//! The core of the module-level name resolution algorithm. //! //! `DefCollector::collect` contains the fixed-point iteration loop which //! resolves imports and expands macros. use std::{iter, mem}; use base_db::{CrateId, Edition, FileId}; use cfg::{CfgExpr, CfgOptions}; use either::Either; use hir_expand::{ ast_id_map::FileAstId, attrs::{Attr, AttrId}, builtin_attr_macro::find_builtin_attr, builtin_derive_macro::find_builtin_derive, builtin_fn_macro::find_builtin_macro, hygiene::Hygiene, name::{name, AsName, Name}, proc_macro::ProcMacroExpander, ExpandResult, ExpandTo, HirFileId, InFile, MacroCallId, MacroCallKind, MacroCallLoc, MacroDefId, MacroDefKind, }; use itertools::{izip, Itertools}; use la_arena::Idx; use limit::Limit; use rustc_hash::{FxHashMap, FxHashSet}; use stdx::always; use syntax::{ast, SmolStr}; use crate::{ attr::Attrs, attr_macro_as_call_id, db::DefDatabase, derive_macro_as_call_id, item_scope::{ImportType, PerNsGlobImports}, item_tree::{ self, Fields, FileItemTreeId, ImportKind, ItemTree, ItemTreeId, ItemTreeNode, MacroCall, MacroDef, MacroRules, Mod, ModItem, ModKind, TreeId, }, macro_call_as_call_id, macro_id_to_def_id, nameres::{ diagnostics::DefDiagnostic, mod_resolution::ModDir, path_resolution::ReachedFixedPoint, proc_macro::{parse_macro_name_and_helper_attrs, ProcMacroDef, ProcMacroKind}, BuiltinShadowMode, DefMap, ModuleData, ModuleOrigin, ResolveMode, }, path::{ImportAlias, ModPath, PathKind}, per_ns::PerNs, tt, visibility::{RawVisibility, Visibility}, AdtId, AstId, AstIdWithPath, ConstLoc, EnumLoc, EnumVariantId, ExternBlockLoc, FunctionId, FunctionLoc, ImplLoc, Intern, ItemContainerId, LocalModuleId, Macro2Id, Macro2Loc, MacroExpander, MacroId, MacroRulesId, MacroRulesLoc, ModuleDefId, ModuleId, ProcMacroId, ProcMacroLoc, StaticLoc, StructLoc, TraitAliasLoc, TraitLoc, TypeAliasLoc, UnionLoc, UnresolvedMacro, }; static GLOB_RECURSION_LIMIT: Limit = Limit::new(100); static EXPANSION_DEPTH_LIMIT: Limit = Limit::new(128); static FIXED_POINT_LIMIT: Limit = Limit::new(8192); pub(super) fn collect_defs(db: &dyn DefDatabase, mut def_map: DefMap, tree_id: TreeId) -> DefMap { let crate_graph = db.crate_graph(); let mut deps = FxHashMap::default(); // populate external prelude and dependency list let krate = &crate_graph[def_map.krate]; for dep in &krate.dependencies { tracing::debug!("crate dep {:?} -> {:?}", dep.name, dep.crate_id); let dep_def_map = db.crate_def_map(dep.crate_id); let dep_root = dep_def_map.module_id(dep_def_map.root); deps.insert(dep.as_name(), dep_root); if dep.is_prelude() && !tree_id.is_block() { def_map.extern_prelude.insert(dep.as_name(), dep_root); } } let cfg_options = &krate.cfg_options; let is_proc_macro = krate.is_proc_macro; let proc_macros = if is_proc_macro { match db.proc_macros().get(&def_map.krate) { Some(Ok(proc_macros)) => { proc_macros .iter() .enumerate() .map(|(idx, it)| { // FIXME: a hacky way to create a Name from string. let name = tt::Ident { text: it.name.clone(), span: tt::TokenId::unspecified() }; (name.as_name(), ProcMacroExpander::new(base_db::ProcMacroId(idx as u32))) }) .collect() } Some(Err(e)) => { def_map.proc_macro_loading_error = Some(e.clone().into_boxed_str()); Vec::new() } None => { def_map.proc_macro_loading_error = Some("No proc-macros present for crate".to_owned().into_boxed_str()); Vec::new() } } } else { vec![] }; let mut collector = DefCollector { db, def_map, deps, glob_imports: FxHashMap::default(), unresolved_imports: Vec::new(), indeterminate_imports: Vec::new(), unresolved_macros: Vec::new(), mod_dirs: FxHashMap::default(), cfg_options, proc_macros, from_glob_import: Default::default(), skip_attrs: Default::default(), is_proc_macro, hygienes: FxHashMap::default(), }; if tree_id.is_block() { collector.seed_with_inner(tree_id); } else { collector.seed_with_top_level(); } collector.collect(); let mut def_map = collector.finish(); def_map.shrink_to_fit(); def_map } #[derive(Copy, Clone, Debug, Eq, PartialEq)] enum PartialResolvedImport { /// None of any namespaces is resolved Unresolved, /// One of namespaces is resolved Indeterminate(PerNs), /// All namespaces are resolved, OR it comes from other crate Resolved(PerNs), } impl PartialResolvedImport { fn namespaces(self) -> PerNs { match self { PartialResolvedImport::Unresolved => PerNs::none(), PartialResolvedImport::Indeterminate(ns) | PartialResolvedImport::Resolved(ns) => ns, } } } #[derive(Clone, Debug, Eq, PartialEq)] enum ImportSource { Import { id: ItemTreeId, use_tree: Idx }, ExternCrate(ItemTreeId), } #[derive(Debug, Eq, PartialEq)] struct Import { path: ModPath, alias: Option, visibility: RawVisibility, kind: ImportKind, is_prelude: bool, is_extern_crate: bool, is_macro_use: bool, source: ImportSource, } impl Import { fn from_use( db: &dyn DefDatabase, krate: CrateId, tree: &ItemTree, id: ItemTreeId, ) -> Vec { let it = &tree[id.value]; let attrs = &tree.attrs(db, krate, ModItem::from(id.value).into()); let visibility = &tree[it.visibility]; let is_prelude = attrs.by_key("prelude_import").exists(); let mut res = Vec::new(); it.use_tree.expand(|idx, path, kind, alias| { res.push(Self { path, alias, visibility: visibility.clone(), kind, is_prelude, is_extern_crate: false, is_macro_use: false, source: ImportSource::Import { id, use_tree: idx }, }); }); res } fn from_extern_crate( db: &dyn DefDatabase, krate: CrateId, tree: &ItemTree, id: ItemTreeId, ) -> Self { let it = &tree[id.value]; let attrs = &tree.attrs(db, krate, ModItem::from(id.value).into()); let visibility = &tree[it.visibility]; Self { path: ModPath::from_segments(PathKind::Plain, iter::once(it.name.clone())), alias: it.alias.clone(), visibility: visibility.clone(), kind: ImportKind::Plain, is_prelude: false, is_extern_crate: true, is_macro_use: attrs.by_key("macro_use").exists(), source: ImportSource::ExternCrate(id), } } } #[derive(Debug, Eq, PartialEq)] struct ImportDirective { /// The module this import directive is in. module_id: LocalModuleId, import: Import, status: PartialResolvedImport, } #[derive(Clone, Debug, Eq, PartialEq)] struct MacroDirective { module_id: LocalModuleId, depth: usize, kind: MacroDirectiveKind, container: ItemContainerId, } #[derive(Clone, Debug, Eq, PartialEq)] enum MacroDirectiveKind { FnLike { ast_id: AstIdWithPath, expand_to: ExpandTo }, Derive { ast_id: AstIdWithPath, derive_attr: AttrId, derive_pos: usize }, Attr { ast_id: AstIdWithPath, attr: Attr, mod_item: ModItem, tree: TreeId }, } /// Walks the tree of module recursively struct DefCollector<'a> { db: &'a dyn DefDatabase, def_map: DefMap, deps: FxHashMap, glob_imports: FxHashMap>, unresolved_imports: Vec, indeterminate_imports: Vec, unresolved_macros: Vec, mod_dirs: FxHashMap, cfg_options: &'a CfgOptions, /// List of procedural macros defined by this crate. This is read from the dynamic library /// built by the build system, and is the list of proc. macros we can actually expand. It is /// empty when proc. macro support is disabled (in which case we still do name resolution for /// them). proc_macros: Vec<(Name, ProcMacroExpander)>, is_proc_macro: bool, from_glob_import: PerNsGlobImports, /// If we fail to resolve an attribute on a `ModItem`, we fall back to ignoring the attribute. /// This map is used to skip all attributes up to and including the one that failed to resolve, /// in order to not expand them twice. /// /// This also stores the attributes to skip when we resolve derive helpers and non-macro /// non-builtin attributes in general. skip_attrs: FxHashMap, AttrId>, /// `Hygiene` cache, because `Hygiene` construction is expensive. /// /// Almost all paths should have been lowered to `ModPath` during `ItemTree` construction. /// However, `DefCollector` still needs to lower paths in attributes, in particular those in /// derive meta item list. hygienes: FxHashMap, } impl DefCollector<'_> { fn seed_with_top_level(&mut self) { let _p = profile::span("seed_with_top_level"); let file_id = self.db.crate_graph()[self.def_map.krate].root_file_id; let item_tree = self.db.file_item_tree(file_id.into()); let module_id = self.def_map.root; let attrs = item_tree.top_level_attrs(self.db, self.def_map.krate); if attrs.cfg().map_or(true, |cfg| self.cfg_options.check(&cfg) != Some(false)) { self.inject_prelude(&attrs); // Process other crate-level attributes. for attr in &*attrs { let attr_name = match attr.path.as_ident() { Some(name) => name, None => continue, }; if *attr_name == hir_expand::name![recursion_limit] { if let Some(limit) = attr.string_value() { if let Ok(limit) = limit.parse() { self.def_map.recursion_limit = Some(limit); } } continue; } if *attr_name == hir_expand::name![crate_type] { if let Some("proc-macro") = attr.string_value().map(SmolStr::as_str) { self.is_proc_macro = true; } continue; } if attr_name.as_text().as_deref() == Some("rustc_coherence_is_core") { self.def_map.rustc_coherence_is_core = true; continue; } if *attr_name == hir_expand::name![feature] { let hygiene = &Hygiene::new_unhygienic(); let features = attr .parse_path_comma_token_tree(self.db.upcast(), hygiene) .into_iter() .flatten() .filter_map(|feat| match feat.segments() { [name] => Some(name.to_smol_str()), _ => None, }); self.def_map.unstable_features.extend(features); } let attr_is_register_like = *attr_name == hir_expand::name![register_attr] || *attr_name == hir_expand::name![register_tool]; if !attr_is_register_like { continue; } let registered_name = match attr.single_ident_value() { Some(ident) => ident.as_name(), _ => continue, }; if *attr_name == hir_expand::name![register_attr] { self.def_map.registered_attrs.push(registered_name.to_smol_str()); cov_mark::hit!(register_attr); } else { self.def_map.registered_tools.push(registered_name.to_smol_str()); cov_mark::hit!(register_tool); } } ModCollector { def_collector: self, macro_depth: 0, module_id, tree_id: TreeId::new(file_id.into(), None), item_tree: &item_tree, mod_dir: ModDir::root(), } .collect_in_top_module(item_tree.top_level_items()); } } fn seed_with_inner(&mut self, tree_id: TreeId) { let item_tree = tree_id.item_tree(self.db); let module_id = self.def_map.root; let is_cfg_enabled = item_tree .top_level_attrs(self.db, self.def_map.krate) .cfg() .map_or(true, |cfg| self.cfg_options.check(&cfg) != Some(false)); if is_cfg_enabled { ModCollector { def_collector: self, macro_depth: 0, module_id, tree_id, item_tree: &item_tree, mod_dir: ModDir::root(), } .collect_in_top_module(item_tree.top_level_items()); } } fn resolution_loop(&mut self) { let _p = profile::span("DefCollector::resolution_loop"); // main name resolution fixed-point loop. let mut i = 0; 'resolve_attr: loop { 'resolve_macros: loop { self.db.unwind_if_cancelled(); { let _p = profile::span("resolve_imports loop"); 'resolve_imports: loop { if self.resolve_imports() == ReachedFixedPoint::Yes { break 'resolve_imports; } } } if self.resolve_macros() == ReachedFixedPoint::Yes { break 'resolve_macros; } i += 1; if FIXED_POINT_LIMIT.check(i).is_err() { tracing::error!("name resolution is stuck"); break 'resolve_attr; } } if self.reseed_with_unresolved_attribute() == ReachedFixedPoint::Yes { break 'resolve_attr; } } } fn collect(&mut self) { let _p = profile::span("DefCollector::collect"); self.resolution_loop(); // Resolve all indeterminate resolved imports again // As some of the macros will expand newly import shadowing partial resolved imports // FIXME: We maybe could skip this, if we handle the indeterminate imports in `resolve_imports` // correctly let partial_resolved = self.indeterminate_imports.drain(..).map(|directive| { ImportDirective { status: PartialResolvedImport::Unresolved, ..directive } }); self.unresolved_imports.extend(partial_resolved); self.resolve_imports(); let unresolved_imports = mem::take(&mut self.unresolved_imports); // show unresolved imports in completion, etc for directive in &unresolved_imports { self.record_resolved_import(directive); } self.unresolved_imports = unresolved_imports; if self.is_proc_macro { // A crate exporting procedural macros is not allowed to export anything else. // // Additionally, while the proc macro entry points must be `pub`, they are not publicly // exported in type/value namespace. This function reduces the visibility of all items // in the crate root that aren't proc macros. let root = self.def_map.root; let module_id = self.def_map.module_id(root); let root = &mut self.def_map.modules[root]; root.scope.censor_non_proc_macros(module_id); } } /// When the fixed-point loop reaches a stable state, we might still have /// some unresolved attributes left over. This takes one of them, and feeds /// the item it's applied to back into name resolution. /// /// This effectively ignores the fact that the macro is there and just treats the items as /// normal code. /// /// This improves UX for unresolved attributes, and replicates the /// behavior before we supported proc. attribute macros. fn reseed_with_unresolved_attribute(&mut self) -> ReachedFixedPoint { cov_mark::hit!(unresolved_attribute_fallback); let unresolved_attr = self.unresolved_macros.iter().enumerate().find_map(|(idx, directive)| match &directive .kind { MacroDirectiveKind::Attr { ast_id, mod_item, attr, tree } => { self.def_map.diagnostics.push(DefDiagnostic::unresolved_macro_call( directive.module_id, MacroCallKind::Attr { ast_id: ast_id.ast_id, attr_args: std::sync::Arc::new(( tt::Subtree::empty(), Default::default(), )), invoc_attr_index: attr.id, }, attr.path().clone(), )); self.skip_attrs.insert(ast_id.ast_id.with_value(*mod_item), attr.id); Some((idx, directive, *mod_item, *tree)) } _ => None, }); match unresolved_attr { Some((pos, &MacroDirective { module_id, depth, container, .. }, mod_item, tree_id)) => { let item_tree = &tree_id.item_tree(self.db); let mod_dir = self.mod_dirs[&module_id].clone(); ModCollector { def_collector: self, macro_depth: depth, module_id, tree_id, item_tree, mod_dir, } .collect(&[mod_item], container); self.unresolved_macros.swap_remove(pos); // Continue name resolution with the new data. ReachedFixedPoint::No } None => ReachedFixedPoint::Yes, } } fn inject_prelude(&mut self, crate_attrs: &Attrs) { // See compiler/rustc_builtin_macros/src/standard_library_imports.rs if crate_attrs.by_key("no_core").exists() { // libcore does not get a prelude. return; } let krate = if crate_attrs.by_key("no_std").exists() { name![core] } else { let std = name![std]; if self.def_map.extern_prelude().any(|(name, _)| *name == std) { std } else { // If `std` does not exist for some reason, fall back to core. This mostly helps // keep r-a's own tests minimal. name![core] } }; let edition = match self.def_map.edition { Edition::Edition2015 => name![rust_2015], Edition::Edition2018 => name![rust_2018], Edition::Edition2021 => name![rust_2021], }; let path_kind = match self.def_map.edition { Edition::Edition2015 => PathKind::Plain, _ => PathKind::Abs, }; let path = ModPath::from_segments(path_kind, [krate.clone(), name![prelude], edition].into_iter()); // Fall back to the older `std::prelude::v1` for compatibility with Rust <1.52.0 // FIXME remove this fallback let fallback_path = ModPath::from_segments(path_kind, [krate, name![prelude], name![v1]].into_iter()); for path in &[path, fallback_path] { let (per_ns, _) = self.def_map.resolve_path( self.db, self.def_map.root, path, BuiltinShadowMode::Other, ); match per_ns.types { Some((ModuleDefId::ModuleId(m), _)) => { self.def_map.prelude = Some(m); break; } types => { tracing::debug!( "could not resolve prelude path `{}` to module (resolved to {:?})", path, types ); } } } } /// Adds a definition of procedural macro `name` to the root module. /// /// # Notes on procedural macro resolution /// /// Procedural macro functionality is provided by the build system: It has to build the proc /// macro and pass the resulting dynamic library to rust-analyzer. /// /// When procedural macro support is enabled, the list of proc macros exported by a crate is /// known before we resolve names in the crate. This list is stored in `self.proc_macros` and is /// derived from the dynamic library. /// /// However, we *also* would like to be able to at least *resolve* macros on our own, without /// help by the build system. So, when the macro isn't found in `self.proc_macros`, we instead /// use a dummy expander that always errors. This comes with the drawback of macros potentially /// going out of sync with what the build system sees (since we resolve using VFS state, but /// Cargo builds only on-disk files). We could and probably should add diagnostics for that. fn export_proc_macro( &mut self, def: ProcMacroDef, id: ItemTreeId, fn_id: FunctionId, module_id: ModuleId, ) { let kind = def.kind.to_basedb_kind(); let (expander, kind) = match self.proc_macros.iter().find(|(n, _)| n == &def.name) { Some(&(_, expander)) => (expander, kind), None => (ProcMacroExpander::dummy(), kind), }; let proc_macro_id = ProcMacroLoc { container: module_id, id, expander, kind }.intern(self.db); self.define_proc_macro(def.name.clone(), proc_macro_id); if let ProcMacroKind::CustomDerive { helpers } = def.kind { self.def_map .exported_derives .insert(macro_id_to_def_id(self.db, proc_macro_id.into()), helpers); } self.def_map.fn_proc_macro_mapping.insert(fn_id, proc_macro_id); } /// Define a macro with `macro_rules`. /// /// It will define the macro in legacy textual scope, and if it has `#[macro_export]`, /// then it is also defined in the root module scope. /// You can `use` or invoke it by `crate::macro_name` anywhere, before or after the definition. /// /// It is surprising that the macro will never be in the current module scope. /// These code fails with "unresolved import/macro", /// ```rust,compile_fail /// mod m { macro_rules! foo { () => {} } } /// use m::foo as bar; /// ``` /// /// ```rust,compile_fail /// macro_rules! foo { () => {} } /// self::foo!(); /// crate::foo!(); /// ``` /// /// Well, this code compiles, because the plain path `foo` in `use` is searched /// in the legacy textual scope only. /// ```rust /// macro_rules! foo { () => {} } /// use foo as bar; /// ``` fn define_macro_rules( &mut self, module_id: LocalModuleId, name: Name, macro_: MacroRulesId, export: bool, ) { // Textual scoping self.define_legacy_macro(module_id, name.clone(), macro_.into()); // Module scoping // In Rust, `#[macro_export]` macros are unconditionally visible at the // crate root, even if the parent modules is **not** visible. if export { let module_id = self.def_map.root; self.def_map.modules[module_id].scope.declare(macro_.into()); self.update( module_id, &[(Some(name), PerNs::macros(macro_.into(), Visibility::Public))], Visibility::Public, ImportType::Named, ); } } /// Define a legacy textual scoped macro in module /// /// We use a map `legacy_macros` to store all legacy textual scoped macros visible per module. /// It will clone all macros from parent legacy scope, whose definition is prior to /// the definition of current module. /// And also, `macro_use` on a module will import all legacy macros visible inside to /// current legacy scope, with possible shadowing. fn define_legacy_macro(&mut self, module_id: LocalModuleId, name: Name, mac: MacroId) { // Always shadowing self.def_map.modules[module_id].scope.define_legacy_macro(name, mac); } /// Define a macro 2.0 macro /// /// The scoped of macro 2.0 macro is equal to normal function fn define_macro_def( &mut self, module_id: LocalModuleId, name: Name, macro_: Macro2Id, vis: &RawVisibility, ) { let vis = self .def_map .resolve_visibility(self.db, module_id, vis, false) .unwrap_or(Visibility::Public); self.def_map.modules[module_id].scope.declare(macro_.into()); self.update( module_id, &[(Some(name), PerNs::macros(macro_.into(), Visibility::Public))], vis, ImportType::Named, ); } /// Define a proc macro /// /// A proc macro is similar to normal macro scope, but it would not visible in legacy textual scoped. /// And unconditionally exported. fn define_proc_macro(&mut self, name: Name, macro_: ProcMacroId) { let module_id = self.def_map.root; self.def_map.modules[module_id].scope.declare(macro_.into()); self.update( module_id, &[(Some(name), PerNs::macros(macro_.into(), Visibility::Public))], Visibility::Public, ImportType::Named, ); } /// Import macros from `#[macro_use] extern crate`. fn import_macros_from_extern_crate( &mut self, current_module_id: LocalModuleId, extern_crate: &item_tree::ExternCrate, ) { tracing::debug!( "importing macros from extern crate: {:?} ({:?})", extern_crate, self.def_map.edition, ); if let Some(m) = self.resolve_extern_crate(&extern_crate.name) { if m == self.def_map.module_id(current_module_id) { cov_mark::hit!(ignore_macro_use_extern_crate_self); return; } cov_mark::hit!(macro_rules_from_other_crates_are_visible_with_macro_use); self.import_all_macros_exported(current_module_id, m.krate); } } /// Import all exported macros from another crate /// /// Exported macros are just all macros in the root module scope. /// Note that it contains not only all `#[macro_export]` macros, but also all aliases /// created by `use` in the root module, ignoring the visibility of `use`. fn import_all_macros_exported(&mut self, current_module_id: LocalModuleId, krate: CrateId) { let def_map = self.db.crate_def_map(krate); for (name, def) in def_map[def_map.root].scope.macros() { // `#[macro_use]` brings macros into legacy scope. Yes, even non-`macro_rules!` macros. self.define_legacy_macro(current_module_id, name.clone(), def); } } /// Tries to resolve every currently unresolved import. fn resolve_imports(&mut self) -> ReachedFixedPoint { let mut res = ReachedFixedPoint::Yes; let imports = mem::take(&mut self.unresolved_imports); self.unresolved_imports = imports .into_iter() .filter_map(|mut directive| { directive.status = self.resolve_import(directive.module_id, &directive.import); match directive.status { PartialResolvedImport::Indeterminate(_) => { self.record_resolved_import(&directive); self.indeterminate_imports.push(directive); res = ReachedFixedPoint::No; None } PartialResolvedImport::Resolved(_) => { self.record_resolved_import(&directive); res = ReachedFixedPoint::No; None } PartialResolvedImport::Unresolved => Some(directive), } }) .collect(); res } fn resolve_import(&self, module_id: LocalModuleId, import: &Import) -> PartialResolvedImport { let _p = profile::span("resolve_import").detail(|| format!("{}", import.path)); tracing::debug!("resolving import: {:?} ({:?})", import, self.def_map.edition); if import.is_extern_crate { let name = import .path .as_ident() .expect("extern crate should have been desugared to one-element path"); let res = self.resolve_extern_crate(name); match res { Some(res) => { PartialResolvedImport::Resolved(PerNs::types(res.into(), Visibility::Public)) } None => PartialResolvedImport::Unresolved, } } else { let res = self.def_map.resolve_path_fp_with_macro( self.db, ResolveMode::Import, module_id, &import.path, BuiltinShadowMode::Module, ); let def = res.resolved_def; if res.reached_fixedpoint == ReachedFixedPoint::No || def.is_none() { return PartialResolvedImport::Unresolved; } if let Some(krate) = res.krate { if krate != self.def_map.krate { return PartialResolvedImport::Resolved( def.filter_visibility(|v| matches!(v, Visibility::Public)), ); } } // Check whether all namespace is resolved if def.take_types().is_some() && def.take_values().is_some() && def.take_macros().is_some() { PartialResolvedImport::Resolved(def) } else { PartialResolvedImport::Indeterminate(def) } } } fn resolve_extern_crate(&self, name: &Name) -> Option { if *name == name!(self) { cov_mark::hit!(extern_crate_self_as); let root = match self.def_map.block { Some(_) => { let def_map = self.def_map.crate_root(self.db).def_map(self.db); def_map.module_id(def_map.root()) } None => self.def_map.module_id(self.def_map.root()), }; Some(root) } else { self.deps.get(name).copied() } } fn record_resolved_import(&mut self, directive: &ImportDirective) { let _p = profile::span("record_resolved_import"); let module_id = directive.module_id; let import = &directive.import; let mut def = directive.status.namespaces(); let vis = self .def_map .resolve_visibility(self.db, module_id, &directive.import.visibility, false) .unwrap_or(Visibility::Public); match import.kind { ImportKind::Plain | ImportKind::TypeOnly => { let name = match &import.alias { Some(ImportAlias::Alias(name)) => Some(name), Some(ImportAlias::Underscore) => None, None => match import.path.segments().last() { Some(last_segment) => Some(last_segment), None => { cov_mark::hit!(bogus_paths); return; } }, }; if import.kind == ImportKind::TypeOnly { def.values = None; def.macros = None; } tracing::debug!("resolved import {:?} ({:?}) to {:?}", name, import, def); // extern crates in the crate root are special-cased to insert entries into the extern prelude: rust-lang/rust#54658 if import.is_extern_crate && self.def_map.block.is_none() && module_id == self.def_map.root { if let (Some(ModuleDefId::ModuleId(def)), Some(name)) = (def.take_types(), name) { self.def_map.extern_prelude.insert(name.clone(), def); } } self.update(module_id, &[(name.cloned(), def)], vis, ImportType::Named); } ImportKind::Glob => { tracing::debug!("glob import: {:?}", import); match def.take_types() { Some(ModuleDefId::ModuleId(m)) => { if import.is_prelude { // Note: This dodgily overrides the injected prelude. The rustc // implementation seems to work the same though. cov_mark::hit!(std_prelude); self.def_map.prelude = Some(m); } else if m.krate != self.def_map.krate { cov_mark::hit!(glob_across_crates); // glob import from other crate => we can just import everything once let item_map = m.def_map(self.db); let scope = &item_map[m.local_id].scope; // Module scoped macros is included let items = scope .resolutions() // only keep visible names... .map(|(n, res)| { (n, res.filter_visibility(|v| v.is_visible_from_other_crate())) }) .filter(|(_, res)| !res.is_none()) .collect::>(); self.update(module_id, &items, vis, ImportType::Glob); } else { // glob import from same crate => we do an initial // import, and then need to propagate any further // additions let def_map; let scope = if m.block == self.def_map.block_id() { &self.def_map[m.local_id].scope } else { def_map = m.def_map(self.db); &def_map[m.local_id].scope }; // Module scoped macros is included let items = scope .resolutions() // only keep visible names... .map(|(n, res)| { ( n, res.filter_visibility(|v| { v.is_visible_from_def_map( self.db, &self.def_map, module_id, ) }), ) }) .filter(|(_, res)| !res.is_none()) .collect::>(); self.update(module_id, &items, vis, ImportType::Glob); // record the glob import in case we add further items let glob = self.glob_imports.entry(m.local_id).or_default(); if !glob.iter().any(|(mid, _)| *mid == module_id) { glob.push((module_id, vis)); } } } Some(ModuleDefId::AdtId(AdtId::EnumId(e))) => { cov_mark::hit!(glob_enum); // glob import from enum => just import all the variants // XXX: urgh, so this works by accident! Here, we look at // the enum data, and, in theory, this might require us to // look back at the crate_def_map, creating a cycle. For // example, `enum E { crate::some_macro!(); }`. Luckily, the // only kind of macro that is allowed inside enum is a // `cfg_macro`, and we don't need to run name resolution for // it, but this is sheer luck! let enum_data = self.db.enum_data(e); let resolutions = enum_data .variants .iter() .map(|(local_id, variant_data)| { let name = variant_data.name.clone(); let variant = EnumVariantId { parent: e, local_id }; let res = PerNs::both(variant.into(), variant.into(), vis); (Some(name), res) }) .collect::>(); self.update(module_id, &resolutions, vis, ImportType::Glob); } Some(d) => { tracing::debug!("glob import {:?} from non-module/enum {:?}", import, d); } None => { tracing::debug!("glob import {:?} didn't resolve as type", import); } } } } } fn update( &mut self, // The module for which `resolutions` have been resolve module_id: LocalModuleId, resolutions: &[(Option, PerNs)], // Visibility this import will have vis: Visibility, import_type: ImportType, ) { self.db.unwind_if_cancelled(); self.update_recursive(module_id, resolutions, vis, import_type, 0) } fn update_recursive( &mut self, // The module for which `resolutions` have been resolve module_id: LocalModuleId, resolutions: &[(Option, PerNs)], // All resolutions are imported with this visibility; the visibilities in // the `PerNs` values are ignored and overwritten vis: Visibility, import_type: ImportType, depth: usize, ) { if GLOB_RECURSION_LIMIT.check(depth).is_err() { // prevent stack overflows (but this shouldn't be possible) panic!("infinite recursion in glob imports!"); } let mut changed = false; for (name, res) in resolutions { match name { Some(name) => { let scope = &mut self.def_map.modules[module_id].scope; changed |= scope.push_res_with_import( &mut self.from_glob_import, (module_id, name.clone()), res.with_visibility(vis), import_type, ); } None => { let tr = match res.take_types() { Some(ModuleDefId::TraitId(tr)) => tr, Some(other) => { tracing::debug!("non-trait `_` import of {:?}", other); continue; } None => continue, }; let old_vis = self.def_map.modules[module_id].scope.unnamed_trait_vis(tr); let should_update = match old_vis { None => true, Some(old_vis) => { let max_vis = old_vis.max(vis, &self.def_map).unwrap_or_else(|| { panic!("`Tr as _` imports with unrelated visibilities {old_vis:?} and {vis:?} (trait {tr:?})"); }); if max_vis == old_vis { false } else { cov_mark::hit!(upgrade_underscore_visibility); true } } }; if should_update { changed = true; self.def_map.modules[module_id].scope.push_unnamed_trait(tr, vis); } } } } if !changed { return; } let glob_imports = self .glob_imports .get(&module_id) .into_iter() .flatten() .filter(|(glob_importing_module, _)| { // we know all resolutions have the same visibility (`vis`), so we // just need to check that once vis.is_visible_from_def_map(self.db, &self.def_map, *glob_importing_module) }) .cloned() .collect::>(); for (glob_importing_module, glob_import_vis) in glob_imports { self.update_recursive( glob_importing_module, resolutions, glob_import_vis, ImportType::Glob, depth + 1, ); } } fn resolve_macros(&mut self) -> ReachedFixedPoint { let mut macros = mem::take(&mut self.unresolved_macros); let mut resolved = Vec::new(); let mut push_resolved = |directive: &MacroDirective, call_id| { resolved.push((directive.module_id, directive.depth, directive.container, call_id)); }; let mut res = ReachedFixedPoint::Yes; macros.retain(|directive| { let resolver = |path| { let resolved_res = self.def_map.resolve_path_fp_with_macro( self.db, ResolveMode::Other, directive.module_id, &path, BuiltinShadowMode::Module, ); resolved_res .resolved_def .take_macros() .map(|it| (it, macro_id_to_def_id(self.db, it))) }; let resolver_def_id = |path| resolver(path).map(|(_, it)| it); match &directive.kind { MacroDirectiveKind::FnLike { ast_id, expand_to } => { let call_id = macro_call_as_call_id( self.db.upcast(), ast_id, *expand_to, self.def_map.krate, resolver_def_id, ); if let Ok(Some(call_id)) = call_id { push_resolved(directive, call_id); res = ReachedFixedPoint::No; return false; } } MacroDirectiveKind::Derive { ast_id, derive_attr, derive_pos } => { let id = derive_macro_as_call_id( self.db, ast_id, *derive_attr, *derive_pos as u32, self.def_map.krate, resolver, ); if let Ok((macro_id, def_id, call_id)) = id { self.def_map.modules[directive.module_id].scope.set_derive_macro_invoc( ast_id.ast_id, call_id, *derive_attr, *derive_pos, ); // Record its helper attributes. if def_id.krate != self.def_map.krate { let def_map = self.db.crate_def_map(def_id.krate); if let Some(helpers) = def_map.exported_derives.get(&def_id) { self.def_map .derive_helpers_in_scope .entry(ast_id.ast_id.map(|it| it.upcast())) .or_default() .extend(izip!( helpers.iter().cloned(), iter::repeat(macro_id), iter::repeat(call_id), )); } } push_resolved(directive, call_id); res = ReachedFixedPoint::No; return false; } } MacroDirectiveKind::Attr { ast_id: file_ast_id, mod_item, attr, tree } => { let &AstIdWithPath { ast_id, ref path } = file_ast_id; let file_id = ast_id.file_id; let mut recollect_without = |collector: &mut Self| { // Remove the original directive since we resolved it. let mod_dir = collector.mod_dirs[&directive.module_id].clone(); collector.skip_attrs.insert(InFile::new(file_id, *mod_item), attr.id); let item_tree = tree.item_tree(self.db); ModCollector { def_collector: collector, macro_depth: directive.depth, module_id: directive.module_id, tree_id: *tree, item_tree: &item_tree, mod_dir, } .collect(&[*mod_item], directive.container); res = ReachedFixedPoint::No; false }; if let Some(ident) = path.as_ident() { if let Some(helpers) = self.def_map.derive_helpers_in_scope.get(&ast_id) { if helpers.iter().any(|(it, ..)| it == ident) { cov_mark::hit!(resolved_derive_helper); // Resolved to derive helper. Collect the item's attributes again, // starting after the derive helper. return recollect_without(self); } } } let def = match resolver_def_id(path.clone()) { Some(def) if def.is_attribute() => def, _ => return true, }; if matches!( def, MacroDefId { kind:MacroDefKind::BuiltInAttr(expander, _),.. } if expander.is_derive() ) { // Resolved to `#[derive]` let item_tree = tree.item_tree(self.db); let ast_adt_id: FileAstId = match *mod_item { ModItem::Struct(strukt) => item_tree[strukt].ast_id().upcast(), ModItem::Union(union) => item_tree[union].ast_id().upcast(), ModItem::Enum(enum_) => item_tree[enum_].ast_id().upcast(), _ => { let diag = DefDiagnostic::invalid_derive_target( directive.module_id, ast_id, attr.id, ); self.def_map.diagnostics.push(diag); return recollect_without(self); } }; let ast_id = ast_id.with_value(ast_adt_id); let extend_unhygenic; let hygiene = if file_id.is_macro() { self.hygienes .entry(file_id) .or_insert_with(|| Hygiene::new(self.db.upcast(), file_id)) } else { // Avoid heap allocation (`Hygiene` embraces `Arc`) and hash map entry // when we're in an oridinary (non-macro) file. extend_unhygenic = Hygiene::new_unhygienic(); &extend_unhygenic }; match attr.parse_path_comma_token_tree(self.db.upcast(), hygiene) { Some(derive_macros) => { let mut len = 0; for (idx, path) in derive_macros.enumerate() { let ast_id = AstIdWithPath::new(file_id, ast_id.value, path); self.unresolved_macros.push(MacroDirective { module_id: directive.module_id, depth: directive.depth + 1, kind: MacroDirectiveKind::Derive { ast_id, derive_attr: attr.id, derive_pos: idx, }, container: directive.container, }); len = idx; } // We treat the #[derive] macro as an attribute call, but we do not resolve it for nameres collection. // This is just a trick to be able to resolve the input to derives as proper paths. // Check the comment in [`builtin_attr_macro`]. let call_id = attr_macro_as_call_id( self.db, file_ast_id, attr, self.def_map.krate, def, ); self.def_map.modules[directive.module_id] .scope .init_derive_attribute(ast_id, attr.id, call_id, len + 1); } None => { let diag = DefDiagnostic::malformed_derive( directive.module_id, ast_id, attr.id, ); self.def_map.diagnostics.push(diag); } } return recollect_without(self); } // Not resolved to a derive helper or the derive attribute, so try to treat as a normal attribute. let call_id = attr_macro_as_call_id(self.db, file_ast_id, attr, self.def_map.krate, def); let loc: MacroCallLoc = self.db.lookup_intern_macro_call(call_id); // If proc attribute macro expansion is disabled, skip expanding it here if !self.db.expand_proc_attr_macros() { self.def_map.diagnostics.push(DefDiagnostic::unresolved_proc_macro( directive.module_id, loc.kind, loc.def.krate, )); return recollect_without(self); } // Skip #[test]/#[bench] expansion, which would merely result in more memory usage // due to duplicating functions into macro expansions if matches!( loc.def.kind, MacroDefKind::BuiltInAttr(expander, _) if expander.is_test() || expander.is_bench() ) { return recollect_without(self); } if let MacroDefKind::ProcMacro(exp, ..) = loc.def.kind { if exp.is_dummy() { // If there's no expander for the proc macro (e.g. // because proc macros are disabled, or building the // proc macro crate failed), report this and skip // expansion like we would if it was disabled self.def_map.diagnostics.push(DefDiagnostic::unresolved_proc_macro( directive.module_id, loc.kind, loc.def.krate, )); return recollect_without(self); } } self.def_map.modules[directive.module_id] .scope .add_attr_macro_invoc(ast_id, call_id); push_resolved(directive, call_id); res = ReachedFixedPoint::No; return false; } } true }); // Attribute resolution can add unresolved macro invocations, so concatenate the lists. macros.extend(mem::take(&mut self.unresolved_macros)); self.unresolved_macros = macros; for (module_id, depth, container, macro_call_id) in resolved { self.collect_macro_expansion(module_id, macro_call_id, depth, container); } res } fn collect_macro_expansion( &mut self, module_id: LocalModuleId, macro_call_id: MacroCallId, depth: usize, container: ItemContainerId, ) { if EXPANSION_DEPTH_LIMIT.check(depth).is_err() { cov_mark::hit!(macro_expansion_overflow); tracing::warn!("macro expansion is too deep"); return; } let file_id = macro_call_id.as_file(); // First, fetch the raw expansion result for purposes of error reporting. This goes through // `parse_macro_expansion_error` to avoid depending on the full expansion result (to improve // incrementality). let ExpandResult { value, err } = self.db.parse_macro_expansion_error(macro_call_id); if let Some(err) = err { let loc: MacroCallLoc = self.db.lookup_intern_macro_call(macro_call_id); let diag = match err { // why is this reported here? hir_expand::ExpandError::UnresolvedProcMacro(krate) => { always!(krate == loc.def.krate); DefDiagnostic::unresolved_proc_macro(module_id, loc.kind.clone(), loc.def.krate) } _ => DefDiagnostic::macro_error(module_id, loc.kind.clone(), err.to_string()), }; self.def_map.diagnostics.push(diag); } if let errors @ [_, ..] = &*value { let loc: MacroCallLoc = self.db.lookup_intern_macro_call(macro_call_id); let diag = DefDiagnostic::macro_expansion_parse_error(module_id, loc.kind, &errors); self.def_map.diagnostics.push(diag); } // Then, fetch and process the item tree. This will reuse the expansion result from above. let item_tree = self.db.file_item_tree(file_id); let mod_dir = self.mod_dirs[&module_id].clone(); ModCollector { def_collector: &mut *self, macro_depth: depth, tree_id: TreeId::new(file_id, None), module_id, item_tree: &item_tree, mod_dir, } .collect(item_tree.top_level_items(), container); } fn finish(mut self) -> DefMap { // Emit diagnostics for all remaining unexpanded macros. let _p = profile::span("DefCollector::finish"); for directive in &self.unresolved_macros { match &directive.kind { MacroDirectiveKind::FnLike { ast_id, expand_to } => { // FIXME: we shouldn't need to re-resolve the macro here just to get the unresolved error! let macro_call_as_call_id = macro_call_as_call_id( self.db.upcast(), ast_id, *expand_to, self.def_map.krate, |path| { let resolved_res = self.def_map.resolve_path_fp_with_macro( self.db, ResolveMode::Other, directive.module_id, &path, BuiltinShadowMode::Module, ); resolved_res .resolved_def .take_macros() .map(|it| macro_id_to_def_id(self.db, it)) }, ); if let Err(UnresolvedMacro { path }) = macro_call_as_call_id { self.def_map.diagnostics.push(DefDiagnostic::unresolved_macro_call( directive.module_id, MacroCallKind::FnLike { ast_id: ast_id.ast_id, expand_to: *expand_to }, path, )); } } MacroDirectiveKind::Derive { ast_id, derive_attr, derive_pos } => { self.def_map.diagnostics.push(DefDiagnostic::unresolved_macro_call( directive.module_id, MacroCallKind::Derive { ast_id: ast_id.ast_id, derive_attr_index: *derive_attr, derive_index: *derive_pos as u32, }, ast_id.path.clone(), )); } // These are diagnosed by `reseed_with_unresolved_attribute`, as that function consumes them MacroDirectiveKind::Attr { .. } => {} } } // Emit diagnostics for all remaining unresolved imports. // We'd like to avoid emitting a diagnostics avalanche when some `extern crate` doesn't // resolve. We first emit diagnostics for unresolved extern crates and collect the missing // crate names. Then we emit diagnostics for unresolved imports, but only if the import // doesn't start with an unresolved crate's name. Due to renaming and reexports, this is a // heuristic, but it works in practice. let mut diagnosed_extern_crates = FxHashSet::default(); for directive in &self.unresolved_imports { if let ImportSource::ExternCrate(krate) = directive.import.source { let item_tree = krate.item_tree(self.db); let extern_crate = &item_tree[krate.value]; diagnosed_extern_crates.insert(extern_crate.name.clone()); self.def_map.diagnostics.push(DefDiagnostic::unresolved_extern_crate( directive.module_id, InFile::new(krate.file_id(), extern_crate.ast_id), )); } } for directive in &self.unresolved_imports { if let ImportSource::Import { id: import, use_tree } = directive.import.source { if matches!( (directive.import.path.segments().first(), &directive.import.path.kind), (Some(krate), PathKind::Plain | PathKind::Abs) if diagnosed_extern_crates.contains(krate) ) { continue; } self.def_map.diagnostics.push(DefDiagnostic::unresolved_import( directive.module_id, import, use_tree, )); } } self.def_map } } /// Walks a single module, populating defs, imports and macros struct ModCollector<'a, 'b> { def_collector: &'a mut DefCollector<'b>, macro_depth: usize, module_id: LocalModuleId, tree_id: TreeId, item_tree: &'a ItemTree, mod_dir: ModDir, } impl ModCollector<'_, '_> { fn collect_in_top_module(&mut self, items: &[ModItem]) { let module = self.def_collector.def_map.module_id(self.module_id); self.collect(items, module.into()) } fn collect(&mut self, items: &[ModItem], container: ItemContainerId) { let krate = self.def_collector.def_map.krate; // Note: don't assert that inserted value is fresh: it's simply not true // for macros. self.def_collector.mod_dirs.insert(self.module_id, self.mod_dir.clone()); // Prelude module is always considered to be `#[macro_use]`. if let Some(prelude_module) = self.def_collector.def_map.prelude { if prelude_module.krate != krate { cov_mark::hit!(prelude_is_macro_use); self.def_collector.import_all_macros_exported(self.module_id, prelude_module.krate); } } // This should be processed eagerly instead of deferred to resolving. // `#[macro_use] extern crate` is hoisted to imports macros before collecting // any other items. for &item in items { let attrs = self.item_tree.attrs(self.def_collector.db, krate, item.into()); if attrs.cfg().map_or(true, |cfg| self.is_cfg_enabled(&cfg)) { if let ModItem::ExternCrate(id) = item { let import = &self.item_tree[id]; let attrs = self.item_tree.attrs( self.def_collector.db, krate, ModItem::from(id).into(), ); if attrs.by_key("macro_use").exists() { self.def_collector.import_macros_from_extern_crate(self.module_id, import); } } } } for &item in items { let attrs = self.item_tree.attrs(self.def_collector.db, krate, item.into()); if let Some(cfg) = attrs.cfg() { if !self.is_cfg_enabled(&cfg) { self.emit_unconfigured_diagnostic(item, &cfg); continue; } } if let Err(()) = self.resolve_attributes(&attrs, item, container) { // Do not process the item. It has at least one non-builtin attribute, so the // fixed-point algorithm is required to resolve the rest of them. continue; } let db = self.def_collector.db; let module = self.def_collector.def_map.module_id(self.module_id); let def_map = &mut self.def_collector.def_map; let update_def = |def_collector: &mut DefCollector<'_>, id, name: &Name, vis, has_constructor| { def_collector.def_map.modules[self.module_id].scope.declare(id); def_collector.update( self.module_id, &[(Some(name.clone()), PerNs::from_def(id, vis, has_constructor))], vis, ImportType::Named, ) }; let resolve_vis = |def_map: &DefMap, visibility| { def_map .resolve_visibility(db, self.module_id, visibility, false) .unwrap_or(Visibility::Public) }; match item { ModItem::Mod(m) => self.collect_module(m, &attrs), ModItem::Import(import_id) => { let imports = Import::from_use( db, krate, self.item_tree, ItemTreeId::new(self.tree_id, import_id), ); self.def_collector.unresolved_imports.extend(imports.into_iter().map( |import| ImportDirective { module_id: self.module_id, import, status: PartialResolvedImport::Unresolved, }, )); } ModItem::ExternCrate(import_id) => { self.def_collector.unresolved_imports.push(ImportDirective { module_id: self.module_id, import: Import::from_extern_crate( db, krate, self.item_tree, ItemTreeId::new(self.tree_id, import_id), ), status: PartialResolvedImport::Unresolved, }) } ModItem::ExternBlock(block) => self.collect( &self.item_tree[block].children, ItemContainerId::ExternBlockId( ExternBlockLoc { container: module, id: ItemTreeId::new(self.tree_id, block), } .intern(db), ), ), ModItem::MacroCall(mac) => self.collect_macro_call(&self.item_tree[mac], container), ModItem::MacroRules(id) => self.collect_macro_rules(id, module), ModItem::MacroDef(id) => self.collect_macro_def(id, module), ModItem::Impl(imp) => { let impl_id = ImplLoc { container: module, id: ItemTreeId::new(self.tree_id, imp) } .intern(db); self.def_collector.def_map.modules[self.module_id].scope.define_impl(impl_id) } ModItem::Function(id) => { let it = &self.item_tree[id]; let fn_id = FunctionLoc { container, id: ItemTreeId::new(self.tree_id, id) }.intern(db); let vis = resolve_vis(def_map, &self.item_tree[it.visibility]); if self.def_collector.is_proc_macro && self.module_id == def_map.root { if let Some(proc_macro) = attrs.parse_proc_macro_decl(&it.name) { let crate_root = def_map.module_id(def_map.root); self.def_collector.export_proc_macro( proc_macro, ItemTreeId::new(self.tree_id, id), fn_id, crate_root, ); } } update_def(self.def_collector, fn_id.into(), &it.name, vis, false); } ModItem::Struct(id) => { let it = &self.item_tree[id]; let vis = resolve_vis(def_map, &self.item_tree[it.visibility]); update_def( self.def_collector, StructLoc { container: module, id: ItemTreeId::new(self.tree_id, id) } .intern(db) .into(), &it.name, vis, !matches!(it.fields, Fields::Record(_)), ); } ModItem::Union(id) => { let it = &self.item_tree[id]; let vis = resolve_vis(def_map, &self.item_tree[it.visibility]); update_def( self.def_collector, UnionLoc { container: module, id: ItemTreeId::new(self.tree_id, id) } .intern(db) .into(), &it.name, vis, false, ); } ModItem::Enum(id) => { let it = &self.item_tree[id]; let vis = resolve_vis(def_map, &self.item_tree[it.visibility]); update_def( self.def_collector, EnumLoc { container: module, id: ItemTreeId::new(self.tree_id, id) } .intern(db) .into(), &it.name, vis, false, ); } ModItem::Const(id) => { let it = &self.item_tree[id]; let const_id = ConstLoc { container, id: ItemTreeId::new(self.tree_id, id) }.intern(db); match &it.name { Some(name) => { let vis = resolve_vis(def_map, &self.item_tree[it.visibility]); update_def(self.def_collector, const_id.into(), name, vis, false); } None => { // const _: T = ...; self.def_collector.def_map.modules[self.module_id] .scope .define_unnamed_const(const_id); } } } ModItem::Static(id) => { let it = &self.item_tree[id]; let vis = resolve_vis(def_map, &self.item_tree[it.visibility]); update_def( self.def_collector, StaticLoc { container, id: ItemTreeId::new(self.tree_id, id) } .intern(db) .into(), &it.name, vis, false, ); } ModItem::Trait(id) => { let it = &self.item_tree[id]; let vis = resolve_vis(def_map, &self.item_tree[it.visibility]); update_def( self.def_collector, TraitLoc { container: module, id: ItemTreeId::new(self.tree_id, id) } .intern(db) .into(), &it.name, vis, false, ); } ModItem::TraitAlias(id) => { let it = &self.item_tree[id]; let vis = resolve_vis(def_map, &self.item_tree[it.visibility]); update_def( self.def_collector, TraitAliasLoc { container: module, id: ItemTreeId::new(self.tree_id, id) } .intern(db) .into(), &it.name, vis, false, ); } ModItem::TypeAlias(id) => { let it = &self.item_tree[id]; let vis = resolve_vis(def_map, &self.item_tree[it.visibility]); update_def( self.def_collector, TypeAliasLoc { container, id: ItemTreeId::new(self.tree_id, id) } .intern(db) .into(), &it.name, vis, false, ); } } } } fn collect_module(&mut self, module_id: FileItemTreeId, attrs: &Attrs) { let path_attr = attrs.by_key("path").string_value(); let is_macro_use = attrs.by_key("macro_use").exists(); let module = &self.item_tree[module_id]; match &module.kind { // inline module, just recurse ModKind::Inline { items } => { let module_id = self.push_child_module( module.name.clone(), AstId::new(self.file_id(), module.ast_id), None, &self.item_tree[module.visibility], module_id, ); if let Some(mod_dir) = self.mod_dir.descend_into_definition(&module.name, path_attr) { ModCollector { def_collector: &mut *self.def_collector, macro_depth: self.macro_depth, module_id, tree_id: self.tree_id, item_tree: self.item_tree, mod_dir, } .collect_in_top_module(&*items); if is_macro_use { self.import_all_legacy_macros(module_id); } } } // out of line module, resolve, parse and recurse ModKind::Outline => { let ast_id = AstId::new(self.tree_id.file_id(), module.ast_id); let db = self.def_collector.db; match self.mod_dir.resolve_declaration(db, self.file_id(), &module.name, path_attr) { Ok((file_id, is_mod_rs, mod_dir)) => { let item_tree = db.file_item_tree(file_id.into()); let krate = self.def_collector.def_map.krate; let is_enabled = item_tree .top_level_attrs(db, krate) .cfg() .map_or(true, |cfg| self.is_cfg_enabled(&cfg)); if is_enabled { let module_id = self.push_child_module( module.name.clone(), ast_id, Some((file_id, is_mod_rs)), &self.item_tree[module.visibility], module_id, ); ModCollector { def_collector: self.def_collector, macro_depth: self.macro_depth, module_id, tree_id: TreeId::new(file_id.into(), None), item_tree: &item_tree, mod_dir, } .collect_in_top_module(item_tree.top_level_items()); let is_macro_use = is_macro_use || item_tree .top_level_attrs(db, krate) .by_key("macro_use") .exists(); if is_macro_use { self.import_all_legacy_macros(module_id); } } } Err(candidates) => { self.push_child_module( module.name.clone(), ast_id, None, &self.item_tree[module.visibility], module_id, ); self.def_collector.def_map.diagnostics.push( DefDiagnostic::unresolved_module(self.module_id, ast_id, candidates), ); } }; } } } fn push_child_module( &mut self, name: Name, declaration: AstId, definition: Option<(FileId, bool)>, visibility: &crate::visibility::RawVisibility, mod_tree_id: FileItemTreeId, ) -> LocalModuleId { let def_map = &mut self.def_collector.def_map; let vis = def_map .resolve_visibility(self.def_collector.db, self.module_id, visibility, false) .unwrap_or(Visibility::Public); let origin = match definition { None => ModuleOrigin::Inline { definition: declaration, definition_tree_id: ItemTreeId::new(self.tree_id, mod_tree_id), }, Some((definition, is_mod_rs)) => ModuleOrigin::File { declaration, definition, is_mod_rs, declaration_tree_id: ItemTreeId::new(self.tree_id, mod_tree_id), }, }; let modules = &mut def_map.modules; let res = modules.alloc(ModuleData::new(origin, vis)); modules[res].parent = Some(self.module_id); for (name, mac) in modules[self.module_id].scope.collect_legacy_macros() { for &mac in &mac { modules[res].scope.define_legacy_macro(name.clone(), mac); } } modules[self.module_id].children.insert(name.clone(), res); let module = def_map.module_id(res); let def = ModuleDefId::from(module); def_map.modules[self.module_id].scope.declare(def); self.def_collector.update( self.module_id, &[(Some(name), PerNs::from_def(def, vis, false))], vis, ImportType::Named, ); res } /// Resolves attributes on an item. /// /// Returns `Err` when some attributes could not be resolved to builtins and have been /// registered as unresolved. /// /// If `ignore_up_to` is `Some`, attributes preceding and including that attribute will be /// assumed to be resolved already. fn resolve_attributes( &mut self, attrs: &Attrs, mod_item: ModItem, container: ItemContainerId, ) -> Result<(), ()> { let mut ignore_up_to = self.def_collector.skip_attrs.get(&InFile::new(self.file_id(), mod_item)).copied(); let iter = attrs .iter() .dedup_by(|a, b| { // FIXME: this should not be required, all attributes on an item should have a // unique ID! // Still, this occurs because `#[cfg_attr]` can "expand" to multiple attributes: // #[cfg_attr(not(off), unresolved, unresolved)] // struct S; // We should come up with a different way to ID attributes. a.id == b.id }) .skip_while(|attr| match ignore_up_to { Some(id) if attr.id == id => { ignore_up_to = None; true } Some(_) => true, None => false, }); for attr in iter { if self.def_collector.def_map.is_builtin_or_registered_attr(&attr.path) { continue; } tracing::debug!("non-builtin attribute {}", attr.path); let ast_id = AstIdWithPath::new( self.file_id(), mod_item.ast_id(self.item_tree), attr.path.as_ref().clone(), ); self.def_collector.unresolved_macros.push(MacroDirective { module_id: self.module_id, depth: self.macro_depth + 1, kind: MacroDirectiveKind::Attr { ast_id, attr: attr.clone(), mod_item, tree: self.tree_id, }, container, }); return Err(()); } Ok(()) } fn collect_macro_rules(&mut self, id: FileItemTreeId, module: ModuleId) { let krate = self.def_collector.def_map.krate; let mac = &self.item_tree[id]; let attrs = self.item_tree.attrs(self.def_collector.db, krate, ModItem::from(id).into()); let ast_id = InFile::new(self.file_id(), mac.ast_id.upcast()); let export_attr = attrs.by_key("macro_export"); let is_export = export_attr.exists(); let local_inner = if is_export { export_attr.tt_values().flat_map(|it| &it.token_trees).any(|it| match it { tt::TokenTree::Leaf(tt::Leaf::Ident(ident)) => { ident.text.contains("local_inner_macros") } _ => false, }) } else { false }; // Case 1: builtin macros let expander = if attrs.by_key("rustc_builtin_macro").exists() { // `#[rustc_builtin_macro = "builtin_name"]` overrides the `macro_rules!` name. let name; let name = match attrs.by_key("rustc_builtin_macro").string_value() { Some(it) => { // FIXME: a hacky way to create a Name from string. name = tt::Ident { text: it.clone(), span: tt::TokenId::unspecified() }.as_name(); &name } None => { let explicit_name = attrs.by_key("rustc_builtin_macro").tt_values().next().and_then(|tt| { match tt.token_trees.first() { Some(tt::TokenTree::Leaf(tt::Leaf::Ident(name))) => Some(name), _ => None, } }); match explicit_name { Some(ident) => { name = ident.as_name(); &name } None => &mac.name, } } }; match find_builtin_macro(name) { Some(Either::Left(it)) => MacroExpander::BuiltIn(it), Some(Either::Right(it)) => MacroExpander::BuiltInEager(it), None => { self.def_collector .def_map .diagnostics .push(DefDiagnostic::unimplemented_builtin_macro(self.module_id, ast_id)); return; } } } else { // Case 2: normal `macro_rules!` macro MacroExpander::Declarative }; let allow_internal_unsafe = attrs.by_key("allow_internal_unsafe").exists(); let macro_id = MacroRulesLoc { container: module, id: ItemTreeId::new(self.tree_id, id), local_inner, allow_internal_unsafe, expander, } .intern(self.def_collector.db); self.def_collector.define_macro_rules( self.module_id, mac.name.clone(), macro_id, is_export, ); } fn collect_macro_def(&mut self, id: FileItemTreeId, module: ModuleId) { let krate = self.def_collector.def_map.krate; let mac = &self.item_tree[id]; let ast_id = InFile::new(self.file_id(), mac.ast_id.upcast()); // Case 1: builtin macros let mut helpers_opt = None; let attrs = self.item_tree.attrs(self.def_collector.db, krate, ModItem::from(id).into()); let expander = if attrs.by_key("rustc_builtin_macro").exists() { if let Some(expander) = find_builtin_macro(&mac.name) { match expander { Either::Left(it) => MacroExpander::BuiltIn(it), Either::Right(it) => MacroExpander::BuiltInEager(it), } } else if let Some(expander) = find_builtin_derive(&mac.name) { if let Some(attr) = attrs.by_key("rustc_builtin_macro").tt_values().next() { // NOTE: The item *may* have both `#[rustc_builtin_macro]` and `#[proc_macro_derive]`, // in which case rustc ignores the helper attributes from the latter, but it // "doesn't make sense in practice" (see rust-lang/rust#87027). if let Some((name, helpers)) = parse_macro_name_and_helper_attrs(&attr.token_trees) { // NOTE: rustc overrides the name if the macro name if it's different from the // macro name, but we assume it isn't as there's no such case yet. FIXME if // the following assertion fails. stdx::always!( name == mac.name, "built-in macro {} has #[rustc_builtin_macro] which declares different name {}", mac.name, name ); helpers_opt = Some(helpers); } } MacroExpander::BuiltInDerive(expander) } else if let Some(expander) = find_builtin_attr(&mac.name) { MacroExpander::BuiltInAttr(expander) } else { self.def_collector .def_map .diagnostics .push(DefDiagnostic::unimplemented_builtin_macro(self.module_id, ast_id)); return; } } else { // Case 2: normal `macro` MacroExpander::Declarative }; let allow_internal_unsafe = attrs.by_key("allow_internal_unsafe").exists(); let macro_id = Macro2Loc { container: module, id: ItemTreeId::new(self.tree_id, id), expander, allow_internal_unsafe, } .intern(self.def_collector.db); self.def_collector.define_macro_def( self.module_id, mac.name.clone(), macro_id, &self.item_tree[mac.visibility], ); if let Some(helpers) = helpers_opt { self.def_collector .def_map .exported_derives .insert(macro_id_to_def_id(self.def_collector.db, macro_id.into()), helpers); } } fn collect_macro_call(&mut self, mac: &MacroCall, container: ItemContainerId) { let ast_id = AstIdWithPath::new(self.file_id(), mac.ast_id, ModPath::clone(&mac.path)); // Case 1: try to resolve in legacy scope and expand macro_rules if let Ok(res) = macro_call_as_call_id( self.def_collector.db.upcast(), &ast_id, mac.expand_to, self.def_collector.def_map.krate, |path| { path.as_ident().and_then(|name| { self.def_collector.def_map.with_ancestor_maps( self.def_collector.db, self.module_id, &mut |map, module| { map[module] .scope .get_legacy_macro(name) .and_then(|it| it.last()) .map(|&it| macro_id_to_def_id(self.def_collector.db, it)) }, ) }) }, ) { // Legacy macros need to be expanded immediately, so that any macros they produce // are in scope. if let Some(val) = res { self.def_collector.collect_macro_expansion( self.module_id, val, self.macro_depth + 1, container, ); } return; } // Case 2: resolve in module scope, expand during name resolution. self.def_collector.unresolved_macros.push(MacroDirective { module_id: self.module_id, depth: self.macro_depth + 1, kind: MacroDirectiveKind::FnLike { ast_id, expand_to: mac.expand_to }, container, }); } fn import_all_legacy_macros(&mut self, module_id: LocalModuleId) { let macros = self.def_collector.def_map[module_id].scope.collect_legacy_macros(); for (name, macs) in macros { macs.last().map(|&mac| { self.def_collector.define_legacy_macro(self.module_id, name.clone(), mac) }); } } fn is_cfg_enabled(&self, cfg: &CfgExpr) -> bool { self.def_collector.cfg_options.check(cfg) != Some(false) } fn emit_unconfigured_diagnostic(&mut self, item: ModItem, cfg: &CfgExpr) { let ast_id = item.ast_id(self.item_tree); let ast_id = InFile::new(self.file_id(), ast_id.upcast()); self.def_collector.def_map.diagnostics.push(DefDiagnostic::unconfigured_code( self.module_id, ast_id, cfg.clone(), self.def_collector.cfg_options.clone(), )); } fn file_id(&self) -> HirFileId { self.tree_id.file_id() } } #[cfg(test)] mod tests { use crate::{db::DefDatabase, test_db::TestDB}; use base_db::{fixture::WithFixture, SourceDatabase}; use super::*; fn do_collect_defs(db: &dyn DefDatabase, def_map: DefMap) -> DefMap { let mut collector = DefCollector { db, def_map, deps: FxHashMap::default(), glob_imports: FxHashMap::default(), unresolved_imports: Vec::new(), indeterminate_imports: Vec::new(), unresolved_macros: Vec::new(), mod_dirs: FxHashMap::default(), cfg_options: &CfgOptions::default(), proc_macros: Default::default(), from_glob_import: Default::default(), skip_attrs: Default::default(), is_proc_macro: false, hygienes: FxHashMap::default(), }; collector.seed_with_top_level(); collector.collect(); collector.def_map } fn do_resolve(not_ra_fixture: &str) -> DefMap { let (db, file_id) = TestDB::with_single_file(not_ra_fixture); let krate = db.test_crate(); let edition = db.crate_graph()[krate].edition; let module_origin = ModuleOrigin::CrateRoot { definition: file_id }; let def_map = DefMap::empty(krate, edition, ModuleData::new(module_origin, Visibility::Public)); do_collect_defs(&db, def_map) } #[test] fn test_macro_expand_will_stop_1() { do_resolve( r#" macro_rules! foo { ($($ty:ty)*) => { foo!($($ty)*); } } foo!(KABOOM); "#, ); do_resolve( r#" macro_rules! foo { ($($ty:ty)*) => { foo!(() $($ty)*); } } foo!(KABOOM); "#, ); } #[ignore] #[test] fn test_macro_expand_will_stop_2() { // FIXME: this test does succeed, but takes quite a while: 90 seconds in // the release mode. That's why the argument is not an ra_fixture -- // otherwise injection highlighting gets stuck. // // We need to find a way to fail this faster. do_resolve( r#" macro_rules! foo { ($($ty:ty)*) => { foo!($($ty)* $($ty)*); } } foo!(KABOOM); "#, ); } }