//! HirDisplay implementations for various hir types. use hir_def::{ data::adt::VariantData, generics::{ TypeOrConstParamData, TypeParamProvenance, WherePredicate, WherePredicateTypeTarget, }, lang_item::LangItem, type_ref::{TypeBound, TypeRef}, AdtId, GenericDefId, }; use hir_expand::name; use hir_ty::{ display::{ write_bounds_like_dyn_trait_with_prefix, write_visibility, HirDisplay, HirDisplayError, HirFormatter, SizedByDefault, }, Interner, TraitRefExt, WhereClause, }; use crate::{ Adt, AsAssocItem, AssocItemContainer, Const, ConstParam, Enum, Field, Function, GenericParam, HasCrate, HasVisibility, LifetimeParam, Macro, Module, Static, Struct, Trait, TraitAlias, TyBuilder, Type, TypeAlias, TypeOrConstParam, TypeParam, Union, Variant, }; impl HirDisplay for Function { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { let db = f.db; let data = db.function_data(self.id); let container = self.as_assoc_item(db).map(|it| it.container(db)); let mut module = self.module(db); if let Some(AssocItemContainer::Impl(_)) = container { // Block-local impls are "hoisted" to the nearest (non-block) module. module = module.nearest_non_block_module(db); } let module_id = module.id; write_visibility(module_id, self.visibility(db), f)?; if data.has_default_kw() { f.write_str("default ")?; } if data.has_const_kw() { f.write_str("const ")?; } if data.has_async_kw() { f.write_str("async ")?; } if self.is_unsafe_to_call(db) { f.write_str("unsafe ")?; } if let Some(abi) = &data.abi { // FIXME: String escape? write!(f, "extern \"{}\" ", &**abi)?; } write!(f, "fn {}", data.name.display(f.db.upcast()))?; write_generic_params(GenericDefId::FunctionId(self.id), f)?; f.write_char('(')?; let write_self_param = |ty: &TypeRef, f: &mut HirFormatter<'_>| match ty { TypeRef::Path(p) if p.is_self_type() => f.write_str("self"), TypeRef::Reference(inner, lifetime, mut_) if matches!(&**inner, TypeRef::Path(p) if p.is_self_type()) => { f.write_char('&')?; if let Some(lifetime) = lifetime { write!(f, "{} ", lifetime.name.display(f.db.upcast()))?; } if let hir_def::type_ref::Mutability::Mut = mut_ { f.write_str("mut ")?; } f.write_str("self") } _ => { f.write_str("self: ")?; ty.hir_fmt(f) } }; let mut first = true; // FIXME: Use resolved `param.ty` once we no longer discard lifetimes for (type_ref, param) in data.params.iter().zip(self.assoc_fn_params(db)) { let local = param.as_local(db).map(|it| it.name(db)); if !first { f.write_str(", ")?; } else { first = false; if local == Some(name!(self)) { write_self_param(type_ref, f)?; continue; } } match local { Some(name) => write!(f, "{}: ", name.display(f.db.upcast()))?, None => f.write_str("_: ")?, } type_ref.hir_fmt(f)?; } if data.is_varargs() { f.write_str(", ...")?; } f.write_char(')')?; // `FunctionData::ret_type` will be `::core::future::Future` for async fns. // Use ugly pattern match to strip the Future trait. // Better way? let ret_type = if !data.has_async_kw() { &data.ret_type } else { match &*data.ret_type { TypeRef::ImplTrait(bounds) => match bounds[0].as_ref() { TypeBound::Path(path, _) => { path.segments().iter().last().unwrap().args_and_bindings.unwrap().bindings [0] .type_ref .as_ref() .unwrap() } _ => panic!("Async fn ret_type should be impl Future"), }, _ => panic!("Async fn ret_type should be impl Future"), } }; match ret_type { TypeRef::Tuple(tup) if tup.is_empty() => {} ty => { f.write_str(" -> ")?; ty.hir_fmt(f)?; } } write_where_clause(GenericDefId::FunctionId(self.id), f)?; Ok(()) } } impl HirDisplay for Adt { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { match self { Adt::Struct(it) => it.hir_fmt(f), Adt::Union(it) => it.hir_fmt(f), Adt::Enum(it) => it.hir_fmt(f), } } } impl HirDisplay for Struct { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write_visibility(self.module(f.db).id, self.visibility(f.db), f)?; f.write_str("struct ")?; write!(f, "{}", self.name(f.db).display(f.db.upcast()))?; let def_id = GenericDefId::AdtId(AdtId::StructId(self.id)); write_generic_params(def_id, f)?; write_where_clause(def_id, f)?; Ok(()) } } impl HirDisplay for Enum { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write_visibility(self.module(f.db).id, self.visibility(f.db), f)?; f.write_str("enum ")?; write!(f, "{}", self.name(f.db).display(f.db.upcast()))?; let def_id = GenericDefId::AdtId(AdtId::EnumId(self.id)); write_generic_params(def_id, f)?; write_where_clause(def_id, f)?; Ok(()) } } impl HirDisplay for Union { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write_visibility(self.module(f.db).id, self.visibility(f.db), f)?; f.write_str("union ")?; write!(f, "{}", self.name(f.db).display(f.db.upcast()))?; let def_id = GenericDefId::AdtId(AdtId::UnionId(self.id)); write_generic_params(def_id, f)?; write_where_clause(def_id, f)?; Ok(()) } } impl HirDisplay for Field { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write_visibility(self.parent.module(f.db).id, self.visibility(f.db), f)?; write!(f, "{}: ", self.name(f.db).display(f.db.upcast()))?; self.ty(f.db).hir_fmt(f) } } impl HirDisplay for Variant { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write!(f, "{}", self.name(f.db).display(f.db.upcast()))?; let data = self.variant_data(f.db); match &*data { VariantData::Unit => {} VariantData::Tuple(fields) => { f.write_char('(')?; let mut first = true; for (_, field) in fields.iter() { if first { first = false; } else { f.write_str(", ")?; } // Enum variant fields must be pub. field.type_ref.hir_fmt(f)?; } f.write_char(')')?; } VariantData::Record(fields) => { f.write_str(" {")?; let mut first = true; for (_, field) in fields.iter() { if first { first = false; f.write_char(' ')?; } else { f.write_str(", ")?; } // Enum variant fields must be pub. write!(f, "{}: ", field.name.display(f.db.upcast()))?; field.type_ref.hir_fmt(f)?; } f.write_str(" }")?; } } Ok(()) } } impl HirDisplay for Type { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { self.ty.hir_fmt(f) } } impl HirDisplay for GenericParam { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { match self { GenericParam::TypeParam(it) => it.hir_fmt(f), GenericParam::ConstParam(it) => it.hir_fmt(f), GenericParam::LifetimeParam(it) => it.hir_fmt(f), } } } impl HirDisplay for TypeOrConstParam { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { match self.split(f.db) { either::Either::Left(x) => x.hir_fmt(f), either::Either::Right(x) => x.hir_fmt(f), } } } impl HirDisplay for TypeParam { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write!(f, "{}", self.name(f.db).display(f.db.upcast()))?; if f.omit_verbose_types() { return Ok(()); } let bounds = f.db.generic_predicates_for_param(self.id.parent(), self.id.into(), None); let substs = TyBuilder::placeholder_subst(f.db, self.id.parent()); let predicates: Vec<_> = bounds.iter().cloned().map(|b| b.substitute(Interner, &substs)).collect(); let krate = self.id.parent().krate(f.db).id; let sized_trait = f.db.lang_item(krate, LangItem::Sized).and_then(|lang_item| lang_item.as_trait()); let has_only_sized_bound = predicates.iter().all(move |pred| match pred.skip_binders() { WhereClause::Implemented(it) => Some(it.hir_trait_id()) == sized_trait, _ => false, }); let has_only_not_sized_bound = predicates.is_empty(); if !has_only_sized_bound || has_only_not_sized_bound { let default_sized = SizedByDefault::Sized { anchor: krate }; write_bounds_like_dyn_trait_with_prefix(f, ":", &predicates, default_sized)?; } Ok(()) } } impl HirDisplay for LifetimeParam { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write!(f, "{}", self.name(f.db).display(f.db.upcast())) } } impl HirDisplay for ConstParam { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write!(f, "const {}: ", self.name(f.db).display(f.db.upcast()))?; self.ty(f.db).hir_fmt(f) } } fn write_generic_params( def: GenericDefId, f: &mut HirFormatter<'_>, ) -> Result<(), HirDisplayError> { let params = f.db.generic_params(def); if params.lifetimes.is_empty() && params.type_or_consts.iter().all(|x| x.1.const_param().is_none()) && params .type_or_consts .iter() .filter_map(|x| x.1.type_param()) .all(|param| !matches!(param.provenance, TypeParamProvenance::TypeParamList)) { return Ok(()); } f.write_char('<')?; let mut first = true; let mut delim = |f: &mut HirFormatter<'_>| { if first { first = false; Ok(()) } else { f.write_str(", ") } }; for (_, lifetime) in params.lifetimes.iter() { delim(f)?; write!(f, "{}", lifetime.name.display(f.db.upcast()))?; } for (_, ty) in params.type_or_consts.iter() { if let Some(name) = &ty.name() { match ty { TypeOrConstParamData::TypeParamData(ty) => { if ty.provenance != TypeParamProvenance::TypeParamList { continue; } delim(f)?; write!(f, "{}", name.display(f.db.upcast()))?; if let Some(default) = &ty.default { f.write_str(" = ")?; default.hir_fmt(f)?; } } TypeOrConstParamData::ConstParamData(c) => { delim(f)?; write!(f, "const {}: ", name.display(f.db.upcast()))?; c.ty.hir_fmt(f)?; } } } } f.write_char('>')?; Ok(()) } fn write_where_clause(def: GenericDefId, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { let params = f.db.generic_params(def); // unnamed type targets are displayed inline with the argument itself, e.g. `f: impl Y`. let is_unnamed_type_target = |target: &WherePredicateTypeTarget| match target { WherePredicateTypeTarget::TypeRef(_) => false, WherePredicateTypeTarget::TypeOrConstParam(id) => { params.type_or_consts[*id].name().is_none() } }; let has_displayable_predicate = params .where_predicates .iter() .any(|pred| { !matches!(pred, WherePredicate::TypeBound { target, .. } if is_unnamed_type_target(target)) }); if !has_displayable_predicate { return Ok(()); } let write_target = |target: &WherePredicateTypeTarget, f: &mut HirFormatter<'_>| match target { WherePredicateTypeTarget::TypeRef(ty) => ty.hir_fmt(f), WherePredicateTypeTarget::TypeOrConstParam(id) => { match ¶ms.type_or_consts[*id].name() { Some(name) => write!(f, "{}", name.display(f.db.upcast())), None => f.write_str("{unnamed}"), } } }; f.write_str("\nwhere")?; for (pred_idx, pred) in params.where_predicates.iter().enumerate() { let prev_pred = if pred_idx == 0 { None } else { Some(¶ms.where_predicates[pred_idx - 1]) }; let new_predicate = |f: &mut HirFormatter<'_>| { f.write_str(if pred_idx == 0 { "\n " } else { ",\n " }) }; match pred { WherePredicate::TypeBound { target, .. } if is_unnamed_type_target(target) => {} WherePredicate::TypeBound { target, bound } => { if matches!(prev_pred, Some(WherePredicate::TypeBound { target: target_, .. }) if target_ == target) { f.write_str(" + ")?; } else { new_predicate(f)?; write_target(target, f)?; f.write_str(": ")?; } bound.hir_fmt(f)?; } WherePredicate::Lifetime { target, bound } => { if matches!(prev_pred, Some(WherePredicate::Lifetime { target: target_, .. }) if target_ == target) { write!(f, " + {}", bound.name.display(f.db.upcast()))?; } else { new_predicate(f)?; write!( f, "{}: {}", target.name.display(f.db.upcast()), bound.name.display(f.db.upcast()) )?; } } WherePredicate::ForLifetime { lifetimes, target, bound } => { if matches!( prev_pred, Some(WherePredicate::ForLifetime { lifetimes: lifetimes_, target: target_, .. }) if lifetimes_ == lifetimes && target_ == target, ) { f.write_str(" + ")?; } else { new_predicate(f)?; f.write_str("for<")?; for (idx, lifetime) in lifetimes.iter().enumerate() { if idx != 0 { f.write_str(", ")?; } write!(f, "{}", lifetime.display(f.db.upcast()))?; } f.write_str("> ")?; write_target(target, f)?; f.write_str(": ")?; } bound.hir_fmt(f)?; } } } // End of final predicate. There must be at least one predicate here. f.write_char(',')?; Ok(()) } impl HirDisplay for Const { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { let db = f.db; let container = self.as_assoc_item(db).map(|it| it.container(db)); let mut module = self.module(db); if let Some(AssocItemContainer::Impl(_)) = container { // Block-local impls are "hoisted" to the nearest (non-block) module. module = module.nearest_non_block_module(db); } write_visibility(module.id, self.visibility(db), f)?; let data = db.const_data(self.id); f.write_str("const ")?; match &data.name { Some(name) => write!(f, "{}: ", name.display(f.db.upcast()))?, None => f.write_str("_: ")?, } data.type_ref.hir_fmt(f)?; Ok(()) } } impl HirDisplay for Static { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write_visibility(self.module(f.db).id, self.visibility(f.db), f)?; let data = f.db.static_data(self.id); f.write_str("static ")?; if data.mutable { f.write_str("mut ")?; } write!(f, "{}: ", data.name.display(f.db.upcast()))?; data.type_ref.hir_fmt(f)?; Ok(()) } } impl HirDisplay for Trait { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write_visibility(self.module(f.db).id, self.visibility(f.db), f)?; let data = f.db.trait_data(self.id); if data.is_unsafe { f.write_str("unsafe ")?; } if data.is_auto { f.write_str("auto ")?; } write!(f, "trait {}", data.name.display(f.db.upcast()))?; let def_id = GenericDefId::TraitId(self.id); write_generic_params(def_id, f)?; write_where_clause(def_id, f)?; Ok(()) } } impl HirDisplay for TraitAlias { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write_visibility(self.module(f.db).id, self.visibility(f.db), f)?; let data = f.db.trait_alias_data(self.id); write!(f, "trait {}", data.name.display(f.db.upcast()))?; let def_id = GenericDefId::TraitAliasId(self.id); write_generic_params(def_id, f)?; f.write_str(" = ")?; // FIXME: Currently we lower every bounds in a trait alias as a trait bound on `Self` i.e. // `trait Foo = Bar` is stored and displayed as `trait Foo = where Self: Bar`, which might // be less readable. write_where_clause(def_id, f)?; Ok(()) } } impl HirDisplay for TypeAlias { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { write_visibility(self.module(f.db).id, self.visibility(f.db), f)?; let data = f.db.type_alias_data(self.id); write!(f, "type {}", data.name.display(f.db.upcast()))?; let def_id = GenericDefId::TypeAliasId(self.id); write_generic_params(def_id, f)?; write_where_clause(def_id, f)?; if !data.bounds.is_empty() { f.write_str(": ")?; f.write_joined(&data.bounds, " + ")?; } if let Some(ty) = &data.type_ref { f.write_str(" = ")?; ty.hir_fmt(f)?; } Ok(()) } } impl HirDisplay for Module { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { // FIXME: Module doesn't have visibility saved in data. match self.name(f.db) { Some(name) => write!(f, "mod {}", name.display(f.db.upcast())), None if self.is_crate_root(f.db) => match self.krate(f.db).display_name(f.db) { Some(name) => write!(f, "extern crate {name}"), None => f.write_str("extern crate {unknown}"), }, None => f.write_str("mod {unnamed}"), } } } impl HirDisplay for Macro { fn hir_fmt(&self, f: &mut HirFormatter<'_>) -> Result<(), HirDisplayError> { match self.id { hir_def::MacroId::Macro2Id(_) => f.write_str("macro"), hir_def::MacroId::MacroRulesId(_) => f.write_str("macro_rules!"), hir_def::MacroId::ProcMacroId(_) => f.write_str("proc_macro"), }?; write!(f, " {}", self.name(f.db).display(f.db.upcast())) } }