//! Methods for lowering the HIR to types. There are two main cases here: //! //! - Lowering a type reference like `&usize` or `Option` to a //! type: The entry point for this is `Ty::from_hir`. //! - Building the type for an item: This happens through the `type_for_def` query. //! //! This usually involves resolving names, collecting generic arguments etc. use std::iter; use std::sync::Arc; use hir_def::{ builtin_type::BuiltinType, generics::WherePredicate, path::{GenericArg, Path, PathSegment}, resolver::{HasResolver, Resolver, TypeNs}, type_ref::{TypeBound, TypeRef}, AdtId, AstItemDef, ConstId, EnumId, EnumVariantId, FunctionId, GenericDefId, HasModule, LocalStructFieldId, Lookup, StaticId, StructId, TraitId, TypeAliasId, UnionId, VariantId, }; use ra_arena::map::ArenaMap; use ra_db::CrateId; use super::{ FnSig, GenericPredicate, ProjectionPredicate, ProjectionTy, Substs, TraitEnvironment, TraitRef, Ty, TypeCtor, TypeWalk, }; use crate::{ db::HirDatabase, ty::{ primitive::{FloatTy, IntTy}, utils::{all_super_traits, associated_type_by_name_including_super_traits, variant_data}, }, util::make_mut_slice, Adt, Const, Enum, EnumVariant, Function, ImplBlock, ModuleDef, Static, Struct, Trait, TypeAlias, Union, }; impl Ty { pub(crate) fn from_hir(db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef) -> Self { match type_ref { TypeRef::Never => Ty::simple(TypeCtor::Never), TypeRef::Tuple(inner) => { let inner_tys: Arc<[Ty]> = inner.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect(); Ty::apply( TypeCtor::Tuple { cardinality: inner_tys.len() as u16 }, Substs(inner_tys), ) } TypeRef::Path(path) => Ty::from_hir_path(db, resolver, path), TypeRef::RawPtr(inner, mutability) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::apply_one(TypeCtor::RawPtr(*mutability), inner_ty) } TypeRef::Array(inner) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::apply_one(TypeCtor::Array, inner_ty) } TypeRef::Slice(inner) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::apply_one(TypeCtor::Slice, inner_ty) } TypeRef::Reference(inner, mutability) => { let inner_ty = Ty::from_hir(db, resolver, inner); Ty::apply_one(TypeCtor::Ref(*mutability), inner_ty) } TypeRef::Placeholder => Ty::Unknown, TypeRef::Fn(params) => { let sig = Substs(params.iter().map(|tr| Ty::from_hir(db, resolver, tr)).collect()); Ty::apply(TypeCtor::FnPtr { num_args: sig.len() as u16 - 1 }, sig) } TypeRef::DynTrait(bounds) => { let self_ty = Ty::Bound(0); let predicates = bounds .iter() .flat_map(|b| { GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone()) }) .collect(); Ty::Dyn(predicates) } TypeRef::ImplTrait(bounds) => { let self_ty = Ty::Bound(0); let predicates = bounds .iter() .flat_map(|b| { GenericPredicate::from_type_bound(db, resolver, b, self_ty.clone()) }) .collect(); Ty::Opaque(predicates) } TypeRef::Error => Ty::Unknown, } } /// This is only for `generic_predicates_for_param`, where we can't just /// lower the self types of the predicates since that could lead to cycles. /// So we just check here if the `type_ref` resolves to a generic param, and which. fn from_hir_only_param( db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef, ) -> Option { let path = match type_ref { TypeRef::Path(path) => path, _ => return None, }; if let crate::PathKind::Type(_) = &path.kind { return None; } if path.segments.len() > 1 { return None; } let resolution = match resolver.resolve_path_in_type_ns(db, path) { Some((it, None)) => it, _ => return None, }; if let TypeNs::GenericParam(idx) = resolution { Some(idx) } else { None } } pub(crate) fn from_type_relative_path( db: &impl HirDatabase, resolver: &Resolver, ty: Ty, remaining_segments: &[PathSegment], ) -> Ty { if remaining_segments.len() == 1 { // resolve unselected assoc types let segment = &remaining_segments[0]; Ty::select_associated_type(db, resolver, ty, segment) } else if remaining_segments.len() > 1 { // FIXME report error (ambiguous associated type) Ty::Unknown } else { ty } } pub(crate) fn from_partly_resolved_hir_path( db: &impl HirDatabase, resolver: &Resolver, resolution: TypeNs, resolved_segment: &PathSegment, remaining_segments: &[PathSegment], ) -> Ty { let ty = match resolution { TypeNs::TraitId(trait_) => { let trait_ref = TraitRef::from_resolved_path( db, resolver, trait_.into(), resolved_segment, None, ); return if remaining_segments.len() == 1 { let segment = &remaining_segments[0]; let associated_ty = associated_type_by_name_including_super_traits( db, trait_ref.trait_, &segment.name, ); match associated_ty { Some(associated_ty) => { // FIXME handle type parameters on the segment Ty::Projection(ProjectionTy { associated_ty, parameters: trait_ref.substs, }) } None => { // FIXME: report error (associated type not found) Ty::Unknown } } } else if remaining_segments.len() > 1 { // FIXME report error (ambiguous associated type) Ty::Unknown } else { Ty::Dyn(Arc::new([GenericPredicate::Implemented(trait_ref)])) }; } TypeNs::GenericParam(idx) => { // FIXME: maybe return name in resolution? let name = resolved_segment.name.clone(); Ty::Param { idx, name } } TypeNs::SelfType(impl_block) => ImplBlock::from(impl_block).target_ty(db), TypeNs::AdtSelfType(adt) => db.ty(adt.into()), TypeNs::AdtId(it) => Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()), TypeNs::BuiltinType(it) => { Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()) } TypeNs::TypeAliasId(it) => { Ty::from_hir_path_inner(db, resolver, resolved_segment, it.into()) } // FIXME: report error TypeNs::EnumVariantId(_) => return Ty::Unknown, }; Ty::from_type_relative_path(db, resolver, ty, remaining_segments) } pub(crate) fn from_hir_path(db: &impl HirDatabase, resolver: &Resolver, path: &Path) -> Ty { // Resolve the path (in type namespace) if let crate::PathKind::Type(type_ref) = &path.kind { let ty = Ty::from_hir(db, resolver, &type_ref); let remaining_segments = &path.segments[..]; return Ty::from_type_relative_path(db, resolver, ty, remaining_segments); } let (resolution, remaining_index) = match resolver.resolve_path_in_type_ns(db, path) { Some(it) => it, None => return Ty::Unknown, }; let (resolved_segment, remaining_segments) = match remaining_index { None => ( path.segments.last().expect("resolved path has at least one element"), &[] as &[PathSegment], ), Some(i) => (&path.segments[i - 1], &path.segments[i..]), }; Ty::from_partly_resolved_hir_path( db, resolver, resolution, resolved_segment, remaining_segments, ) } fn select_associated_type( db: &impl HirDatabase, resolver: &Resolver, self_ty: Ty, segment: &PathSegment, ) -> Ty { let param_idx = match self_ty { Ty::Param { idx, .. } => idx, _ => return Ty::Unknown, // Error: Ambiguous associated type }; let def = match resolver.generic_def() { Some(def) => def, None => return Ty::Unknown, // this can't actually happen }; let predicates = db.generic_predicates_for_param(def.into(), param_idx); let traits_from_env = predicates.iter().filter_map(|pred| match pred { GenericPredicate::Implemented(tr) if tr.self_ty() == &self_ty => Some(tr.trait_), _ => None, }); let traits = traits_from_env.flat_map(|t| all_super_traits(db, t)).map(Trait::from); for t in traits { if let Some(associated_ty) = db.trait_data(t.id).associated_type_by_name(&segment.name) { let substs = Substs::build_for_def(db, t.id) .push(self_ty.clone()) .fill_with_unknown() .build(); // FIXME handle type parameters on the segment return Ty::Projection(ProjectionTy { associated_ty, parameters: substs }); } } Ty::Unknown } fn from_hir_path_inner( db: &impl HirDatabase, resolver: &Resolver, segment: &PathSegment, typable: TyDefId, ) -> Ty { let generic_def = match typable { TyDefId::BuiltinType(_) => None, TyDefId::AdtId(it) => Some(it.into()), TyDefId::TypeAliasId(it) => Some(it.into()), }; let substs = substs_from_path_segment(db, resolver, segment, generic_def, false); db.ty(typable).subst(&substs) } /// Collect generic arguments from a path into a `Substs`. See also /// `create_substs_for_ast_path` and `def_to_ty` in rustc. pub(super) fn substs_from_path( db: &impl HirDatabase, resolver: &Resolver, path: &Path, // Note that we don't call `db.value_type(resolved)` here, // `ValueTyDefId` is just a convenient way to pass generics and // special-case enum variants resolved: ValueTyDefId, ) -> Substs { let last = path.segments.last().expect("path should have at least one segment"); let (segment, generic_def) = match resolved { ValueTyDefId::FunctionId(it) => (last, Some(it.into())), ValueTyDefId::StructId(it) => (last, Some(it.into())), ValueTyDefId::ConstId(it) => (last, Some(it.into())), ValueTyDefId::StaticId(_) => (last, None), ValueTyDefId::EnumVariantId(var) => { // the generic args for an enum variant may be either specified // on the segment referring to the enum, or on the segment // referring to the variant. So `Option::::None` and // `Option::None::` are both allowed (though the former is // preferred). See also `def_ids_for_path_segments` in rustc. let len = path.segments.len(); let segment = if len >= 2 && path.segments[len - 2].args_and_bindings.is_some() { // Option::::None &path.segments[len - 2] } else { // Option::None:: last }; (segment, Some(var.parent.into())) } }; substs_from_path_segment(db, resolver, segment, generic_def, false) } } pub(super) fn substs_from_path_segment( db: &impl HirDatabase, resolver: &Resolver, segment: &PathSegment, def_generic: Option, add_self_param: bool, ) -> Substs { let mut substs = Vec::new(); let def_generics = def_generic.map(|def| db.generic_params(def.into())); let (parent_param_count, param_count) = def_generics.map_or((0, 0), |g| (g.count_parent_params(), g.params.len())); substs.extend(iter::repeat(Ty::Unknown).take(parent_param_count)); if add_self_param { // FIXME this add_self_param argument is kind of a hack: Traits have the // Self type as an implicit first type parameter, but it can't be // actually provided in the type arguments // (well, actually sometimes it can, in the form of type-relative paths: `::default()`) substs.push(Ty::Unknown); } if let Some(generic_args) = &segment.args_and_bindings { // if args are provided, it should be all of them, but we can't rely on that let self_param_correction = if add_self_param { 1 } else { 0 }; let param_count = param_count - self_param_correction; for arg in generic_args.args.iter().take(param_count) { match arg { GenericArg::Type(type_ref) => { let ty = Ty::from_hir(db, resolver, type_ref); substs.push(ty); } } } } // add placeholders for args that were not provided let supplied_params = substs.len(); for _ in supplied_params..parent_param_count + param_count { substs.push(Ty::Unknown); } assert_eq!(substs.len(), parent_param_count + param_count); // handle defaults if let Some(def_generic) = def_generic { let default_substs = db.generic_defaults(def_generic.into()); assert_eq!(substs.len(), default_substs.len()); for (i, default_ty) in default_substs.iter().enumerate() { if substs[i] == Ty::Unknown { substs[i] = default_ty.clone(); } } } Substs(substs.into()) } impl TraitRef { pub(crate) fn from_path( db: &impl HirDatabase, resolver: &Resolver, path: &Path, explicit_self_ty: Option, ) -> Option { let resolved = match resolver.resolve_path_in_type_ns_fully(db, &path)? { TypeNs::TraitId(tr) => tr, _ => return None, }; let segment = path.segments.last().expect("path should have at least one segment"); Some(TraitRef::from_resolved_path(db, resolver, resolved.into(), segment, explicit_self_ty)) } pub(super) fn from_resolved_path( db: &impl HirDatabase, resolver: &Resolver, resolved: Trait, segment: &PathSegment, explicit_self_ty: Option, ) -> Self { let mut substs = TraitRef::substs_from_path(db, resolver, segment, resolved); if let Some(self_ty) = explicit_self_ty { make_mut_slice(&mut substs.0)[0] = self_ty; } TraitRef { trait_: resolved.id, substs } } pub(crate) fn from_hir( db: &impl HirDatabase, resolver: &Resolver, type_ref: &TypeRef, explicit_self_ty: Option, ) -> Option { let path = match type_ref { TypeRef::Path(path) => path, _ => return None, }; TraitRef::from_path(db, resolver, path, explicit_self_ty) } fn substs_from_path( db: &impl HirDatabase, resolver: &Resolver, segment: &PathSegment, resolved: Trait, ) -> Substs { let has_self_param = segment.args_and_bindings.as_ref().map(|a| a.has_self_type).unwrap_or(false); substs_from_path_segment(db, resolver, segment, Some(resolved.id.into()), !has_self_param) } pub(crate) fn for_trait(db: &impl HirDatabase, trait_: TraitId) -> TraitRef { let substs = Substs::identity(&db.generic_params(trait_.into())); TraitRef { trait_, substs } } pub(crate) fn from_type_bound( db: &impl HirDatabase, resolver: &Resolver, bound: &TypeBound, self_ty: Ty, ) -> Option { match bound { TypeBound::Path(path) => TraitRef::from_path(db, resolver, path, Some(self_ty)), TypeBound::Error => None, } } } impl GenericPredicate { pub(crate) fn from_where_predicate<'a>( db: &'a impl HirDatabase, resolver: &'a Resolver, where_predicate: &'a WherePredicate, ) -> impl Iterator + 'a { let self_ty = Ty::from_hir(db, resolver, &where_predicate.type_ref); GenericPredicate::from_type_bound(db, resolver, &where_predicate.bound, self_ty) } pub(crate) fn from_type_bound<'a>( db: &'a impl HirDatabase, resolver: &'a Resolver, bound: &'a TypeBound, self_ty: Ty, ) -> impl Iterator + 'a { let trait_ref = TraitRef::from_type_bound(db, &resolver, bound, self_ty); iter::once(trait_ref.clone().map_or(GenericPredicate::Error, GenericPredicate::Implemented)) .chain( trait_ref.into_iter().flat_map(move |tr| { assoc_type_bindings_from_type_bound(db, resolver, bound, tr) }), ) } } fn assoc_type_bindings_from_type_bound<'a>( db: &'a impl HirDatabase, resolver: &'a Resolver, bound: &'a TypeBound, trait_ref: TraitRef, ) -> impl Iterator + 'a { let last_segment = match bound { TypeBound::Path(path) => path.segments.last(), TypeBound::Error => None, }; last_segment .into_iter() .flat_map(|segment| segment.args_and_bindings.iter()) .flat_map(|args_and_bindings| args_and_bindings.bindings.iter()) .map(move |(name, type_ref)| { let associated_ty = associated_type_by_name_including_super_traits(db, trait_ref.trait_, &name); let associated_ty = match associated_ty { None => return GenericPredicate::Error, Some(t) => t, }; let projection_ty = ProjectionTy { associated_ty, parameters: trait_ref.substs.clone() }; let ty = Ty::from_hir(db, resolver, type_ref); let projection_predicate = ProjectionPredicate { projection_ty, ty }; GenericPredicate::Projection(projection_predicate) }) } /// Build the signature of a callable item (function, struct or enum variant). pub(crate) fn callable_item_sig(db: &impl HirDatabase, def: CallableDef) -> FnSig { match def { CallableDef::FunctionId(f) => fn_sig_for_fn(db, f), CallableDef::StructId(s) => fn_sig_for_struct_constructor(db, s), CallableDef::EnumVariantId(e) => fn_sig_for_enum_variant_constructor(db, e), } } /// Build the type of all specific fields of a struct or enum variant. pub(crate) fn field_types_query( db: &impl HirDatabase, variant_id: VariantId, ) -> Arc> { let var_data = variant_data(db, variant_id); let resolver = match variant_id { VariantId::StructId(it) => it.resolver(db), VariantId::UnionId(it) => it.resolver(db), VariantId::EnumVariantId(it) => it.parent.resolver(db), }; let mut res = ArenaMap::default(); for (field_id, field_data) in var_data.fields().iter() { res.insert(field_id, Ty::from_hir(db, &resolver, &field_data.type_ref)) } Arc::new(res) } /// This query exists only to be used when resolving short-hand associated types /// like `T::Item`. /// /// See the analogous query in rustc and its comment: /// https://github.com/rust-lang/rust/blob/9150f844e2624eb013ec78ca08c1d416e6644026/src/librustc_typeck/astconv.rs#L46 /// This is a query mostly to handle cycles somewhat gracefully; e.g. the /// following bounds are disallowed: `T: Foo, U: Foo`, but /// these are fine: `T: Foo, U: Foo<()>`. pub(crate) fn generic_predicates_for_param_query( db: &impl HirDatabase, def: GenericDefId, param_idx: u32, ) -> Arc<[GenericPredicate]> { let resolver = def.resolver(db); resolver .where_predicates_in_scope() // we have to filter out all other predicates *first*, before attempting to lower them .filter(|pred| Ty::from_hir_only_param(db, &resolver, &pred.type_ref) == Some(param_idx)) .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred)) .collect() } impl TraitEnvironment { pub(crate) fn lower(db: &impl HirDatabase, resolver: &Resolver) -> Arc { let predicates = resolver .where_predicates_in_scope() .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred)) .collect::>(); Arc::new(TraitEnvironment { predicates }) } } /// Resolve the where clause(s) of an item with generics. pub(crate) fn generic_predicates_query( db: &impl HirDatabase, def: GenericDefId, ) -> Arc<[GenericPredicate]> { let resolver = def.resolver(db); resolver .where_predicates_in_scope() .flat_map(|pred| GenericPredicate::from_where_predicate(db, &resolver, pred)) .collect() } /// Resolve the default type params from generics pub(crate) fn generic_defaults_query(db: &impl HirDatabase, def: GenericDefId) -> Substs { let resolver = def.resolver(db); let generic_params = db.generic_params(def.into()); let defaults = generic_params .params_including_parent() .into_iter() .map(|p| p.default.as_ref().map_or(Ty::Unknown, |t| Ty::from_hir(db, &resolver, t))) .collect(); Substs(defaults) } fn fn_sig_for_fn(db: &impl HirDatabase, def: FunctionId) -> FnSig { let data = db.function_data(def); let resolver = def.resolver(db); let params = data.params.iter().map(|tr| Ty::from_hir(db, &resolver, tr)).collect::>(); let ret = Ty::from_hir(db, &resolver, &data.ret_type); FnSig::from_params_and_return(params, ret) } /// Build the declared type of a function. This should not need to look at the /// function body. fn type_for_fn(db: &impl HirDatabase, def: FunctionId) -> Ty { let generics = db.generic_params(def.into()); let substs = Substs::identity(&generics); Ty::apply(TypeCtor::FnDef(def.into()), substs) } /// Build the declared type of a const. fn type_for_const(db: &impl HirDatabase, def: ConstId) -> Ty { let data = db.const_data(def); let resolver = def.resolver(db); Ty::from_hir(db, &resolver, &data.type_ref) } /// Build the declared type of a static. fn type_for_static(db: &impl HirDatabase, def: StaticId) -> Ty { let data = db.static_data(def); let resolver = def.resolver(db); Ty::from_hir(db, &resolver, &data.type_ref) } /// Build the declared type of a static. fn type_for_builtin(def: BuiltinType) -> Ty { Ty::simple(match def { BuiltinType::Char => TypeCtor::Char, BuiltinType::Bool => TypeCtor::Bool, BuiltinType::Str => TypeCtor::Str, BuiltinType::Int(t) => TypeCtor::Int(IntTy::from(t).into()), BuiltinType::Float(t) => TypeCtor::Float(FloatTy::from(t).into()), }) } fn fn_sig_for_struct_constructor(db: &impl HirDatabase, def: StructId) -> FnSig { let struct_data = db.struct_data(def.into()); let fields = struct_data.variant_data.fields(); let resolver = def.resolver(db); let params = fields .iter() .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref)) .collect::>(); let ret = type_for_adt(db, def.into()); FnSig::from_params_and_return(params, ret) } /// Build the type of a tuple struct constructor. fn type_for_struct_constructor(db: &impl HirDatabase, def: StructId) -> Ty { let struct_data = db.struct_data(def.into()); if struct_data.variant_data.is_unit() { return type_for_adt(db, def.into()); // Unit struct } let generics = db.generic_params(def.into()); let substs = Substs::identity(&generics); Ty::apply(TypeCtor::FnDef(def.into()), substs) } fn fn_sig_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariantId) -> FnSig { let enum_data = db.enum_data(def.parent); let var_data = &enum_data.variants[def.local_id]; let fields = var_data.variant_data.fields(); let resolver = def.parent.resolver(db); let params = fields .iter() .map(|(_, field)| Ty::from_hir(db, &resolver, &field.type_ref)) .collect::>(); let generics = db.generic_params(def.parent.into()); let substs = Substs::identity(&generics); let ret = type_for_adt(db, def.parent.into()).subst(&substs); FnSig::from_params_and_return(params, ret) } /// Build the type of a tuple enum variant constructor. fn type_for_enum_variant_constructor(db: &impl HirDatabase, def: EnumVariantId) -> Ty { let enum_data = db.enum_data(def.parent); let var_data = &enum_data.variants[def.local_id].variant_data; if var_data.is_unit() { return type_for_adt(db, def.parent.into()); // Unit variant } let generics = db.generic_params(def.parent.into()); let substs = Substs::identity(&generics); Ty::apply(TypeCtor::FnDef(EnumVariantId::from(def).into()), substs) } fn type_for_adt(db: &impl HirDatabase, adt: AdtId) -> Ty { let generics = db.generic_params(adt.into()); Ty::apply(TypeCtor::Adt(adt), Substs::identity(&generics)) } fn type_for_type_alias(db: &impl HirDatabase, t: TypeAliasId) -> Ty { let generics = db.generic_params(t.into()); let resolver = t.resolver(db); let type_ref = &db.type_alias_data(t).type_ref; let substs = Substs::identity(&generics); let inner = Ty::from_hir(db, &resolver, type_ref.as_ref().unwrap_or(&TypeRef::Error)); inner.subst(&substs) } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum TypableDef { Function(Function), Adt(Adt), EnumVariant(EnumVariant), TypeAlias(TypeAlias), Const(Const), Static(Static), BuiltinType(BuiltinType), } impl_froms!( TypableDef: Function, Adt(Struct, Enum, Union), EnumVariant, TypeAlias, Const, Static, BuiltinType ); impl From for Option { fn from(def: ModuleDef) -> Option { let res = match def { ModuleDef::Function(f) => f.into(), ModuleDef::Adt(adt) => adt.into(), ModuleDef::EnumVariant(v) => v.into(), ModuleDef::TypeAlias(t) => t.into(), ModuleDef::Const(v) => v.into(), ModuleDef::Static(v) => v.into(), ModuleDef::BuiltinType(t) => t.into(), ModuleDef::Module(_) | ModuleDef::Trait(_) => return None, }; Some(res) } } #[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)] pub enum CallableDef { FunctionId(FunctionId), StructId(StructId), EnumVariantId(EnumVariantId), } impl_froms!(CallableDef: FunctionId, StructId, EnumVariantId); impl CallableDef { pub fn krate(self, db: &impl HirDatabase) -> CrateId { match self { CallableDef::FunctionId(f) => f.lookup(db).module(db).krate, CallableDef::StructId(s) => s.module(db).krate, CallableDef::EnumVariantId(e) => e.parent.module(db).krate, } } } impl From for GenericDefId { fn from(def: CallableDef) -> GenericDefId { match def { CallableDef::FunctionId(f) => f.into(), CallableDef::StructId(s) => s.into(), CallableDef::EnumVariantId(e) => e.into(), } } } #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum TyDefId { BuiltinType(BuiltinType), AdtId(AdtId), TypeAliasId(TypeAliasId), } impl_froms!(TyDefId: BuiltinType, AdtId(StructId, EnumId, UnionId), TypeAliasId); #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)] pub enum ValueTyDefId { FunctionId(FunctionId), StructId(StructId), EnumVariantId(EnumVariantId), ConstId(ConstId), StaticId(StaticId), } impl_froms!(ValueTyDefId: FunctionId, StructId, EnumVariantId, ConstId, StaticId); /// Build the declared type of an item. This depends on the namespace; e.g. for /// `struct Foo(usize)`, we have two types: The type of the struct itself, and /// the constructor function `(usize) -> Foo` which lives in the values /// namespace. pub(crate) fn ty_query(db: &impl HirDatabase, def: TyDefId) -> Ty { match def { TyDefId::BuiltinType(it) => type_for_builtin(it), TyDefId::AdtId(it) => type_for_adt(db, it), TyDefId::TypeAliasId(it) => type_for_type_alias(db, it), } } pub(crate) fn value_ty_query(db: &impl HirDatabase, def: ValueTyDefId) -> Ty { match def { ValueTyDefId::FunctionId(it) => type_for_fn(db, it), ValueTyDefId::StructId(it) => type_for_struct_constructor(db, it), ValueTyDefId::EnumVariantId(it) => type_for_enum_variant_constructor(db, it), ValueTyDefId::ConstId(it) => type_for_const(db, it), ValueTyDefId::StaticId(it) => type_for_static(db, it), } }