use std::{borrow::Cow, fmt, iter::successors};
use itertools::Itertools;
use parser::SyntaxKind;
use rowan::{GreenNodeData, GreenTokenData};
use crate::{
ast::{
self, support, AstNode, AstToken, HasAttrs, HasGenericArgs, HasGenericParams, HasName,
SyntaxNode,
},
ted, NodeOrToken, SmolStr, SyntaxElement, SyntaxToken, TokenText, T,
};
use super::{GenericParam, RangeItem, RangeOp};
impl ast::Lifetime {
pub fn text(&self) -> TokenText<'_> {
text_of_first_token(self.syntax())
}
}
impl ast::Name {
pub fn text(&self) -> TokenText<'_> {
text_of_first_token(self.syntax())
}
}
impl ast::NameRef {
pub fn text(&self) -> TokenText<'_> {
text_of_first_token(self.syntax())
}
pub fn as_tuple_field(&self) -> Option<usize> {
self.text().parse().ok()
}
pub fn token_kind(&self) -> SyntaxKind {
self.syntax().first_token().map_or(SyntaxKind::ERROR, |it| it.kind())
}
}
fn text_of_first_token(node: &SyntaxNode) -> TokenText<'_> {
fn first_token(green_ref: &GreenNodeData) -> &GreenTokenData {
green_ref.children().next().and_then(NodeOrToken::into_token).unwrap()
}
match node.green() {
Cow::Borrowed(green_ref) => TokenText::borrowed(first_token(green_ref).text()),
Cow::Owned(green) => TokenText::owned(first_token(&green).to_owned()),
}
}
impl ast::Abi {
pub fn abi_string(&self) -> Option<ast::String> {
support::token(&self.syntax, SyntaxKind::STRING).and_then(ast::String::cast)
}
}
impl ast::HasModuleItem for ast::StmtList {}
impl ast::BlockExpr {
pub fn statements(&self) -> impl Iterator<Item = ast::Stmt> {
self.stmt_list().into_iter().flat_map(|it| it.statements())
}
pub fn tail_expr(&self) -> Option<ast::Expr> {
self.stmt_list()?.tail_expr()
}
pub fn may_carry_attributes(&self) -> bool {
matches!(
self.syntax().parent().map(|it| it.kind()),
Some(SyntaxKind::BLOCK_EXPR | SyntaxKind::EXPR_STMT)
)
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum Macro {
MacroRules(ast::MacroRules),
MacroDef(ast::MacroDef),
}
impl From<ast::MacroRules> for Macro {
fn from(it: ast::MacroRules) -> Self {
Macro::MacroRules(it)
}
}
impl From<ast::MacroDef> for Macro {
fn from(it: ast::MacroDef) -> Self {
Macro::MacroDef(it)
}
}
impl AstNode for Macro {
fn can_cast(kind: SyntaxKind) -> bool {
matches!(kind, SyntaxKind::MACRO_RULES | SyntaxKind::MACRO_DEF)
}
fn cast(syntax: SyntaxNode) -> Option<Self> {
let res = match syntax.kind() {
SyntaxKind::MACRO_RULES => Macro::MacroRules(ast::MacroRules { syntax }),
SyntaxKind::MACRO_DEF => Macro::MacroDef(ast::MacroDef { syntax }),
_ => return None,
};
Some(res)
}
fn syntax(&self) -> &SyntaxNode {
match self {
Macro::MacroRules(it) => it.syntax(),
Macro::MacroDef(it) => it.syntax(),
}
}
}
impl HasName for Macro {
fn name(&self) -> Option<ast::Name> {
match self {
Macro::MacroRules(mac) => mac.name(),
Macro::MacroDef(mac) => mac.name(),
}
}
}
impl HasAttrs for Macro {}
impl From<ast::AssocItem> for ast::Item {
fn from(assoc: ast::AssocItem) -> Self {
match assoc {
ast::AssocItem::Const(it) => ast::Item::Const(it),
ast::AssocItem::Fn(it) => ast::Item::Fn(it),
ast::AssocItem::MacroCall(it) => ast::Item::MacroCall(it),
ast::AssocItem::TypeAlias(it) => ast::Item::TypeAlias(it),
}
}
}
impl From<ast::ExternItem> for ast::Item {
fn from(extern_item: ast::ExternItem) -> Self {
match extern_item {
ast::ExternItem::Static(it) => ast::Item::Static(it),
ast::ExternItem::Fn(it) => ast::Item::Fn(it),
ast::ExternItem::MacroCall(it) => ast::Item::MacroCall(it),
ast::ExternItem::TypeAlias(it) => ast::Item::TypeAlias(it),
}
}
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum AttrKind {
Inner,
Outer,
}
impl AttrKind {
pub fn is_inner(&self) -> bool {
matches!(self, Self::Inner)
}
pub fn is_outer(&self) -> bool {
matches!(self, Self::Outer)
}
}
impl ast::Attr {
pub fn as_simple_atom(&self) -> Option<SmolStr> {
let meta = self.meta()?;
if meta.eq_token().is_some() || meta.token_tree().is_some() {
return None;
}
self.simple_name()
}
pub fn as_simple_call(&self) -> Option<(SmolStr, ast::TokenTree)> {
let tt = self.meta()?.token_tree()?;
Some((self.simple_name()?, tt))
}
pub fn as_simple_path(&self) -> Option<ast::Path> {
let meta = self.meta()?;
if meta.eq_token().is_some() || meta.token_tree().is_some() {
return None;
}
self.path()
}
pub fn simple_name(&self) -> Option<SmolStr> {
let path = self.meta()?.path()?;
match (path.segment(), path.qualifier()) {
(Some(segment), None) => Some(segment.syntax().first_token()?.text().into()),
_ => None,
}
}
pub fn kind(&self) -> AttrKind {
match self.excl_token() {
Some(_) => AttrKind::Inner,
None => AttrKind::Outer,
}
}
pub fn path(&self) -> Option<ast::Path> {
self.meta()?.path()
}
pub fn expr(&self) -> Option<ast::Expr> {
self.meta()?.expr()
}
pub fn token_tree(&self) -> Option<ast::TokenTree> {
self.meta()?.token_tree()
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum PathSegmentKind {
Name(ast::NameRef),
Type { type_ref: Option<ast::Type>, trait_ref: Option<ast::PathType> },
SelfTypeKw,
SelfKw,
SuperKw,
CrateKw,
}
impl ast::PathSegment {
pub fn parent_path(&self) -> ast::Path {
self.syntax()
.parent()
.and_then(ast::Path::cast)
.expect("segments are always nested in paths")
}
pub fn crate_token(&self) -> Option<SyntaxToken> {
self.name_ref().and_then(|it| it.crate_token())
}
pub fn self_token(&self) -> Option<SyntaxToken> {
self.name_ref().and_then(|it| it.self_token())
}
pub fn self_type_token(&self) -> Option<SyntaxToken> {
self.name_ref().and_then(|it| it.Self_token())
}
pub fn super_token(&self) -> Option<SyntaxToken> {
self.name_ref().and_then(|it| it.super_token())
}
pub fn kind(&self) -> Option<PathSegmentKind> {
let res = if let Some(name_ref) = self.name_ref() {
match name_ref.token_kind() {
T![Self] => PathSegmentKind::SelfTypeKw,
T![self] => PathSegmentKind::SelfKw,
T![super] => PathSegmentKind::SuperKw,
T![crate] => PathSegmentKind::CrateKw,
_ => PathSegmentKind::Name(name_ref),
}
} else {
match self.syntax().first_child_or_token()?.kind() {
T![<] => {
let mut type_refs =
self.syntax().children().filter(|node| ast::Type::can_cast(node.kind()));
let type_ref = type_refs.next().and_then(ast::Type::cast);
let trait_ref = type_refs.next().and_then(ast::PathType::cast);
PathSegmentKind::Type { type_ref, trait_ref }
}
_ => return None,
}
};
Some(res)
}
}
impl ast::Path {
pub fn parent_path(&self) -> Option<ast::Path> {
self.syntax().parent().and_then(ast::Path::cast)
}
pub fn as_single_segment(&self) -> Option<ast::PathSegment> {
match self.qualifier() {
Some(_) => None,
None => self.segment(),
}
}
pub fn as_single_name_ref(&self) -> Option<ast::NameRef> {
match self.qualifier() {
Some(_) => None,
None => self.segment()?.name_ref(),
}
}
pub fn first_qualifier_or_self(&self) -> ast::Path {
successors(Some(self.clone()), ast::Path::qualifier).last().unwrap()
}
pub fn first_qualifier(&self) -> Option<ast::Path> {
successors(self.qualifier(), ast::Path::qualifier).last()
}
pub fn first_segment(&self) -> Option<ast::PathSegment> {
self.first_qualifier_or_self().segment()
}
pub fn segments(&self) -> impl Iterator<Item = ast::PathSegment> + Clone {
let path_range = self.syntax().text_range();
successors(self.first_segment(), move |p| {
p.parent_path().parent_path().and_then(|p| {
if path_range.contains_range(p.syntax().text_range()) {
p.segment()
} else {
None
}
})
})
}
pub fn qualifiers(&self) -> impl Iterator<Item = ast::Path> + Clone {
successors(self.qualifier(), |p| p.qualifier())
}
pub fn top_path(&self) -> ast::Path {
let mut this = self.clone();
while let Some(path) = this.parent_path() {
this = path;
}
this
}
}
impl ast::Use {
pub fn is_simple_glob(&self) -> bool {
self.use_tree().is_some_and(|use_tree| {
use_tree.use_tree_list().is_none() && use_tree.star_token().is_some()
})
}
}
impl ast::UseTree {
pub fn is_simple_path(&self) -> bool {
self.use_tree_list().is_none() && self.star_token().is_none()
}
pub fn parent_use_tree_list(&self) -> Option<ast::UseTreeList> {
self.syntax().parent().and_then(ast::UseTreeList::cast)
}
pub fn top_use_tree(&self) -> ast::UseTree {
let mut this = self.clone();
while let Some(use_tree_list) = this.parent_use_tree_list() {
this = use_tree_list.parent_use_tree();
}
this
}
}
impl ast::UseTreeList {
pub fn parent_use_tree(&self) -> ast::UseTree {
self.syntax()
.parent()
.and_then(ast::UseTree::cast)
.expect("UseTreeLists are always nested in UseTrees")
}
pub fn has_inner_comment(&self) -> bool {
self.syntax()
.children_with_tokens()
.filter_map(|it| it.into_token())
.find_map(ast::Comment::cast)
.is_some()
}
pub fn comma(&self) -> impl Iterator<Item = SyntaxToken> {
self.syntax()
.children_with_tokens()
.filter_map(|it| it.into_token().filter(|it| it.kind() == T![,]))
}
pub fn remove_unnecessary_braces(mut self) {
let has_single_subtree_that_is_not_self = |u: &ast::UseTreeList| {
if let Some((single_subtree,)) = u.use_trees().collect_tuple() {
let is_self = single_subtree.path().as_ref().is_some_and(|path| {
path.segment().and_then(|seg| seg.self_token()).is_some()
&& path.qualifier().is_none()
});
!is_self
} else {
false
}
};
let remove_brace_in_use_tree_list = |u: &ast::UseTreeList| {
if has_single_subtree_that_is_not_self(u) {
if let Some(a) = u.l_curly_token() {
ted::remove(a)
}
if let Some(a) = u.r_curly_token() {
ted::remove(a)
}
u.comma().for_each(ted::remove);
}
};
remove_brace_in_use_tree_list(&self);
while let Some(parent_use_tree_list) = self.parent_use_tree().parent_use_tree_list() {
remove_brace_in_use_tree_list(&parent_use_tree_list);
self = parent_use_tree_list;
}
}
}
impl ast::Impl {
pub fn self_ty(&self) -> Option<ast::Type> {
match self.target() {
(Some(t), None) | (_, Some(t)) => Some(t),
_ => None,
}
}
pub fn trait_(&self) -> Option<ast::Type> {
match self.target() {
(Some(t), Some(_)) => Some(t),
_ => None,
}
}
fn target(&self) -> (Option<ast::Type>, Option<ast::Type>) {
let mut types = support::children(self.syntax());
let first = types.next();
let second = types.next();
(first, second)
}
pub fn for_trait_name_ref(name_ref: &ast::NameRef) -> Option<ast::Impl> {
let this = name_ref.syntax().ancestors().find_map(ast::Impl::cast)?;
if this.trait_()?.syntax().text_range().start() == name_ref.syntax().text_range().start() {
Some(this)
} else {
None
}
}
}
impl ast::PathSegment {
pub fn qualifying_trait(&self) -> Option<ast::PathType> {
let mut path_types = support::children(self.syntax());
let first = path_types.next()?;
path_types.next().or(Some(first))
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum StructKind {
Record(ast::RecordFieldList),
Tuple(ast::TupleFieldList),
Unit,
}
impl StructKind {
fn from_node<N: AstNode>(node: &N) -> StructKind {
if let Some(nfdl) = support::child::<ast::RecordFieldList>(node.syntax()) {
StructKind::Record(nfdl)
} else if let Some(pfl) = support::child::<ast::TupleFieldList>(node.syntax()) {
StructKind::Tuple(pfl)
} else {
StructKind::Unit
}
}
}
impl ast::Struct {
pub fn kind(&self) -> StructKind {
StructKind::from_node(self)
}
}
impl ast::Union {
pub fn kind(&self) -> StructKind {
StructKind::from_node(self)
}
}
impl ast::RecordExprField {
pub fn for_field_name(field_name: &ast::NameRef) -> Option<ast::RecordExprField> {
let candidate = Self::for_name_ref(field_name)?;
if candidate.field_name().as_ref() == Some(field_name) {
Some(candidate)
} else {
None
}
}
pub fn for_name_ref(name_ref: &ast::NameRef) -> Option<ast::RecordExprField> {
let syn = name_ref.syntax();
syn.parent()
.and_then(ast::RecordExprField::cast)
.or_else(|| syn.ancestors().nth(4).and_then(ast::RecordExprField::cast))
}
pub fn field_name(&self) -> Option<ast::NameRef> {
if let Some(name_ref) = self.name_ref() {
return Some(name_ref);
}
if let ast::Expr::PathExpr(expr) = self.expr()? {
let path = expr.path()?;
let segment = path.segment()?;
let name_ref = segment.name_ref()?;
if path.qualifier().is_none() {
return Some(name_ref);
}
}
None
}
}
#[derive(Debug, Clone)]
pub enum NameLike {
NameRef(ast::NameRef),
Name(ast::Name),
Lifetime(ast::Lifetime),
}
impl NameLike {
pub fn as_name_ref(&self) -> Option<&ast::NameRef> {
match self {
NameLike::NameRef(name_ref) => Some(name_ref),
_ => None,
}
}
pub fn as_lifetime(&self) -> Option<&ast::Lifetime> {
match self {
NameLike::Lifetime(lifetime) => Some(lifetime),
_ => None,
}
}
pub fn text(&self) -> TokenText<'_> {
match self {
NameLike::NameRef(name_ref) => name_ref.text(),
NameLike::Name(name) => name.text(),
NameLike::Lifetime(lifetime) => lifetime.text(),
}
}
}
impl ast::AstNode for NameLike {
fn can_cast(kind: SyntaxKind) -> bool {
matches!(kind, SyntaxKind::NAME | SyntaxKind::NAME_REF | SyntaxKind::LIFETIME)
}
fn cast(syntax: SyntaxNode) -> Option<Self> {
let res = match syntax.kind() {
SyntaxKind::NAME => NameLike::Name(ast::Name { syntax }),
SyntaxKind::NAME_REF => NameLike::NameRef(ast::NameRef { syntax }),
SyntaxKind::LIFETIME => NameLike::Lifetime(ast::Lifetime { syntax }),
_ => return None,
};
Some(res)
}
fn syntax(&self) -> &SyntaxNode {
match self {
NameLike::NameRef(it) => it.syntax(),
NameLike::Name(it) => it.syntax(),
NameLike::Lifetime(it) => it.syntax(),
}
}
}
const _: () = {
use ast::{Lifetime, Name, NameRef};
stdx::impl_from!(NameRef, Name, Lifetime for NameLike);
};
#[derive(Debug, Clone, PartialEq)]
pub enum NameOrNameRef {
Name(ast::Name),
NameRef(ast::NameRef),
}
impl fmt::Display for NameOrNameRef {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
NameOrNameRef::Name(it) => fmt::Display::fmt(it, f),
NameOrNameRef::NameRef(it) => fmt::Display::fmt(it, f),
}
}
}
impl ast::AstNode for NameOrNameRef {
fn can_cast(kind: SyntaxKind) -> bool {
matches!(kind, SyntaxKind::NAME | SyntaxKind::NAME_REF)
}
fn cast(syntax: SyntaxNode) -> Option<Self> {
let res = match syntax.kind() {
SyntaxKind::NAME => NameOrNameRef::Name(ast::Name { syntax }),
SyntaxKind::NAME_REF => NameOrNameRef::NameRef(ast::NameRef { syntax }),
_ => return None,
};
Some(res)
}
fn syntax(&self) -> &SyntaxNode {
match self {
NameOrNameRef::NameRef(it) => it.syntax(),
NameOrNameRef::Name(it) => it.syntax(),
}
}
}
impl NameOrNameRef {
pub fn text(&self) -> TokenText<'_> {
match self {
NameOrNameRef::Name(name) => name.text(),
NameOrNameRef::NameRef(name_ref) => name_ref.text(),
}
}
}
impl ast::RecordPatField {
pub fn for_field_name_ref(field_name: &ast::NameRef) -> Option<ast::RecordPatField> {
let candidate = field_name.syntax().parent().and_then(ast::RecordPatField::cast)?;
match candidate.field_name()? {
NameOrNameRef::NameRef(name_ref) if name_ref == *field_name => Some(candidate),
_ => None,
}
}
pub fn for_field_name(field_name: &ast::Name) -> Option<ast::RecordPatField> {
let candidate =
field_name.syntax().ancestors().nth(2).and_then(ast::RecordPatField::cast)?;
match candidate.field_name()? {
NameOrNameRef::Name(name) if name == *field_name => Some(candidate),
_ => None,
}
}
pub fn parent_record_pat(&self) -> ast::RecordPat {
self.syntax().ancestors().find_map(ast::RecordPat::cast).unwrap()
}
pub fn field_name(&self) -> Option<NameOrNameRef> {
if let Some(name_ref) = self.name_ref() {
return Some(NameOrNameRef::NameRef(name_ref));
}
match self.pat() {
Some(ast::Pat::IdentPat(pat)) => {
let name = pat.name()?;
Some(NameOrNameRef::Name(name))
}
Some(ast::Pat::BoxPat(pat)) => match pat.pat() {
Some(ast::Pat::IdentPat(pat)) => {
let name = pat.name()?;
Some(NameOrNameRef::Name(name))
}
_ => None,
},
_ => None,
}
}
}
impl ast::Variant {
pub fn parent_enum(&self) -> ast::Enum {
self.syntax()
.parent()
.and_then(|it| it.parent())
.and_then(ast::Enum::cast)
.expect("EnumVariants are always nested in Enums")
}
pub fn kind(&self) -> StructKind {
StructKind::from_node(self)
}
}
impl ast::Item {
pub fn generic_param_list(&self) -> Option<ast::GenericParamList> {
ast::AnyHasGenericParams::cast(self.syntax().clone())?.generic_param_list()
}
}
impl ast::Type {
pub fn generic_arg_list(&self) -> Option<ast::GenericArgList> {
if let ast::Type::PathType(path_type) = self {
path_type.path()?.segment()?.generic_arg_list()
} else {
None
}
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum FieldKind {
Name(ast::NameRef),
Index(SyntaxToken),
}
impl ast::FieldExpr {
pub fn index_token(&self) -> Option<SyntaxToken> {
self.syntax
.children_with_tokens()
.find(|c| c.kind() == SyntaxKind::INT_NUMBER || c.kind() == SyntaxKind::FLOAT_NUMBER)
.as_ref()
.and_then(SyntaxElement::as_token)
.cloned()
}
pub fn field_access(&self) -> Option<FieldKind> {
match self.name_ref() {
Some(nr) => Some(FieldKind::Name(nr)),
None => self.index_token().map(FieldKind::Index),
}
}
}
pub struct SlicePatComponents {
pub prefix: Vec<ast::Pat>,
pub slice: Option<ast::Pat>,
pub suffix: Vec<ast::Pat>,
}
impl ast::SlicePat {
pub fn components(&self) -> SlicePatComponents {
let mut args = self.pats().peekable();
let prefix = args
.peeking_take_while(|p| match p {
ast::Pat::RestPat(_) => false,
ast::Pat::IdentPat(bp) => !matches!(bp.pat(), Some(ast::Pat::RestPat(_))),
ast::Pat::RefPat(rp) => match rp.pat() {
Some(ast::Pat::RestPat(_)) => false,
Some(ast::Pat::IdentPat(bp)) => !matches!(bp.pat(), Some(ast::Pat::RestPat(_))),
_ => true,
},
_ => true,
})
.collect();
let slice = args.next();
let suffix = args.collect();
SlicePatComponents { prefix, slice, suffix }
}
}
impl ast::IdentPat {
pub fn is_simple_ident(&self) -> bool {
self.at_token().is_none()
&& self.mut_token().is_none()
&& self.ref_token().is_none()
&& self.pat().is_none()
}
}
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum SelfParamKind {
Owned,
Ref,
MutRef,
}
impl ast::SelfParam {
pub fn kind(&self) -> SelfParamKind {
if self.amp_token().is_some() {
if self.mut_token().is_some() {
SelfParamKind::MutRef
} else {
SelfParamKind::Ref
}
} else {
SelfParamKind::Owned
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum TypeBoundKind {
PathType(ast::PathType),
ForType(ast::ForType),
Use(ast::UseBoundGenericArgs),
Lifetime(ast::Lifetime),
}
impl ast::TypeBound {
pub fn kind(&self) -> TypeBoundKind {
if let Some(path_type) = support::children(self.syntax()).next() {
TypeBoundKind::PathType(path_type)
} else if let Some(for_type) = support::children(self.syntax()).next() {
TypeBoundKind::ForType(for_type)
} else if let Some(args) = self.use_bound_generic_args() {
TypeBoundKind::Use(args)
} else if let Some(lifetime) = self.lifetime() {
TypeBoundKind::Lifetime(lifetime)
} else {
unreachable!()
}
}
}
#[derive(Debug, Clone)]
pub enum TypeOrConstParam {
Type(ast::TypeParam),
Const(ast::ConstParam),
}
impl From<TypeOrConstParam> for GenericParam {
fn from(value: TypeOrConstParam) -> Self {
match value {
TypeOrConstParam::Type(it) => GenericParam::TypeParam(it),
TypeOrConstParam::Const(it) => GenericParam::ConstParam(it),
}
}
}
impl TypeOrConstParam {
pub fn name(&self) -> Option<ast::Name> {
match self {
TypeOrConstParam::Type(x) => x.name(),
TypeOrConstParam::Const(x) => x.name(),
}
}
}
impl AstNode for TypeOrConstParam {
fn can_cast(kind: SyntaxKind) -> bool
where
Self: Sized,
{
matches!(kind, SyntaxKind::TYPE_PARAM | SyntaxKind::CONST_PARAM)
}
fn cast(syntax: SyntaxNode) -> Option<Self>
where
Self: Sized,
{
let res = match syntax.kind() {
SyntaxKind::TYPE_PARAM => TypeOrConstParam::Type(ast::TypeParam { syntax }),
SyntaxKind::CONST_PARAM => TypeOrConstParam::Const(ast::ConstParam { syntax }),
_ => return None,
};
Some(res)
}
fn syntax(&self) -> &SyntaxNode {
match self {
TypeOrConstParam::Type(it) => it.syntax(),
TypeOrConstParam::Const(it) => it.syntax(),
}
}
}
impl HasAttrs for TypeOrConstParam {}
#[derive(Debug, Clone)]
pub enum TraitOrAlias {
Trait(ast::Trait),
TraitAlias(ast::TraitAlias),
}
impl TraitOrAlias {
pub fn name(&self) -> Option<ast::Name> {
match self {
TraitOrAlias::Trait(x) => x.name(),
TraitOrAlias::TraitAlias(x) => x.name(),
}
}
}
impl AstNode for TraitOrAlias {
fn can_cast(kind: SyntaxKind) -> bool
where
Self: Sized,
{
matches!(kind, SyntaxKind::TRAIT | SyntaxKind::TRAIT_ALIAS)
}
fn cast(syntax: SyntaxNode) -> Option<Self>
where
Self: Sized,
{
let res = match syntax.kind() {
SyntaxKind::TRAIT => TraitOrAlias::Trait(ast::Trait { syntax }),
SyntaxKind::TRAIT_ALIAS => TraitOrAlias::TraitAlias(ast::TraitAlias { syntax }),
_ => return None,
};
Some(res)
}
fn syntax(&self) -> &SyntaxNode {
match self {
TraitOrAlias::Trait(it) => it.syntax(),
TraitOrAlias::TraitAlias(it) => it.syntax(),
}
}
}
impl HasAttrs for TraitOrAlias {}
pub enum VisibilityKind {
In(ast::Path),
PubCrate,
PubSuper,
PubSelf,
Pub,
}
impl ast::Visibility {
pub fn kind(&self) -> VisibilityKind {
match self.path() {
Some(path) => {
if let Some(segment) =
path.as_single_segment().filter(|it| it.coloncolon_token().is_none())
{
if segment.crate_token().is_some() {
return VisibilityKind::PubCrate;
} else if segment.super_token().is_some() {
return VisibilityKind::PubSuper;
} else if segment.self_token().is_some() {
return VisibilityKind::PubSelf;
}
}
VisibilityKind::In(path)
}
None => VisibilityKind::Pub,
}
}
}
impl ast::LifetimeParam {
pub fn lifetime_bounds(&self) -> impl Iterator<Item = SyntaxToken> {
self.syntax()
.children_with_tokens()
.filter_map(|it| it.into_token())
.skip_while(|x| x.kind() != T![:])
.filter(|it| it.kind() == T![lifetime_ident])
}
}
impl ast::Module {
pub fn parent(&self) -> Option<ast::Module> {
self.syntax().ancestors().nth(2).and_then(ast::Module::cast)
}
}
impl RangeItem for ast::RangePat {
type Bound = ast::Pat;
fn start(&self) -> Option<ast::Pat> {
self.syntax()
.children_with_tokens()
.take_while(|it| !(it.kind() == T![..] || it.kind() == T![..=]))
.filter_map(|it| it.into_node())
.find_map(ast::Pat::cast)
}
fn end(&self) -> Option<ast::Pat> {
self.syntax()
.children_with_tokens()
.skip_while(|it| !(it.kind() == T![..] || it.kind() == T![..=]))
.filter_map(|it| it.into_node())
.find_map(ast::Pat::cast)
}
fn op_token(&self) -> Option<SyntaxToken> {
self.syntax().children_with_tokens().find_map(|it| {
let token = it.into_token()?;
match token.kind() {
T![..] => Some(token),
T![..=] => Some(token),
_ => None,
}
})
}
fn op_kind(&self) -> Option<RangeOp> {
self.syntax().children_with_tokens().find_map(|it| {
let token = it.into_token()?;
match token.kind() {
T![..] => Some(RangeOp::Exclusive),
T![..=] => Some(RangeOp::Inclusive),
_ => None,
}
})
}
}
impl ast::TokenTree {
pub fn token_trees_and_tokens(
&self,
) -> impl Iterator<Item = NodeOrToken<ast::TokenTree, SyntaxToken>> {
self.syntax().children_with_tokens().filter_map(|not| match not {
NodeOrToken::Node(node) => ast::TokenTree::cast(node).map(NodeOrToken::Node),
NodeOrToken::Token(t) => Some(NodeOrToken::Token(t)),
})
}
pub fn left_delimiter_token(&self) -> Option<SyntaxToken> {
self.syntax()
.first_child_or_token()?
.into_token()
.filter(|it| matches!(it.kind(), T!['{'] | T!['('] | T!['[']))
}
pub fn right_delimiter_token(&self) -> Option<SyntaxToken> {
self.syntax()
.last_child_or_token()?
.into_token()
.filter(|it| matches!(it.kind(), T!['}'] | T![')'] | T![']']))
}
pub fn parent_meta(&self) -> Option<ast::Meta> {
self.syntax().parent().and_then(ast::Meta::cast)
}
}
impl ast::Meta {
pub fn parent_attr(&self) -> Option<ast::Attr> {
self.syntax().parent().and_then(ast::Attr::cast)
}
}
impl ast::GenericArgList {
pub fn lifetime_args(&self) -> impl Iterator<Item = ast::LifetimeArg> {
self.generic_args().filter_map(|arg| match arg {
ast::GenericArg::LifetimeArg(it) => Some(it),
_ => None,
})
}
}
impl ast::GenericParamList {
pub fn lifetime_params(&self) -> impl Iterator<Item = ast::LifetimeParam> {
self.generic_params().filter_map(|param| match param {
ast::GenericParam::LifetimeParam(it) => Some(it),
ast::GenericParam::TypeParam(_) | ast::GenericParam::ConstParam(_) => None,
})
}
pub fn type_or_const_params(&self) -> impl Iterator<Item = ast::TypeOrConstParam> {
self.generic_params().filter_map(|param| match param {
ast::GenericParam::TypeParam(it) => Some(ast::TypeOrConstParam::Type(it)),
ast::GenericParam::LifetimeParam(_) => None,
ast::GenericParam::ConstParam(it) => Some(ast::TypeOrConstParam::Const(it)),
})
}
}
impl ast::ForExpr {
pub fn iterable(&self) -> Option<ast::Expr> {
let mut exprs = support::children(self.syntax());
let first = exprs.next();
match first {
Some(ast::Expr::BlockExpr(_)) => exprs.next().and(first),
first => first,
}
}
}
impl ast::HasLoopBody for ast::ForExpr {
fn loop_body(&self) -> Option<ast::BlockExpr> {
let mut exprs = support::children(self.syntax());
let first = exprs.next();
let second = exprs.next();
second.or(first)
}
}
impl ast::WhileExpr {
pub fn condition(&self) -> Option<ast::Expr> {
let mut exprs = support::children(self.syntax());
let first = exprs.next();
match first {
Some(ast::Expr::BlockExpr(_)) => exprs.next().and(first),
first => first,
}
}
}
impl ast::HasLoopBody for ast::WhileExpr {
fn loop_body(&self) -> Option<ast::BlockExpr> {
let mut exprs = support::children(self.syntax());
let first = exprs.next();
let second = exprs.next();
second.or(first)
}
}
impl ast::HasAttrs for ast::AnyHasDocComments {}
impl From<ast::Adt> for ast::Item {
fn from(it: ast::Adt) -> Self {
match it {
ast::Adt::Enum(it) => ast::Item::Enum(it),
ast::Adt::Struct(it) => ast::Item::Struct(it),
ast::Adt::Union(it) => ast::Item::Union(it),
}
}
}
impl ast::MatchGuard {
pub fn condition(&self) -> Option<ast::Expr> {
support::child(&self.syntax)
}
}
impl From<ast::Item> for ast::AnyHasAttrs {
fn from(node: ast::Item) -> Self {
Self::new(node)
}
}
impl From<ast::AssocItem> for ast::AnyHasAttrs {
fn from(node: ast::AssocItem) -> Self {
Self::new(node)
}
}
impl ast::OrPat {
pub fn leading_pipe(&self) -> Option<SyntaxToken> {
self.syntax
.children_with_tokens()
.find(|it| !it.kind().is_trivia())
.and_then(NodeOrToken::into_token)
.filter(|it| it.kind() == T![|])
}
}