variant(Variant), Const(Const), Static(Static), Trait(Trait), TypeAlias(TypeAlias), BuiltinType(BuiltinType), } impl_from!( Module, Function, Adt(Struct, Enum, Union), Variant, Const, Static, Trait, TypeAlias, BuiltinType for ModuleDef ); impl From for ModuleDef { fn from(var: VariantDef) -> Self { match var { VariantDef::Struct(t) => Adt::from(t).into(), VariantDef::Union(t) => Adt::from(t).into(), VariantDef::Variant(t) => t.into(), } } } impl ModuleDef { pub fn module(self, db: &dyn HirDatabase) -> Option { match self { ModuleDef::Module(it) => it.parent(db), ModuleDef::Function(it) => Some(it.module(db)), ModuleDef::Adt(it) => Some(it.module(db)), ModuleDef::Variant(it) => Some(it.module(db)), ModuleDef::Const(it) => Some(it.module(db)), ModuleDef::Static(it) => Some(it.module(db)), ModuleDef::Trait(it) => Some(it.module(db)), ModuleDef::TypeAlias(it) => Some(it.module(db)), ModuleDef::BuiltinType(_) => None, } } pub fn canonical_path(&self, db: &dyn HirDatabase) -> Option { let mut segments = vec![self.name(db)?]; for m in self.module(db)?.path_to_root(db) { segments.extend(m.name(db)) } segments.reverse(); Some(segments.into_iter().join("::")) } pub fn canonical_module_path( &self, db: &dyn HirDatabase, ) -> Option> { self.module(db).map(|it| it.path_to_root(db).into_iter().rev()) } pub fn name(self, db: &dyn HirDatabase) -> Option { let name = match self { ModuleDef::Module(it) => it.name(db)?, ModuleDef::Const(it) => it.name(db)?, ModuleDef::Adt(it) => it.name(db), ModuleDef::Trait(it) => it.name(db), ModuleDef::Function(it) => it.name(db), ModuleDef::Variant(it) => it.name(db), ModuleDef::TypeAlias(it) => it.name(db), ModuleDef::Static(it) => it.name(db), ModuleDef::BuiltinType(it) => it.name(), }; Some(name) } pub fn diagnostics(self, db: &dyn HirDatabase) -> Vec { let id = match self { ModuleDef::Adt(it) => match it { Adt::Struct(it) => it.id.into(), Adt::Enum(it) => it.id.into(), Adt::Union(it) => it.id.into(), }, ModuleDef::Trait(it) => it.id.into(), ModuleDef::Function(it) => it.id.into(), ModuleDef::TypeAlias(it) => it.id.into(), ModuleDef::Module(it) => it.id.into(), ModuleDef::Const(it) => it.id.into(), ModuleDef::Static(it) => it.id.into(), _ => return Vec::new(), }; let module = match self.module(db) { Some(it) => it, None => return Vec::new(), }; let mut acc = Vec::new(); match self.as_def_with_body() { Some(def) => { def.diagnostics(db, &mut acc); } None => { for diag in hir_ty::diagnostics::incorrect_case(db, module.id.krate(), id) { acc.push(diag.into()) } } } acc } pub fn as_def_with_body(self) -> Option { match self { ModuleDef::Function(it) => Some(it.into()), ModuleDef::Const(it) => Some(it.into()), ModuleDef::Static(it) => Some(it.into()), ModuleDef::Module(_) | ModuleDef::Adt(_) | ModuleDef::Variant(_) | ModuleDef::Trait(_) | ModuleDef::TypeAlias(_) | ModuleDef::BuiltinType(_) => None, } } pub fn attrs(&self, db: &dyn HirDatabase) -> Option { Some(match self { ModuleDef::Module(it) => it.attrs(db), ModuleDef::Function(it) => it.attrs(db), ModuleDef::Adt(it) => it.attrs(db), ModuleDef::Variant(it) => it.attrs(db), ModuleDef::Const(it) => it.attrs(db), ModuleDef::Static(it) => it.attrs(db), ModuleDef::Trait(it) => it.attrs(db), ModuleDef::TypeAlias(it) => it.attrs(db), ModuleDef::BuiltinType(_) => return None, }) } } impl HasVisibility for ModuleDef { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { match *self { ModuleDef::Module(it) => it.visibility(db), ModuleDef::Function(it) => it.visibility(db), ModuleDef::Adt(it) => it.visibility(db), ModuleDef::Const(it) => it.visibility(db), ModuleDef::Static(it) => it.visibility(db), ModuleDef::Trait(it) => it.visibility(db), ModuleDef::TypeAlias(it) => it.visibility(db), ModuleDef::Variant(it) => it.visibility(db), ModuleDef::BuiltinType(_) => Visibility::Public, } } } impl Module { /// Name of this module. pub fn name(self, db: &dyn HirDatabase) -> Option { let def_map = self.id.def_map(db.upcast()); let parent = def_map[self.id.local_id].parent?; def_map[parent].children.iter().find_map(|(name, module_id)| { if *module_id == self.id.local_id { Some(name.clone()) } else { None } }) } /// Returns the crate this module is part of. pub fn krate(self) -> Crate { Crate { id: self.id.krate() } } /// Topmost parent of this module. Every module has a `crate_root`, but some /// might be missing `krate`. This can happen if a module's file is not included /// in the module tree of any target in `Cargo.toml`. pub fn crate_root(self, db: &dyn HirDatabase) -> Module { let def_map = db.crate_def_map(self.id.krate()); Module { id: def_map.module_id(def_map.root()) } } /// Iterates over all child modules. pub fn children(self, db: &dyn HirDatabase) -> impl Iterator { let def_map = self.id.def_map(db.upcast()); let children = def_map[self.id.local_id] .children .iter() .map(|(_, module_id)| Module { id: def_map.module_id(*module_id) }) .collect::>(); children.into_iter() } /// Finds a parent module. pub fn parent(self, db: &dyn HirDatabase) -> Option { // FIXME: handle block expressions as modules (their parent is in a different DefMap) let def_map = self.id.def_map(db.upcast()); let parent_id = def_map[self.id.local_id].parent?; Some(Module { id: def_map.module_id(parent_id) }) } pub fn path_to_root(self, db: &dyn HirDatabase) -> Vec { let mut res = vec![self]; let mut curr = self; while let Some(next) = curr.parent(db) { res.push(next); curr = next } res } /// Returns a `ModuleScope`: a set of items, visible in this module. pub fn scope( self, db: &dyn HirDatabase, visible_from: Option, ) -> Vec<(Name, ScopeDef)> { self.id.def_map(db.upcast())[self.id.local_id] .scope .entries() .filter_map(|(name, def)| { if let Some(m) = visible_from { let filtered = def.filter_visibility(|vis| vis.is_visible_from(db.upcast(), m.id)); if filtered.is_none() && !def.is_none() { None } else { Some((name, filtered)) } } else { Some((name, def)) } }) .flat_map(|(name, def)| { ScopeDef::all_items(def).into_iter().map(move |item| (name.clone(), item)) }) .collect() } pub fn diagnostics(self, db: &dyn HirDatabase, acc: &mut Vec) { let _p = profile::span("Module::diagnostics").detail(|| { format!("{:?}", self.name(db).map_or("".into(), |name| name.to_string())) }); let def_map = self.id.def_map(db.upcast()); for diag in def_map.diagnostics() { if diag.in_module != self.id.local_id { // FIXME: This is accidentally quadratic. continue; } match &diag.kind { DefDiagnosticKind::UnresolvedModule { ast: declaration, candidate } => { let decl = declaration.to_node(db.upcast()); acc.push( UnresolvedModule { decl: InFile::new(declaration.file_id, AstPtr::new(&decl)), candidate: candidate.clone(), } .into(), ) } DefDiagnosticKind::UnresolvedExternCrate { ast } => { let item = ast.to_node(db.upcast()); acc.push( UnresolvedExternCrate { decl: InFile::new(ast.file_id, AstPtr::new(&item)), } .into(), ); } DefDiagnosticKind::UnresolvedImport { id, index } => { let file_id = id.file_id(); let item_tree = id.item_tree(db.upcast()); let import = &item_tree[id.value]; let use_tree = import.use_tree_to_ast(db.upcast(), file_id, *index); acc.push( UnresolvedImport { decl: InFile::new(file_id, AstPtr::new(&use_tree)) } .into(), ); } DefDiagnosticKind::UnconfiguredCode { ast, cfg, opts } => { let item = ast.to_node(db.upcast()); acc.push( InactiveCode { node: ast.with_value(AstPtr::new(&item).into()), cfg: cfg.clone(), opts: opts.clone(), } .into(), ); } DefDiagnosticKind::UnresolvedProcMacro { ast } => { let mut precise_location = None; let (node, name) = match ast { MacroCallKind::FnLike { ast_id, .. } => { let node = ast_id.to_node(db.upcast()); (ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node))), None) } MacroCallKind::Derive { ast_id, derive_name, .. } => { let node = ast_id.to_node(db.upcast()); // Compute the precise location of the macro name's token in the derive // list. // FIXME: This does not handle paths to the macro, but neither does the // rest of r-a. let derive_attrs = node.attrs().filter_map(|attr| match attr.as_simple_call() { Some((name, args)) if name == "derive" => Some(args), _ => None, }); 'outer: for attr in derive_attrs { let tokens = attr.syntax().children_with_tokens().filter_map(|elem| { match elem { syntax::NodeOrToken::Node(_) => None, syntax::NodeOrToken::Token(tok) => Some(tok), } }); for token in tokens { if token.kind() == SyntaxKind::IDENT && token.text() == &**derive_name { precise_location = Some(token.text_range()); break 'outer; } } } ( ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node))), Some(derive_name.clone()), ) } MacroCallKind::Attr { ast_id, invoc_attr_index, attr_name, .. } => { let node = ast_id.to_node(db.upcast()); let attr = node.attrs().nth((*invoc_attr_index) as usize).unwrap_or_else( || panic!("cannot find attribute #{}", invoc_attr_index), ); ( ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&attr))), Some(attr_name.clone()), ) } }; acc.push( UnresolvedProcMacro { node, precise_location, macro_name: name.map(Into::into), } .into(), ); } DefDiagnosticKind::UnresolvedMacroCall { ast, path } => { let node = ast.to_node(db.upcast()); acc.push( UnresolvedMacroCall { macro_call: InFile::new(ast.file_id, AstPtr::new(&node)), path: path.clone(), } .into(), ); } DefDiagnosticKind::MacroError { ast, message } => { let node = match ast { MacroCallKind::FnLike { ast_id, .. } => { let node = ast_id.to_node(db.upcast()); ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node))) } MacroCallKind::Derive { ast_id, .. } | MacroCallKind::Attr { ast_id, .. } => { // FIXME: point to the attribute instead, this creates very large diagnostics let node = ast_id.to_node(db.upcast()); ast_id.with_value(SyntaxNodePtr::from(AstPtr::new(&node))) } }; acc.push(MacroError { node, message: message.clone() }.into()); } DefDiagnosticKind::UnimplementedBuiltinMacro { ast } => { let node = ast.to_node(db.upcast()); // Must have a name, otherwise we wouldn't emit it. let name = node.name().expect("unimplemented builtin macro with no name"); acc.push( UnimplementedBuiltinMacro { node: ast.with_value(SyntaxNodePtr::from(AstPtr::new(&name))), } .into(), ); } DefDiagnosticKind::InvalidDeriveTarget { ast, id } => { let node = ast.to_node(db.upcast()); let derive = node.attrs().nth(*id as usize); match derive { Some(derive) => { acc.push( InvalidDeriveTarget { node: ast.with_value(SyntaxNodePtr::from(AstPtr::new(&derive))), } .into(), ); } None => stdx::never!("derive diagnostic on item without derive attribute"), } } DefDiagnosticKind::MalformedDerive { ast, id } => { let node = ast.to_node(db.upcast()); let derive = node.attrs().nth(*id as usize); match derive { Some(derive) => { acc.push( MalformedDerive { node: ast.with_value(SyntaxNodePtr::from(AstPtr::new(&derive))), } .into(), ); } None => stdx::never!("derive diagnostic on item without derive attribute"), } } } } for decl in self.declarations(db) { match decl { ModuleDef::Module(m) => { // Only add diagnostics from inline modules if def_map[m.id.local_id].origin.is_inline() { m.diagnostics(db, acc) } } _ => acc.extend(decl.diagnostics(db)), } } for impl_def in self.impl_defs(db) { for item in impl_def.items(db) { let def: DefWithBody = match item { AssocItem::Function(it) => it.into(), AssocItem::Const(it) => it.into(), AssocItem::TypeAlias(_) => continue, }; def.diagnostics(db, acc); } } } pub fn declarations(self, db: &dyn HirDatabase) -> Vec { let def_map = self.id.def_map(db.upcast()); let scope = &def_map[self.id.local_id].scope; scope .declarations() .map(ModuleDef::from) .chain(scope.unnamed_consts().map(|id| ModuleDef::Const(Const::from(id)))) .collect() } pub fn impl_defs(self, db: &dyn HirDatabase) -> Vec { let def_map = self.id.def_map(db.upcast()); def_map[self.id.local_id].scope.impls().map(Impl::from).collect() } /// Finds a path that can be used to refer to the given item from within /// this module, if possible. pub fn find_use_path(self, db: &dyn DefDatabase, item: impl Into) -> Option { hir_def::find_path::find_path(db, item.into().into(), self.into()) } /// Finds a path that can be used to refer to the given item from within /// this module, if possible. This is used for returning import paths for use-statements. pub fn find_use_path_prefixed( self, db: &dyn DefDatabase, item: impl Into, prefix_kind: PrefixKind, ) -> Option { hir_def::find_path::find_path_prefixed(db, item.into().into(), self.into(), prefix_kind) } } impl HasVisibility for Module { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let def_map = self.id.def_map(db.upcast()); let module_data = &def_map[self.id.local_id]; module_data.visibility } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Field { pub(crate) parent: VariantDef, pub(crate) id: LocalFieldId, } #[derive(Debug, PartialEq, Eq)] pub enum FieldSource { Named(ast::RecordField), Pos(ast::TupleField), } impl Field { pub fn name(&self, db: &dyn HirDatabase) -> Name { self.parent.variant_data(db).fields()[self.id].name.clone() } /// Returns the type as in the signature of the struct (i.e., with /// placeholder types for type parameters). Only use this in the context of /// the field definition. pub fn ty(&self, db: &dyn HirDatabase) -> Type { let var_id = self.parent.into(); let generic_def_id: GenericDefId = match self.parent { VariantDef::Struct(it) => it.id.into(), VariantDef::Union(it) => it.id.into(), VariantDef::Variant(it) => it.parent.id.into(), }; let substs = TyBuilder::type_params_subst(db, generic_def_id); let ty = db.field_types(var_id)[self.id].clone().substitute(&Interner, &substs); Type::new(db, self.parent.module(db).id.krate(), var_id, ty) } pub fn parent_def(&self, _db: &dyn HirDatabase) -> VariantDef { self.parent } } impl HasVisibility for Field { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let variant_data = self.parent.variant_data(db); let visibility = &variant_data.fields()[self.id].visibility; let parent_id: hir_def::VariantId = self.parent.into(); visibility.resolve(db.upcast(), &parent_id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Struct { pub(crate) id: StructId, } impl Struct { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn name(self, db: &dyn HirDatabase) -> Name { db.struct_data(self.id).name.clone() } pub fn fields(self, db: &dyn HirDatabase) -> Vec { db.struct_data(self.id) .variant_data .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).container.krate(), self.id) } pub fn repr(self, db: &dyn HirDatabase) -> Option { db.struct_data(self.id).repr.clone() } pub fn kind(self, db: &dyn HirDatabase) -> StructKind { self.variant_data(db).kind() } fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.struct_data(self.id).variant_data.clone() } } impl HasVisibility for Struct { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.struct_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Union { pub(crate) id: UnionId, } impl Union { pub fn name(self, db: &dyn HirDatabase) -> Name { db.union_data(self.id).name.clone() } pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).container.krate(), self.id) } pub fn fields(self, db: &dyn HirDatabase) -> Vec { db.union_data(self.id) .variant_data .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.union_data(self.id).variant_data.clone() } } impl HasVisibility for Union { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.union_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Enum { pub(crate) id: EnumId, } impl Enum { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn name(self, db: &dyn HirDatabase) -> Name { db.enum_data(self.id).name.clone() } pub fn variants(self, db: &dyn HirDatabase) -> Vec { db.enum_data(self.id).variants.iter().map(|(id, _)| Variant { parent: self, id }).collect() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).container.krate(), self.id) } } impl HasVisibility for Enum { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.enum_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Variant { pub(crate) parent: Enum, pub(crate) id: LocalEnumVariantId, } impl Variant { pub fn module(self, db: &dyn HirDatabase) -> Module { self.parent.module(db) } pub fn parent_enum(self, _db: &dyn HirDatabase) -> Enum { self.parent } pub fn name(self, db: &dyn HirDatabase) -> Name { db.enum_data(self.parent.id).variants[self.id].name.clone() } pub fn fields(self, db: &dyn HirDatabase) -> Vec { self.variant_data(db) .fields() .iter() .map(|(id, _)| Field { parent: self.into(), id }) .collect() } pub fn kind(self, db: &dyn HirDatabase) -> StructKind { self.variant_data(db).kind() } pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc { db.enum_data(self.parent.id).variants[self.id].variant_data.clone() } } /// Variants inherit visibility from the parent enum. impl HasVisibility for Variant { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { self.parent_enum(db).visibility(db) } } /// A Data Type #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum Adt { Struct(Struct), Union(Union), Enum(Enum), } impl_from!(Struct, Union, Enum for Adt); impl Adt { pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool { let subst = db.generic_defaults(self.into()); subst.iter().any(|ty| ty.skip_binders().is_unknown()) } /// Turns this ADT into a type. Any type parameters of the ADT will be /// turned into unknown types, which is good for e.g. finding the most /// general set of completions, but will not look very nice when printed. pub fn ty(self, db: &dyn HirDatabase) -> Type { let id = AdtId::from(self); Type::from_def(db, id.module(db.upcast()).krate(), id) } pub fn module(self, db: &dyn HirDatabase) -> Module { match self { Adt::Struct(s) => s.module(db), Adt::Union(s) => s.module(db), Adt::Enum(e) => e.module(db), } } pub fn name(self, db: &dyn HirDatabase) -> Name { match self { Adt::Struct(s) => s.name(db), Adt::Union(u) => u.name(db), Adt::Enum(e) => e.name(db), } } } impl HasVisibility for Adt { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { match self { Adt::Struct(it) => it.visibility(db), Adt::Union(it) => it.visibility(db), Adt::Enum(it) => it.visibility(db), } } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum VariantDef { Struct(Struct), Union(Union), Variant(Variant), } impl_from!(Struct, Union, Variant for VariantDef); impl VariantDef { pub fn fields(self, db: &dyn HirDatabase) -> Vec { match self { VariantDef::Struct(it) => it.fields(db), VariantDef::Union(it) => it.fields(db), VariantDef::Variant(it) => it.fields(db), } } pub fn module(self, db: &dyn HirDatabase) -> Module { match self { VariantDef::Struct(it) => it.module(db), VariantDef::Union(it) => it.module(db), VariantDef::Variant(it) => it.module(db), } } pub fn name(&self, db: &dyn HirDatabase) -> Name { match self { VariantDef::Struct(s) => s.name(db), VariantDef::Union(u) => u.name(db), VariantDef::Variant(e) => e.name(db), } } pub(crate) fn variant_data(self, db: &dyn HirDatabase) -> Arc { match self { VariantDef::Struct(it) => it.variant_data(db), VariantDef::Union(it) => it.variant_data(db), VariantDef::Variant(it) => it.variant_data(db), } } } /// The defs which have a body. #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum DefWithBody { Function(Function), Static(Static), Const(Const), } impl_from!(Function, Const, Static for DefWithBody); impl DefWithBody { pub fn module(self, db: &dyn HirDatabase) -> Module { match self { DefWithBody::Const(c) => c.module(db), DefWithBody::Function(f) => f.module(db), DefWithBody::Static(s) => s.module(db), } } pub fn name(self, db: &dyn HirDatabase) -> Option { match self { DefWithBody::Function(f) => Some(f.name(db)), DefWithBody::Static(s) => Some(s.name(db)), DefWithBody::Const(c) => c.name(db), } } /// Returns the type this def's body has to evaluate to. pub fn body_type(self, db: &dyn HirDatabase) -> Type { match self { DefWithBody::Function(it) => it.ret_type(db), DefWithBody::Static(it) => it.ty(db), DefWithBody::Const(it) => it.ty(db), } } pub fn diagnostics(self, db: &dyn HirDatabase, acc: &mut Vec) { let krate = self.module(db).id.krate(); let source_map = db.body_with_source_map(self.into()).1; for diag in source_map.diagnostics() { match diag { BodyDiagnostic::InactiveCode { node, cfg, opts } => acc.push( InactiveCode { node: node.clone(), cfg: cfg.clone(), opts: opts.clone() } .into(), ), BodyDiagnostic::MacroError { node, message } => acc.push( MacroError { node: node.clone().map(|it| it.into()), message: message.to_string(), } .into(), ), BodyDiagnostic::UnresolvedProcMacro { node } => acc.push( UnresolvedProcMacro { node: node.clone().map(|it| it.into()), precise_location: None, macro_name: None, } .into(), ), BodyDiagnostic::UnresolvedMacroCall { node, path } => acc.push( UnresolvedMacroCall { macro_call: node.clone(), path: path.clone() }.into(), ), } } let infer = db.infer(self.into()); let source_map = Lazy::new(|| db.body_with_source_map(self.into()).1); for d in &infer.diagnostics { match d { hir_ty::InferenceDiagnostic::NoSuchField { expr } => { let field = source_map.field_syntax(*expr); acc.push(NoSuchField { field }.into()) } hir_ty::InferenceDiagnostic::BreakOutsideOfLoop { expr } => { let expr = source_map .expr_syntax(*expr) .expect("break outside of loop in synthetic syntax"); acc.push(BreakOutsideOfLoop { expr }.into()) } } } for expr in hir_ty::diagnostics::missing_unsafe(db, self.into()) { match source_map.expr_syntax(expr) { Ok(expr) => acc.push(MissingUnsafe { expr }.into()), Err(SyntheticSyntax) => { // FIXME: Here and eslwhere in this file, the `expr` was // desugared, report or assert that this doesn't happen. } } } for diagnostic in BodyValidationDiagnostic::collect(db, self.into()) { match diagnostic { BodyValidationDiagnostic::RecordMissingFields { record, variant, missed_fields, } => { let variant_data = variant.variant_data(db.upcast()); let missed_fields = missed_fields .into_iter() .map(|idx| variant_data.fields()[idx].name.clone()) .collect(); match record { Either::Left(record_expr) => match source_map.expr_syntax(record_expr) { Ok(source_ptr) => { let root = source_ptr.file_syntax(db.upcast()); if let ast::Expr::RecordExpr(record_expr) = &source_ptr.value.to_node(&root) { if record_expr.record_expr_field_list().is_some() { acc.push( MissingFields { file: source_ptr.file_id, field_list_parent: Either::Left(AstPtr::new( record_expr, )), field_list_parent_path: record_expr .path() .map(|path| AstPtr::new(&path)), missed_fields, } .into(), ) } } } Err(SyntheticSyntax) => (), }, Either::Right(record_pat) => match source_map.pat_syntax(record_pat) { Ok(source_ptr) => { if let Some(expr) = source_ptr.value.as_ref().left() { let root = source_ptr.file_syntax(db.upcast()); if let ast::Pat::RecordPat(record_pat) = expr.to_node(&root) { if record_pat.record_pat_field_list().is_some() { acc.push( MissingFields { file: source_ptr.file_id, field_list_parent: Either::Right(AstPtr::new( &record_pat, )), field_list_parent_path: record_pat .path() .map(|path| AstPtr::new(&path)), missed_fields, } .into(), ) } } } } Err(SyntheticSyntax) => (), }, } } BodyValidationDiagnostic::ReplaceFilterMapNextWithFindMap { method_call_expr } => { if let Ok(next_source_ptr) = source_map.expr_syntax(method_call_expr) { acc.push( ReplaceFilterMapNextWithFindMap { file: next_source_ptr.file_id, next_expr: next_source_ptr.value, } .into(), ); } } BodyValidationDiagnostic::MismatchedArgCount { call_expr, expected, found } => { match source_map.expr_syntax(call_expr) { Ok(source_ptr) => acc.push( MismatchedArgCount { call_expr: source_ptr, expected, found }.into(), ), Err(SyntheticSyntax) => (), } } BodyValidationDiagnostic::RemoveThisSemicolon { expr } => { match source_map.expr_syntax(expr) { Ok(expr) => acc.push(RemoveThisSemicolon { expr }.into()), Err(SyntheticSyntax) => (), } } BodyValidationDiagnostic::MissingOkOrSomeInTailExpr { expr, required } => { match source_map.expr_syntax(expr) { Ok(expr) => acc.push( MissingOkOrSomeInTailExpr { expr, required, expected: self.body_type(db), } .into(), ), Err(SyntheticSyntax) => (), } } BodyValidationDiagnostic::MissingMatchArms { match_expr } => { match source_map.expr_syntax(match_expr) { Ok(source_ptr) => { let root = source_ptr.file_syntax(db.upcast()); if let ast::Expr::MatchExpr(match_expr) = &source_ptr.value.to_node(&root) { if let (Some(match_expr), Some(arms)) = (match_expr.expr(), match_expr.match_arm_list()) { acc.push( MissingMatchArms { file: source_ptr.file_id, match_expr: AstPtr::new(&match_expr), arms: AstPtr::new(&arms), } .into(), ) } } } Err(SyntheticSyntax) => (), } } BodyValidationDiagnostic::AddReferenceHere { arg_expr, mutability } => { match source_map.expr_syntax(arg_expr) { Ok(expr) => acc.push(AddReferenceHere { expr, mutability }.into()), Err(SyntheticSyntax) => (), } } } } let def: ModuleDef = match self { DefWithBody::Function(it) => it.into(), DefWithBody::Static(it) => it.into(), DefWithBody::Const(it) => it.into(), }; for diag in hir_ty::diagnostics::incorrect_case(db, krate, def.into()) { acc.push(diag.into()) } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Function { pub(crate) id: FunctionId, } impl Function { pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.lookup(db.upcast()).module(db.upcast()).into() } pub fn name(self, db: &dyn HirDatabase) -> Name { db.function_data(self.id).name.clone() } /// Get this function's return type pub fn ret_type(self, db: &dyn HirDatabase) -> Type { let resolver = self.id.resolver(db.upcast()); let krate = self.id.lookup(db.upcast()).container.module(db.upcast()).krate(); let ret_type = &db.function_data(self.id).ret_type; let ctx = hir_ty::TyLoweringContext::new(db, &resolver); let ty = ctx.lower_ty(ret_type); Type::new_with_resolver_inner(db, krate, &resolver, ty) } pub fn self_param(self, db: &dyn HirDatabase) -> Option { if !db.function_data(self.id).has_self_param() { return None; } Some(SelfParam { func: self.id }) } pub fn assoc_fn_params(self, db: &dyn HirDatabase) -> Vec { let resolver = self.id.resolver(db.upcast()); let krate = self.id.lookup(db.upcast()).container.module(db.upcast()).krate(); let ctx = hir_ty::TyLoweringContext::new(db, &resolver); let environment = db.trait_environment(self.id.into()); db.function_data(self.id) .params .iter() .enumerate() .map(|(idx, type_ref)| { let ty = Type { krate, env: environment.clone(), ty: ctx.lower_ty(type_ref) }; Param { func: self, ty, idx } }) .collect() } pub fn method_params(self, db: &dyn HirDatabase) -> Option> { if self.self_param(db).is_none() { return None; } let mut res = self.assoc_fn_params(db); res.remove(0); Some(res) } pub fn is_unsafe(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).is_unsafe() } pub fn is_const(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).is_const() } pub fn is_async(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).is_async() } /// Whether this function declaration has a definition. /// /// This is false in the case of required (not provided) trait methods. pub fn has_body(self, db: &dyn HirDatabase) -> bool { db.function_data(self.id).has_body() } /// A textual representation of the HIR of this function for debugging purposes. pub fn debug_hir(self, db: &dyn HirDatabase) -> String { let body = db.body(self.id.into()); let mut result = String::new(); format_to!(result, "HIR expressions in the body of `{}`:\n", self.name(db)); for (id, expr) in body.exprs.iter() { format_to!(result, "{:?}: {:?}\n", id, expr); } result } } // Note: logically, this belongs to `hir_ty`, but we are not using it there yet. pub enum Access { Shared, Exclusive, Owned, } impl From for Access { fn from(mutability: hir_ty::Mutability) -> Access { match mutability { hir_ty::Mutability::Not => Access::Shared, hir_ty::Mutability::Mut => Access::Exclusive, } } } #[derive(Clone, Debug)] pub struct Param { func: Function, /// The index in parameter list, including self parameter. idx: usize, ty: Type, } impl Param { pub fn ty(&self) -> &Type { &self.ty } pub fn as_local(&self, db: &dyn HirDatabase) -> Local { let parent = DefWithBodyId::FunctionId(self.func.into()); let body = db.body(parent); Local { parent, pat_id: body.params[self.idx] } } pub fn pattern_source(&self, db: &dyn HirDatabase) -> Option { self.source(db).and_then(|p| p.value.pat()) } pub fn source(&self, db: &dyn HirDatabase) -> Option> { let InFile { file_id, value } = self.func.source(db)?; let params = value.param_list()?; if params.self_param().is_some() { params.params().nth(self.idx.checked_sub(1)?) } else { params.params().nth(self.idx) } .map(|value| InFile { file_id, value }) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct SelfParam { func: FunctionId, } impl SelfParam { pub fn access(self, db: &dyn HirDatabase) -> Access { let func_data = db.function_data(self.func); func_data .params .first() .map(|param| match &**param { TypeRef::Reference(.., mutability) => match mutability { hir_def::type_ref::Mutability::Shared => Access::Shared, hir_def::type_ref::Mutability::Mut => Access::Exclusive, }, _ => Access::Owned, }) .unwrap_or(Access::Owned) } pub fn display(self, db: &dyn HirDatabase) -> &'static str { match self.access(db) { Access::Shared => "&self", Access::Exclusive => "&mut self", Access::Owned => "self", } } pub fn source(&self, db: &dyn HirDatabase) -> Option> { let InFile { file_id, value } = Function::from(self.func).source(db)?; value .param_list() .and_then(|params| params.self_param()) .map(|value| InFile { file_id, value }) } } impl HasVisibility for Function { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let function_data = db.function_data(self.id); let visibility = &function_data.visibility; visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Const { pub(crate) id: ConstId, } impl Const { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn name(self, db: &dyn HirDatabase) -> Option { db.const_data(self.id).name.clone() } pub fn value(self, db: &dyn HirDatabase) -> Option { self.source(db)?.value.body() } pub fn ty(self, db: &dyn HirDatabase) -> Type { let data = db.const_data(self.id); let resolver = self.id.resolver(db.upcast()); let krate = self.id.lookup(db.upcast()).container.krate(db); let ctx = hir_ty::TyLoweringContext::new(db, &resolver); let ty = ctx.lower_ty(&data.type_ref); Type::new_with_resolver_inner(db, krate.id, &resolver, ty) } } impl HasVisibility for Const { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let function_data = db.const_data(self.id); let visibility = &function_data.visibility; visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Static { pub(crate) id: StaticId, } impl Static { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn name(self, db: &dyn HirDatabase) -> Name { db.static_data(self.id).name.clone() } pub fn is_mut(self, db: &dyn HirDatabase) -> bool { db.static_data(self.id).mutable } pub fn value(self, db: &dyn HirDatabase) -> Option { self.source(db)?.value.body() } pub fn ty(self, db: &dyn HirDatabase) -> Type { let data = db.static_data(self.id); let resolver = self.id.resolver(db.upcast()); let krate = self.id.lookup(db.upcast()).container.krate(); let ctx = hir_ty::TyLoweringContext::new(db, &resolver); let ty = ctx.lower_ty(&data.type_ref); Type::new_with_resolver_inner(db, krate, &resolver, ty) } } impl HasVisibility for Static { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.static_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Trait { pub(crate) id: TraitId, } impl Trait { pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).container } } pub fn name(self, db: &dyn HirDatabase) -> Name { db.trait_data(self.id).name.clone() } pub fn items(self, db: &dyn HirDatabase) -> Vec { db.trait_data(self.id).items.iter().map(|(_name, it)| (*it).into()).collect() } pub fn is_auto(self, db: &dyn HirDatabase) -> bool { db.trait_data(self.id).is_auto } pub fn is_unsafe(&self, db: &dyn HirDatabase) -> bool { db.trait_data(self.id).is_unsafe } } impl HasVisibility for Trait { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { db.trait_data(self.id).visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct TypeAlias { pub(crate) id: TypeAliasId, } impl TypeAlias { pub fn has_non_default_type_params(self, db: &dyn HirDatabase) -> bool { let subst = db.generic_defaults(self.id.into()); subst.iter().any(|ty| ty.skip_binders().is_unknown()) } pub fn module(self, db: &dyn HirDatabase) -> Module { Module { id: self.id.lookup(db.upcast()).module(db.upcast()) } } pub fn type_ref(self, db: &dyn HirDatabase) -> Option { db.type_alias_data(self.id).type_ref.as_deref().cloned() } pub fn ty(self, db: &dyn HirDatabase) -> Type { Type::from_def(db, self.id.lookup(db.upcast()).module(db.upcast()).krate(), self.id) } pub fn name(self, db: &dyn HirDatabase) -> Name { db.type_alias_data(self.id).name.clone() } } impl HasVisibility for TypeAlias { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { let function_data = db.type_alias_data(self.id); let visibility = &function_data.visibility; visibility.resolve(db.upcast(), &self.id.resolver(db.upcast())) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct BuiltinType { pub(crate) inner: hir_def::builtin_type::BuiltinType, } impl BuiltinType { pub fn str() -> BuiltinType { BuiltinType { inner: hir_def::builtin_type::BuiltinType::Str } } pub fn ty(self, db: &dyn HirDatabase, module: Module) -> Type { let resolver = module.id.resolver(db.upcast()); Type::new_with_resolver(db, &resolver, TyBuilder::builtin(self.inner)) .expect("crate not present in resolver") } pub fn name(self) -> Name { self.inner.as_name() } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum MacroKind { /// `macro_rules!` or Macros 2.0 macro. Declarative, /// A built-in or custom derive. Derive, /// A built-in function-like macro. BuiltIn, /// A procedural attribute macro. Attr, /// A function-like procedural macro. ProcMacro, } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct MacroDef { pub(crate) id: MacroDefId, } impl MacroDef { /// FIXME: right now, this just returns the root module of the crate that /// defines this macro. The reasons for this is that macros are expanded /// early, in `hir_expand`, where modules simply do not exist yet. pub fn module(self, db: &dyn HirDatabase) -> Option { let krate = self.id.krate; let def_map = db.crate_def_map(krate); let module_id = def_map.root(); Some(Module { id: def_map.module_id(module_id) }) } /// XXX: this parses the file pub fn name(self, db: &dyn HirDatabase) -> Option { match self.source(db)?.value { Either::Left(it) => it.name().map(|it| it.as_name()), Either::Right(_) => { let krate = self.id.krate; let def_map = db.crate_def_map(krate); let (_, name) = def_map.exported_proc_macros().find(|&(id, _)| id == self.id)?; Some(name) } } } pub fn kind(&self) -> MacroKind { match self.id.kind { MacroDefKind::Declarative(_) => MacroKind::Declarative, MacroDefKind::BuiltIn(_, _) | MacroDefKind::BuiltInEager(_, _) => MacroKind::BuiltIn, MacroDefKind::BuiltInDerive(_, _) => MacroKind::Derive, MacroDefKind::BuiltInAttr(_, _) => MacroKind::Attr, MacroDefKind::ProcMacro(_, base_db::ProcMacroKind::CustomDerive, _) => { MacroKind::Derive } MacroDefKind::ProcMacro(_, base_db::ProcMacroKind::Attr, _) => MacroKind::Attr, MacroDefKind::ProcMacro(_, base_db::ProcMacroKind::FuncLike, _) => MacroKind::ProcMacro, } } pub fn is_fn_like(&self) -> bool { match self.kind() { MacroKind::Declarative | MacroKind::BuiltIn | MacroKind::ProcMacro => true, MacroKind::Attr | MacroKind::Derive => false, } } } #[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)] pub enum ItemInNs { Types(ModuleDef), Values(ModuleDef), Macros(MacroDef), } impl From for ItemInNs { fn from(it: MacroDef) -> Self { Self::Macros(it) } } impl From for ItemInNs { fn from(module_def: ModuleDef) -> Self { match module_def { ModuleDef::Static(_) | ModuleDef::Const(_) | ModuleDef::Function(_) => { ItemInNs::Values(module_def) } _ => ItemInNs::Types(module_def), } } } impl ItemInNs { pub fn as_module_def(self) -> Option { match self { ItemInNs::Types(id) | ItemInNs::Values(id) => Some(id), ItemInNs::Macros(_) => None, } } /// Returns the crate defining this item (or `None` if `self` is built-in). pub fn krate(&self, db: &dyn HirDatabase) -> Option { match self { ItemInNs::Types(did) | ItemInNs::Values(did) => did.module(db).map(|m| m.krate()), ItemInNs::Macros(id) => id.module(db).map(|m| m.krate()), } } pub fn attrs(&self, db: &dyn HirDatabase) -> Option { match self { ItemInNs::Types(it) | ItemInNs::Values(it) => it.attrs(db), ItemInNs::Macros(it) => Some(it.attrs(db)), } } } /// Invariant: `inner.as_assoc_item(db).is_some()` /// We do not actively enforce this invariant. #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)] pub enum AssocItem { Function(Function), Const(Const), TypeAlias(TypeAlias), } #[derive(Debug)] pub enum AssocItemContainer { Trait(Trait), Impl(Impl), } pub trait AsAssocItem { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option; } impl AsAssocItem for Function { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::Function, self.id) } } impl AsAssocItem for Const { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::Const, self.id) } } impl AsAssocItem for TypeAlias { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { as_assoc_item(db, AssocItem::TypeAlias, self.id) } } impl AsAssocItem for ModuleDef { fn as_assoc_item(self, db: &dyn HirDatabase) -> Option { match self { ModuleDef::Function(it) => it.as_assoc_item(db), ModuleDef::Const(it) => it.as_assoc_item(db), ModuleDef::TypeAlias(it) => it.as_assoc_item(db), _ => None, } } } fn as_assoc_item(db: &dyn HirDatabase, ctor: CTOR, id: ID) -> Option where ID: Lookup>, DEF: From, CTOR: FnOnce(DEF) -> AssocItem, AST: ItemTreeNode, { match id.lookup(db.upcast()).container { AssocContainerId::TraitId(_) | AssocContainerId::ImplId(_) => Some(ctor(DEF::from(id))), AssocContainerId::ModuleId(_) => None, } } impl AssocItem { pub fn name(self, db: &dyn HirDatabase) -> Option { match self { AssocItem::Function(it) => Some(it.name(db)), AssocItem::Const(it) => it.name(db), AssocItem::TypeAlias(it) => Some(it.name(db)), } } pub fn module(self, db: &dyn HirDatabase) -> Module { match self { AssocItem::Function(f) => f.module(db), AssocItem::Const(c) => c.module(db), AssocItem::TypeAlias(t) => t.module(db), } } pub fn container(self, db: &dyn HirDatabase) -> AssocItemContainer { let container = match self { AssocItem::Function(it) => it.id.lookup(db.upcast()).container, AssocItem::Const(it) => it.id.lookup(db.upcast()).container, AssocItem::TypeAlias(it) => it.id.lookup(db.upcast()).container, }; match container { AssocContainerId::TraitId(id) => AssocItemContainer::Trait(id.into()), AssocContainerId::ImplId(id) => AssocItemContainer::Impl(id.into()), AssocContainerId::ModuleId(_) => panic!("invalid AssocItem"), } } pub fn containing_trait(self, db: &dyn HirDatabase) -> Option { match self.container(db) { AssocItemContainer::Trait(t) => Some(t), _ => None, } } pub fn containing_trait_impl(self, db: &dyn HirDatabase) -> Option { match self.container(db) { AssocItemContainer::Impl(i) => i.trait_(db), _ => None, } } pub fn containing_trait_or_trait_impl(self, db: &dyn HirDatabase) -> Option { match self.container(db) { AssocItemContainer::Trait(t) => Some(t), AssocItemContainer::Impl(i) => i.trait_(db), } } } impl HasVisibility for AssocItem { fn visibility(&self, db: &dyn HirDatabase) -> Visibility { match self { AssocItem::Function(f) => f.visibility(db), AssocItem::Const(c) => c.visibility(db), AssocItem::TypeAlias(t) => t.visibility(db), } } } impl From for ModuleDef { fn from(assoc: AssocItem) -> Self { match assoc { AssocItem::Function(it) => ModuleDef::Function(it), AssocItem::Const(it) => ModuleDef::Const(it), AssocItem::TypeAlias(it) => ModuleDef::TypeAlias(it), } } } #[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)] pub enum GenericDef { Function(Function), Adt(Adt), Trait(Trait), TypeAlias(TypeAlias), Impl(Impl), // enum variants cannot have generics themselves, but their parent enums // can, and this makes some code easier to write Variant(Variant), // consts can have type parameters from their parents (i.e. associated consts of traits) Const(Const), } impl_from!( Function, Adt(Struct, Enum, Union), Trait, TypeAlias, Impl, Variant, Const for GenericDef ); impl GenericDef { pub fn params(self, db: &dyn HirDatabase) -> Vec { let generics = db.generic_params(self.into()); let ty_params = generics .types .iter() .map(|(local_id, _)| TypeParam { id: TypeParamId { parent: self.into(), local_id } }) .map(GenericParam::TypeParam); let lt_params = generics .lifetimes .iter() .map(|(local_id, _)| LifetimeParam { id: LifetimeParamId { parent: self.into(), local_id }, }) .map(GenericParam::LifetimeParam); let const_params = generics .consts .iter() .map(|(local_id, _)| ConstParam { id: ConstParamId { parent: self.into(), local_id } }) .map(GenericParam::ConstParam); ty_params.chain(lt_params).chain(const_params).collect() } pub fn type_params(self, db: &dyn HirDatabase) -> Vec { let generics = db.generic_params(self.into()); generics .types .iter() .map(|(local_id, _)| TypeParam { id: TypeParamId { parent: self.into(), local_id } }) .collect() } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct Local { pub(crate) parent: DefWithBodyId, pub(crate) pat_id: PatId, } impl Local { pub fn is_param(self, db: &dyn HirDatabase) -> bool { let src = self.source(db); match src.value { Either::Left(bind_pat) => { bind_pat.syntax().ancestors().any(|it| ast::Param::can_cast(it.kind())) } Either::Right(_self_param) => true, } } pub fn as_self_param(self, db: &dyn HirDatabase) -> Option { match self.parent { DefWithBodyId::FunctionId(func) if self.is_self(db) => Some(SelfParam { func }), _ => None, } } // FIXME: why is this an option? It shouldn't be? pub fn name(self, db: &dyn HirDatabase) -> Option { let body = db.body(self.parent); match &body[self.pat_id] { Pat::Bind { name, .. } => Some(name.clone()), _ => None, } } pub fn is_self(self, db: &dyn HirDatabase) -> bool { self.name(db) == Some(name![self]) } pub fn is_mut(self, db: &dyn HirDatabase) -> bool { let body = db.body(self.parent); matches!(&body[self.pat_id], Pat::Bind { mode: BindingAnnotation::Mutable, .. }) } pub fn is_ref(self, db: &dyn HirDatabase) -> bool { let body = db.body(self.parent); matches!( &body[self.pat_id], Pat::Bind { mode: BindingAnnotation::Ref | BindingAnnotation::RefMut, .. } ) } pub fn parent(self, _db: &dyn HirDatabase) -> DefWithBody { self.parent.into() } pub fn module(self, db: &dyn HirDatabase) -> Module { self.parent(db).module(db) } pub fn ty(self, db: &dyn HirDatabase) -> Type { let def = self.parent; let infer = db.infer(def); let ty = infer[self.pat_id].clone(); let krate = def.module(db.upcast()).krate(); Type::new(db, krate, def, ty) } pub fn source(self, db: &dyn HirDatabase) -> InFile> { let (_body, source_map) = db.body_with_source_map(self.parent); let src = source_map.pat_syntax(self.pat_id).unwrap(); // Hmm... let root = src.file_syntax(db.upcast()); src.map(|ast| { ast.map_left(|it| it.cast().unwrap().to_node(&root)).map_right(|it| it.to_node(&root)) }) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct BuiltinAttr(usize); impl BuiltinAttr { pub(crate) fn by_name(name: &str) -> Option { // FIXME: def maps registered attrs? hir_def::builtin_attr::find_builtin_attr_idx(name).map(Self) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct Tool(usize); impl Tool { pub(crate) fn by_name(name: &str) -> Option { // FIXME: def maps registered tools hir_def::builtin_attr::TOOL_MODULES.iter().position(|&tool| tool == name).map(Self) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct Label { pub(crate) parent: DefWithBodyId, pub(crate) label_id: LabelId, } impl Label { pub fn module(self, db: &dyn HirDatabase) -> Module { self.parent(db).module(db) } pub fn parent(self, _db: &dyn HirDatabase) -> DefWithBody { self.parent.into() } pub fn name(self, db: &dyn HirDatabase) -> Name { let body = db.body(self.parent); body[self.label_id].name.clone() } pub fn source(self, db: &dyn HirDatabase) -> InFile { let (_body, source_map) = db.body_with_source_map(self.parent); let src = source_map.label_syntax(self.label_id); let root = src.file_syntax(db.upcast()); src.map(|ast| ast.to_node(&root)) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum GenericParam { TypeParam(TypeParam), LifetimeParam(LifetimeParam), ConstParam(ConstParam), } impl_from!(TypeParam, LifetimeParam, ConstParam for GenericParam); impl GenericParam { pub fn module(self, db: &dyn HirDatabase) -> Module { match self { GenericParam::TypeParam(it) => it.module(db), GenericParam::LifetimeParam(it) => it.module(db), GenericParam::ConstParam(it) => it.module(db), } } pub fn name(self, db: &dyn HirDatabase) -> Name { match self { GenericParam::TypeParam(it) => it.name(db), GenericParam::LifetimeParam(it) => it.name(db), GenericParam::ConstParam(it) => it.name(db), } } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct TypeParam { pub(crate) id: TypeParamId, } impl TypeParam { pub fn name(self, db: &dyn HirDatabase) -> Name { let params = db.generic_params(self.id.parent); params.types[self.id.local_id].name.clone().unwrap_or_else(Name::missing) } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.parent.module(db.upcast()).into() } pub fn ty(self, db: &dyn HirDatabase) -> Type { let resolver = self.id.parent.resolver(db.upcast()); let krate = self.id.parent.module(db.upcast()).krate(); let ty = TyKind::Placeholder(hir_ty::to_placeholder_idx(db, self.id)).intern(&Interner); Type::new_with_resolver_inner(db, krate, &resolver, ty) } pub fn trait_bounds(self, db: &dyn HirDatabase) -> Vec { db.generic_predicates_for_param(self.id, None) .iter() .filter_map(|pred| match &pred.skip_binders().skip_binders() { hir_ty::WhereClause::Implemented(trait_ref) => { Some(Trait::from(trait_ref.hir_trait_id())) } _ => None, }) .collect() } pub fn default(self, db: &dyn HirDatabase) -> Option { let params = db.generic_defaults(self.id.parent); let local_idx = hir_ty::param_idx(db, self.id)?; let resolver = self.id.parent.resolver(db.upcast()); let krate = self.id.parent.module(db.upcast()).krate(); let ty = params.get(local_idx)?.clone(); let subst = TyBuilder::type_params_subst(db, self.id.parent); let ty = ty.substitute(&Interner, &subst_prefix(&subst, local_idx)); Some(Type::new_with_resolver_inner(db, krate, &resolver, ty)) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct LifetimeParam { pub(crate) id: LifetimeParamId, } impl LifetimeParam { pub fn name(self, db: &dyn HirDatabase) -> Name { let params = db.generic_params(self.id.parent); params.lifetimes[self.id.local_id].name.clone() } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.parent.module(db.upcast()).into() } pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef { self.id.parent.into() } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub struct ConstParam { pub(crate) id: ConstParamId, } impl ConstParam { pub fn name(self, db: &dyn HirDatabase) -> Name { let params = db.generic_params(self.id.parent); params.consts[self.id.local_id].name.clone() } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.parent.module(db.upcast()).into() } pub fn parent(self, _db: &dyn HirDatabase) -> GenericDef { self.id.parent.into() } pub fn ty(self, db: &dyn HirDatabase) -> Type { let def = self.id.parent; let krate = def.module(db.upcast()).krate(); Type::new(db, krate, def, db.const_param_ty(self.id)) } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub struct Impl { pub(crate) id: ImplId, } impl Impl { pub fn all_in_crate(db: &dyn HirDatabase, krate: Crate) -> Vec { let inherent = db.inherent_impls_in_crate(krate.id); let trait_ = db.trait_impls_in_crate(krate.id); inherent.all_impls().chain(trait_.all_impls()).map(Self::from).collect() } pub fn all_for_type(db: &dyn HirDatabase, Type { krate, ty, .. }: Type) -> Vec { let def_crates = match method_resolution::def_crates(db, &ty, krate) { Some(def_crates) => def_crates, None => return Vec::new(), }; let filter = |impl_def: &Impl| { let self_ty = impl_def.self_ty(db); let rref = self_ty.remove_ref(); ty.equals_ctor(rref.as_ref().map_or(&self_ty.ty, |it| &it.ty)) }; let fp = TyFingerprint::for_inherent_impl(&ty); let fp = match fp { Some(fp) => fp, None => return Vec::new(), }; let mut all = Vec::new(); def_crates.iter().for_each(|&id| { all.extend( db.inherent_impls_in_crate(id) .for_self_ty(&ty) .iter() .cloned() .map(Self::from) .filter(filter), ) }); for id in def_crates .iter() .flat_map(|&id| Crate { id }.transitive_reverse_dependencies(db)) .map(|Crate { id }| id) .chain(def_crates.iter().copied()) .unique() { all.extend( db.trait_impls_in_crate(id) .for_self_ty_without_blanket_impls(fp) .map(Self::from) .filter(filter), ); } all } pub fn all_for_trait(db: &dyn HirDatabase, trait_: Trait) -> Vec { let krate = trait_.module(db).krate(); let mut all = Vec::new(); for Crate { id } in krate.transitive_reverse_dependencies(db).into_iter() { let impls = db.trait_impls_in_crate(id); all.extend(impls.for_trait(trait_.id).map(Self::from)) } all } // FIXME: the return type is wrong. This should be a hir version of // `TraitRef` (to account for parameters and qualifiers) pub fn trait_(self, db: &dyn HirDatabase) -> Option { let trait_ref = db.impl_trait(self.id)?.skip_binders().clone(); let id = hir_ty::from_chalk_trait_id(trait_ref.trait_id); Some(Trait { id }) } pub fn self_ty(self, db: &dyn HirDatabase) -> Type { let impl_data = db.impl_data(self.id); let resolver = self.id.resolver(db.upcast()); let krate = self.id.lookup(db.upcast()).container.krate(); let ctx = hir_ty::TyLoweringContext::new(db, &resolver); let ty = ctx.lower_ty(&impl_data.self_ty); Type::new_with_resolver_inner(db, krate, &resolver, ty) } pub fn items(self, db: &dyn HirDatabase) -> Vec { db.impl_data(self.id).items.iter().map(|it| (*it).into()).collect() } pub fn is_negative(self, db: &dyn HirDatabase) -> bool { db.impl_data(self.id).is_negative } pub fn module(self, db: &dyn HirDatabase) -> Module { self.id.lookup(db.upcast()).container.into() } pub fn is_builtin_derive(self, db: &dyn HirDatabase) -> Option> { let src = self.source(db)?; let item = src.file_id.is_builtin_derive(db.upcast())?; let hygenic = hir_expand::hygiene::Hygiene::new(db.upcast(), item.file_id); // FIXME: handle `cfg_attr` let attr = item .value .attrs() .filter_map(|it| { let path = ModPath::from_src(db.upcast(), it.path()?, &hygenic)?; if path.as_ident()?.to_smol_str() == "derive" { Some(it) } else { None } }) .last()?; Some(item.with_value(attr)) } } #[derive(Clone, PartialEq, Eq, Debug)] pub struct Type { krate: CrateId, env: Arc, ty: Ty, } impl Type { pub(crate) fn new_with_resolver( db: &dyn HirDatabase, resolver: &Resolver, ty: Ty, ) -> Option { let krate = resolver.krate()?; Some(Type::new_with_resolver_inner(db, krate, resolver, ty)) } pub(crate) fn new_with_resolver_inner( db: &dyn HirDatabase, krate: CrateId, resolver: &Resolver, ty: Ty, ) -> Type { let environment = resolver .generic_def() .map_or_else(|| Arc::new(TraitEnvironment::empty(krate)), |d| db.trait_environment(d)); Type { krate, env: environment, ty } } fn new(db: &dyn HirDatabase, krate: CrateId, lexical_env: impl HasResolver, ty: Ty) -> Type { let resolver = lexical_env.resolver(db.upcast()); let environment = resolver .generic_def() .map_or_else(|| Arc::new(TraitEnvironment::empty(krate)), |d| db.trait_environment(d)); Type { krate, env: environment, ty } } fn from_def( db: &dyn HirDatabase, krate: CrateId, def: impl HasResolver + Into, ) -> Type { let ty = TyBuilder::def_ty(db, def.into()).fill_with_unknown().build(); Type::new(db, krate, def, ty) } pub fn new_slice(ty: Type) -> Type { Type { krate: ty.krate, env: ty.env, ty: TyBuilder::slice(ty.ty) } } pub fn is_unit(&self) -> bool { matches!(self.ty.kind(&Interner), TyKind::Tuple(0, ..)) } pub fn is_bool(&self) -> bool { matches!(self.ty.kind(&Interner), TyKind::Scalar(Scalar::Bool)) } pub fn is_never(&self) -> bool { matches!(self.ty.kind(&Interner), TyKind::Never) } pub fn is_mutable_reference(&self) -> bool { matches!(self.ty.kind(&Interner), TyKind::Ref(hir_ty::Mutability::Mut, ..)) } pub fn is_reference(&self) -> bool { matches!(self.ty.kind(&Interner), TyKind::Ref(..)) } pub fn is_usize(&self) -> bool { matches!(self.ty.kind(&Interner), TyKind::Scalar(Scalar::Uint(UintTy::Usize))) } pub fn remove_ref(&self) -> Option { match &self.ty.kind(&Interner) { TyKind::Ref(.., ty) => Some(self.derived(ty.clone())), _ => None, } } pub fn strip_references(&self) -> Type { self.derived(self.ty.strip_references().clone()) } pub fn is_unknown(&self) -> bool { self.ty.is_unknown() } /// Checks that particular type `ty` implements `std::future::Future`. /// This function is used in `.await` syntax completion. pub fn impls_future(&self, db: &dyn HirDatabase) -> bool { // No special case for the type of async block, since Chalk can figure it out. let krate = self.krate; let std_future_trait = db.lang_item(krate, "future_trait".into()).and_then(|it| it.as_trait()); let std_future_trait = match std_future_trait { Some(it) => it, None => return false, }; let canonical_ty = Canonical { value: self.ty.clone(), binders: CanonicalVarKinds::empty(&Interner) }; method_resolution::implements_trait( &canonical_ty, db, self.env.clone(), krate, std_future_trait, ) } /// Checks that particular type `ty` implements `std::ops::FnOnce`. /// /// This function can be used to check if a particular type is callable, since FnOnce is a /// supertrait of Fn and FnMut, so all callable types implements at least FnOnce. pub fn impls_fnonce(&self, db: &dyn HirDatabase) -> bool { let krate = self.krate; let fnonce_trait = match FnTrait::FnOnce.get_id(db, krate) { Some(it) => it, None => return false, }; let canonical_ty = Canonical { value: self.ty.clone(), binders: CanonicalVarKinds::empty(&Interner) }; method_resolution::implements_trait_unique( &canonical_ty, db, self.env.clone(), krate, fnonce_trait, ) } pub fn impls_trait(&self, db: &dyn HirDatabase, trait_: Trait, args: &[Type]) -> bool { let trait_ref = TyBuilder::trait_ref(db, trait_.id) .push(self.ty.clone()) .fill(args.iter().map(|t| t.ty.clone())) .build(); let goal = Canonical { value: hir_ty::InEnvironment::new(&self.env.env, trait_ref.cast(&Interner)), binders: CanonicalVarKinds::empty(&Interner), }; db.trait_solve(self.krate, goal).is_some() } pub fn normalize_trait_assoc_type( &self, db: &dyn HirDatabase, args: &[Type], alias: TypeAlias, ) -> Option { let projection = TyBuilder::assoc_type_projection(db, alias.id) .push(self.ty.clone()) .fill(args.iter().map(|t| t.ty.clone())) .build(); let goal = hir_ty::make_canonical( InEnvironment::new( &self.env.env, AliasEq { alias: AliasTy::Projection(projection), ty: TyKind::BoundVar(BoundVar::new(DebruijnIndex::INNERMOST, 0)) .intern(&Interner), } .cast(&Interner), ), [TyVariableKind::General].into_iter(), ); match db.trait_solve(self.krate, goal)? { Solution::Unique(s) => s .value .subst .as_slice(&Interner) .first() .map(|ty| self.derived(ty.assert_ty_ref(&Interner).clone())), Solution::Ambig(_) => None, } } pub fn is_copy(&self, db: &dyn HirDatabase) -> bool { let lang_item = db.lang_item(self.krate, SmolStr::new("copy")); let copy_trait = match lang_item { Some(LangItemTarget::TraitId(it)) => it, _ => return false, }; self.impls_trait(db, copy_trait.into(), &[]) } pub fn as_callable(&self, db: &dyn HirDatabase) -> Option { let def = self.ty.callable_def(db); let sig = self.ty.callable_sig(db)?; Some(Callable { ty: self.clone(), sig, def, is_bound_method: false }) } pub fn is_closure(&self) -> bool { matches!(&self.ty.kind(&Interner), TyKind::Closure { .. }) } pub fn is_fn(&self) -> bool { matches!(&self.ty.kind(&Interner), TyKind::FnDef(..) | TyKind::Function { .. }) } pub fn is_packed(&self, db: &dyn HirDatabase) -> bool { let adt_id = match *self.ty.kind(&Interner) { TyKind::Adt(hir_ty::AdtId(adt_id), ..) => adt_id, _ => return false, }; let adt = adt_id.into(); match adt { Adt::Struct(s) => matches!(s.repr(db), Some(ReprKind::Packed)), _ => false, } } pub fn is_raw_ptr(&self) -> bool { matches!(&self.ty.kind(&Interner), TyKind::Raw(..)) } pub fn contains_unknown(&self) -> bool { return go(&self.ty); fn go(ty: &Ty) -> bool { match ty.kind(&Interner) { TyKind::Error => true, TyKind::Adt(_, substs) | TyKind::AssociatedType(_, substs) | TyKind::Tuple(_, substs) | TyKind::OpaqueType(_, substs) | TyKind::FnDef(_, substs) | TyKind::Closure(_, substs) => { substs.iter(&Interner).filter_map(|a| a.ty(&Interner)).any(go) } TyKind::Array(_ty, len) if len.is_unknown() => true, TyKind::Array(ty, _) | TyKind::Slice(ty) | TyKind::Raw(_, ty) | TyKind::Ref(_, _, ty) => go(ty), TyKind::Scalar(_) | TyKind::Str | TyKind::Never | TyKind::Placeholder(_) | TyKind::BoundVar(_) | TyKind::InferenceVar(_, _) | TyKind::Dyn(_) | TyKind::Function(_) | TyKind::Alias(_) | TyKind::Foreign(_) | TyKind::Generator(..) | TyKind::GeneratorWitness(..) => false, } } } pub fn fields(&self, db: &dyn HirDatabase) -> Vec<(Field, Type)> { let (variant_id, substs) = match self.ty.kind(&Interner) { TyKind::Adt(hir_ty::AdtId(AdtId::StructId(s)), substs) => ((*s).into(), substs), TyKind::Adt(hir_ty::AdtId(AdtId::UnionId(u)), substs) => ((*u).into(), substs), _ => return Vec::new(), }; db.field_types(variant_id) .iter() .map(|(local_id, ty)| { let def = Field { parent: variant_id.into(), id: local_id }; let ty = ty.clone().substitute(&Interner, substs); (def, self.derived(ty)) }) .collect() } pub fn tuple_fields(&self, _db: &dyn HirDatabase) -> Vec { if let TyKind::Tuple(_, substs) = &self.ty.kind(&Interner) { substs .iter(&Interner) .map(|ty| self.derived(ty.assert_ty_ref(&Interner).clone())) .collect() } else { Vec::new() } } pub fn autoderef<'a>(&'a self, db: &'a dyn HirDatabase) -> impl Iterator + 'a { // There should be no inference vars in types passed here let canonical = hir_ty::replace_errors_with_variables(&self.ty); let environment = self.env.env.clone(); let ty = InEnvironment { goal: canonical, environment }; autoderef(db, Some(self.krate), ty) .map(|canonical| canonical.value) .map(move |ty| self.derived(ty)) } // This would be nicer if it just returned an iterator, but that runs into // lifetime problems, because we need to borrow temp `CrateImplDefs`. pub fn iterate_assoc_items( self, db: &dyn HirDatabase, krate: Crate, mut callback: impl FnMut(AssocItem) -> Option, ) -> Option { let mut slot = None; self.iterate_assoc_items_dyn(db, krate, &mut |assoc_item_id| { slot = callback(assoc_item_id.into()); slot.is_some() }); slot } fn iterate_assoc_items_dyn( self, db: &dyn HirDatabase, krate: Crate, callback: &mut dyn FnMut(AssocItemId) -> bool, ) { let def_crates = match method_resolution::def_crates(db, &self.ty, krate.id) { Some(it) => it, None => return, }; for krate in def_crates { let impls = db.inherent_impls_in_crate(krate); for impl_def in impls.for_self_ty(&self.ty) { for &item in db.impl_data(*impl_def).items.iter() { if callback(item) { return; } } } } } pub fn type_arguments(&self) -> impl Iterator + '_ { self.ty .strip_references() .as_adt() .into_iter() .flat_map(|(_, substs)| substs.iter(&Interner)) .filter_map(|arg| arg.ty(&Interner).cloned()) .map(move |ty| self.derived(ty)) } pub fn iterate_method_candidates( &self, db: &dyn HirDatabase, krate: Crate, traits_in_scope: &FxHashSet, name: Option<&Name>, mut callback: impl FnMut(Type, Function) -> Option, ) -> Option { let _p = profile::span("iterate_method_candidates"); let mut slot = None; self.iterate_method_candidates_dyn( db, krate, traits_in_scope, name, &mut |ty, assoc_item_id| { if let AssocItemId::FunctionId(func) = assoc_item_id { if let Some(res) = callback(self.derived(ty.clone()), func.into()) { slot = Some(res); return ControlFlow::Break(()); } } ControlFlow::Continue(()) }, ); slot } fn iterate_method_candidates_dyn( &self, db: &dyn HirDatabase, krate: Crate, traits_in_scope: &FxHashSet, name: Option<&Name>, callback: &mut dyn FnMut(&Ty, AssocItemId) -> ControlFlow<()>, ) { // There should be no inference vars in types passed here let canonical = hir_ty::replace_errors_with_variables(&self.ty); let env = self.env.clone(); let krate = krate.id; method_resolution::iterate_method_candidates_dyn( &canonical, db, env, krate, traits_in_scope, None, name, method_resolution::LookupMode::MethodCall, &mut |ty, id| callback(&ty.value, id), ); } pub fn iterate_path_candidates( &self, db: &dyn HirDatabase, krate: Crate, traits_in_scope: &FxHashSet, name: Option<&Name>, mut callback: impl FnMut(Type, AssocItem) -> Option, ) -> Option { let _p = profile::span("iterate_path_candidates"); let mut slot = None; self.iterate_path_candidates_dyn( db, krate, traits_in_scope, name, &mut |ty, assoc_item_id| { if let Some(res) = callback(self.derived(ty.clone()), assoc_item_id.into()) { slot = Some(res); return ControlFlow::Break(()); } ControlFlow::Continue(()) }, ); slot } fn iterate_path_candidates_dyn( &self, db: &dyn HirDatabase, krate: Crate, traits_in_scope: &FxHashSet, name: Option<&Name>, callback: &mut dyn FnMut(&Ty, AssocItemId) -> ControlFlow<()>, ) { let canonical = hir_ty::replace_errors_with_variables(&self.ty); let env = self.env.clone(); let krate = krate.id; method_resolution::iterate_method_candidates_dyn( &canonical, db, env, krate, traits_in_scope, None, name, method_resolution::LookupMode::Path, &mut |ty, id| callback(&ty.value, id), ); } pub fn as_adt(&self) -> Option { let (adt, _subst) = self.ty.as_adt()?; Some(adt.into()) } pub fn as_builtin(&self) -> Option { self.ty.as_builtin().map(|inner| BuiltinType { inner }) } pub fn as_dyn_trait(&self) -> Option { self.ty.dyn_trait().map(Into::into) } /// If a type can be represented as `dyn Trait`, returns all traits accessible via this type, /// or an empty iterator otherwise. pub fn applicable_inherent_traits<'a>( &'a self, db: &'a dyn HirDatabase, ) -> impl Iterator + 'a { let _p = profile::span("applicable_inherent_traits"); self.autoderef(db) .filter_map(|derefed_type| derefed_type.ty.dyn_trait()) .flat_map(move |dyn_trait_id| hir_ty::all_super_traits(db.upcast(), dyn_trait_id)) .map(Trait::from) } pub fn as_impl_traits(&self, db: &dyn HirDatabase) -> Option> { self.ty.impl_trait_bounds(db).map(|it| { it.into_iter() .filter_map(|pred| match pred.skip_binders() { hir_ty::WhereClause::Implemented(trait_ref) => { Some(Trait::from(trait_ref.hir_trait_id())) } _ => None, }) .collect() }) } pub fn as_associated_type_parent_trait(&self, db: &dyn HirDatabase) -> Option { self.ty.associated_type_parent_trait(db).map(Into::into) } fn derived(&self, ty: Ty) -> Type { Type { krate: self.krate, env: self.env.clone(), ty } } pub fn walk(&self, db: &dyn HirDatabase, mut cb: impl FnMut(Type)) { // TypeWalk::walk for a Ty at first visits parameters and only after that the Ty itself. // We need a different order here. fn walk_substs( db: &dyn HirDatabase, type_: &Type, substs: &Substitution, cb: &mut impl FnMut(Type), ) { for ty in substs.iter(&Interner).filter_map(|a| a.ty(&Interner)) { walk_type(db, &type_.derived(ty.clone()), cb); } } fn walk_bounds( db: &dyn HirDatabase, type_: &Type, bounds: &[QuantifiedWhereClause], cb: &mut impl FnMut(Type), ) { for pred in bounds { if let WhereClause::Implemented(trait_ref) = pred.skip_binders() { cb(type_.clone()); // skip the self type. it's likely the type we just got the bounds from for ty in trait_ref .substitution .iter(&Interner) .skip(1) .filter_map(|a| a.ty(&Interner)) { walk_type(db, &type_.derived(ty.clone()), cb); } } } } fn walk_type(db: &dyn HirDatabase, type_: &Type, cb: &mut impl FnMut(Type)) { let ty = type_.ty.strip_references(); match ty.kind(&Interner) { TyKind::Adt(_, substs) => { cb(type_.derived(ty.clone())); walk_substs(db, type_, substs, cb); } TyKind::AssociatedType(_, substs) => { if ty.associated_type_parent_trait(db).is_some() { cb(type_.derived(ty.clone())); } walk_substs(db, type_, substs, cb); } TyKind::OpaqueType(_, subst) => { if let Some(bounds) = ty.impl_trait_bounds(db) { walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb); } walk_substs(db, type_, subst, cb); } TyKind::Alias(AliasTy::Opaque(opaque_ty)) => { if let Some(bounds) = ty.impl_trait_bounds(db) { walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb); } walk_substs(db, type_, &opaque_ty.substitution, cb); } TyKind::Placeholder(_) => { if let Some(bounds) = ty.impl_trait_bounds(db) { walk_bounds(db, &type_.derived(ty.clone()), &bounds, cb); } } TyKind::Dyn(bounds) => { walk_bounds( db, &type_.derived(ty.clone()), bounds.bounds.skip_binders().interned(), cb, ); } TyKind::Ref(_, _, ty) | TyKind::Raw(_, ty) | TyKind::Array(ty, _) | TyKind::Slice(ty) => { walk_type(db, &type_.derived(ty.clone()), cb); } TyKind::FnDef(_, substs) | TyKind::Tuple(_, substs) | TyKind::Closure(.., substs) => { walk_substs(db, type_, substs, cb); } TyKind::Function(hir_ty::FnPointer { substitution, .. }) => { walk_substs(db, type_, &substitution.0, cb); } _ => {} } } walk_type(db, self, &mut cb); } pub fn could_unify_with(&self, db: &dyn HirDatabase, other: &Type) -> bool { let tys = hir_ty::replace_errors_with_variables(&(self.ty.clone(), other.ty.clone())); could_unify(db, self.env.clone(), &tys) } } // FIXME: closures #[derive(Debug)] pub struct Callable { ty: Type, sig: CallableSig, def: Option, pub(crate) is_bound_method: bool, } pub enum CallableKind { Function(Function), TupleStruct(Struct), TupleEnumVariant(Variant), Closure, } impl Callable { pub fn kind(&self) -> CallableKind { match self.def { Some(CallableDefId::FunctionId(it)) => CallableKind::Function(it.into()), Some(CallableDefId::StructId(it)) => CallableKind::TupleStruct(it.into()), Some(CallableDefId::EnumVariantId(it)) => CallableKind::TupleEnumVariant(it.into()), None => CallableKind::Closure, } } pub fn receiver_param(&self, db: &dyn HirDatabase) -> Option { let func = match self.def { Some(CallableDefId::FunctionId(it)) if self.is_bound_method => it, _ => return None, }; let src = func.lookup(db.upcast()).source(db.upcast()); let param_list = src.value.param_list()?; param_list.self_param() } pub fn n_params(&self) -> usize { self.sig.params().len() - if self.is_bound_method { 1 } else { 0 } } pub fn params( &self, db: &dyn HirDatabase, ) -> Vec<(Option>, Type)> { let types = self .sig .params() .iter() .skip(if self.is_bound_method { 1 } else { 0 }) .map(|ty| self.ty.derived(ty.clone())); let patterns = match self.def { Some(CallableDefId::FunctionId(func)) => { let src = func.lookup(db.upcast()).source(db.upcast()); src.value.param_list().map(|param_list| { param_list .self_param() .map(|it| Some(Either::Left(it))) .filter(|_| !self.is_bound_method) .into_iter() .chain(param_list.params().map(|it| it.pat().map(Either::Right))) }) } _ => None, }; patterns.into_iter().flatten().chain(iter::repeat(None)).zip(types).collect() } pub fn return_type(&self) -> Type { self.ty.derived(self.sig.ret().clone()) } } /// For IDE only #[derive(Debug, PartialEq, Eq, Hash)] pub enum ScopeDef { ModuleDef(ModuleDef), MacroDef(MacroDef), GenericParam(GenericParam), ImplSelfType(Impl), AdtSelfType(Adt), Local(Local), Label(Label), Unknown, } impl ScopeDef { pub fn all_items(def: PerNs) -> ArrayVec { let mut items = ArrayVec::new(); match (def.take_types(), def.take_values()) { (Some(m1), None) => items.push(ScopeDef::ModuleDef(m1.into())), (None, Some(m2)) => items.push(ScopeDef::ModuleDef(m2.into())), (Some(m1), Some(m2)) => { // Some items, like unit structs and enum variants, are // returned as both a type and a value. Here we want // to de-duplicate them. if m1 != m2 { items.push(ScopeDef::ModuleDef(m1.into())); items.push(ScopeDef::ModuleDef(m2.into())); } else { items.push(ScopeDef::ModuleDef(m1.into())); } } (None, None) => {} }; if let Some(macro_def_id) = def.take_macros() { items.push(ScopeDef::MacroDef(macro_def_id.into())); } if items.is_empty() { items.push(ScopeDef::Unknown); } items } pub fn attrs(&self, db: &dyn HirDatabase) -> Option { match self { ScopeDef::ModuleDef(it) => it.attrs(db), ScopeDef::MacroDef(it) => Some(it.attrs(db)), ScopeDef::GenericParam(it) => Some(it.attrs(db)), ScopeDef::ImplSelfType(_) | ScopeDef::AdtSelfType(_) | ScopeDef::Local(_) | ScopeDef::Label(_) | ScopeDef::Unknown => None, } } pub fn krate(&self, db: &dyn HirDatabase) -> Option { match self { ScopeDef::ModuleDef(it) => it.module(db).map(|m| m.krate()), ScopeDef::MacroDef(it) => it.module(db).map(|m| m.krate()), ScopeDef::GenericParam(it) => Some(it.module(db).krate()), ScopeDef::ImplSelfType(_) => None, ScopeDef::AdtSelfType(it) => Some(it.module(db).krate()), ScopeDef::Local(it) => Some(it.module(db).krate()), ScopeDef::Label(it) => Some(it.module(db).krate()), ScopeDef::Unknown => None, } } } impl From for ScopeDef { fn from(item: ItemInNs) -> Self { match item { ItemInNs::Types(id) => ScopeDef::ModuleDef(id), ItemInNs::Values(id) => ScopeDef::ModuleDef(id), ItemInNs::Macros(id) => ScopeDef::MacroDef(id), } } } pub trait HasVisibility { fn visibility(&self, db: &dyn HirDatabase) -> Visibility; fn is_visible_from(&self, db: &dyn HirDatabase, module: Module) -> bool { let vis = self.visibility(db); vis.is_visible_from(db.upcast(), module.id) } } /// Trait for obtaining the defining crate of an item. pub trait HasCrate { fn krate(&self, db: &dyn HirDatabase) -> Crate; } impl HasCrate for T { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db.upcast()).krate().into() } } impl HasCrate for AssocItem { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Field { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.parent_def(db).module(db).krate() } } impl HasCrate for Function { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Const { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for TypeAlias { fn krate(&self, db: &dyn HirDatabase) -> Crate { self.module(db).krate() } } impl HasCrate for Type { fn krate(&self, _db: &dyn HirDatabase) -> Crate { self.krate.into() } }