//! Type inference for patterns. use std::iter::repeat_with; use chalk_ir::Mutability; use hir_def::{ expr::{BindingAnnotation, Expr, Literal, Pat, PatId, RecordFieldPat}, path::Path, type_ref::ConstScalar, }; use hir_expand::name::Name; use crate::{ infer::{BindingMode, Expectation, InferenceContext, TypeMismatch}, lower::lower_to_chalk_mutability, static_lifetime, ConcreteConst, ConstValue, Interner, Substitution, Ty, TyBuilder, TyExt, TyKind, }; impl<'a> InferenceContext<'a> { fn infer_tuple_struct_pat( &mut self, path: Option<&Path>, subpats: &[PatId], expected: &Ty, default_bm: BindingMode, id: PatId, ellipsis: Option, ) -> Ty { let (ty, def) = self.resolve_variant(path, true); let var_data = def.map(|it| it.variant_data(self.db.upcast())); if let Some(variant) = def { self.write_variant_resolution(id.into(), variant); } self.unify(&ty, expected); let substs = ty.as_adt().map(|(_, s)| s.clone()).unwrap_or_else(|| Substitution::empty(Interner)); let field_tys = def.map(|it| self.db.field_types(it)).unwrap_or_default(); let (pre, post) = match ellipsis { Some(idx) => subpats.split_at(idx), None => (subpats, &[][..]), }; let post_idx_offset = field_tys.iter().count().saturating_sub(post.len()); let pre_iter = pre.iter().enumerate(); let post_iter = (post_idx_offset..).zip(post.iter()); for (i, &subpat) in pre_iter.chain(post_iter) { let expected_ty = var_data .as_ref() .and_then(|d| d.field(&Name::new_tuple_field(i))) .map_or(self.err_ty(), |field| { field_tys[field].clone().substitute(Interner, &substs) }); let expected_ty = self.normalize_associated_types_in(expected_ty); self.infer_pat(subpat, &expected_ty, default_bm); } ty } fn infer_record_pat( &mut self, path: Option<&Path>, subpats: &[RecordFieldPat], expected: &Ty, default_bm: BindingMode, id: PatId, ) -> Ty { let (ty, def) = self.resolve_variant(path, false); let var_data = def.map(|it| it.variant_data(self.db.upcast())); if let Some(variant) = def { self.write_variant_resolution(id.into(), variant); } self.unify(&ty, expected); let substs = ty.as_adt().map(|(_, s)| s.clone()).unwrap_or_else(|| Substitution::empty(Interner)); let field_tys = def.map(|it| self.db.field_types(it)).unwrap_or_default(); for subpat in subpats { let matching_field = var_data.as_ref().and_then(|it| it.field(&subpat.name)); let expected_ty = matching_field.map_or(self.err_ty(), |field| { field_tys[field].clone().substitute(Interner, &substs) }); let expected_ty = self.normalize_associated_types_in(expected_ty); self.infer_pat(subpat.pat, &expected_ty, default_bm); } ty } pub(super) fn infer_pat( &mut self, pat: PatId, expected: &Ty, mut default_bm: BindingMode, ) -> Ty { let mut expected = self.resolve_ty_shallow(expected); if is_non_ref_pat(&self.body, pat) { let mut pat_adjustments = Vec::new(); while let Some((inner, _lifetime, mutability)) = expected.as_reference() { pat_adjustments.push(expected.clone()); expected = self.resolve_ty_shallow(inner); default_bm = match default_bm { BindingMode::Move => BindingMode::Ref(mutability), BindingMode::Ref(Mutability::Not) => BindingMode::Ref(Mutability::Not), BindingMode::Ref(Mutability::Mut) => BindingMode::Ref(mutability), } } if !pat_adjustments.is_empty() { pat_adjustments.shrink_to_fit(); self.result.pat_adjustments.insert(pat, pat_adjustments); } } else if let Pat::Ref { .. } = &self.body[pat] { cov_mark::hit!(match_ergonomics_ref); // When you encounter a `&pat` pattern, reset to Move. // This is so that `w` is by value: `let (_, &w) = &(1, &2);` default_bm = BindingMode::Move; } // Lose mutability. let default_bm = default_bm; let expected = expected; let ty = match &self.body[pat] { Pat::Tuple { args, ellipsis } => { let expectations = match expected.as_tuple() { Some(parameters) => &*parameters.as_slice(Interner), _ => &[], }; let ((pre, post), n_uncovered_patterns) = match ellipsis { Some(idx) => { (args.split_at(*idx), expectations.len().saturating_sub(args.len())) } None => ((&args[..], &[][..]), 0), }; let mut expectations_iter = expectations .iter() .cloned() .map(|a| a.assert_ty_ref(Interner).clone()) .chain(repeat_with(|| self.table.new_type_var())); let mut inner_tys = Vec::with_capacity(n_uncovered_patterns + args.len()); inner_tys .extend(expectations_iter.by_ref().take(n_uncovered_patterns + args.len())); // Process pre for (ty, pat) in inner_tys.iter_mut().zip(pre) { *ty = self.infer_pat(*pat, ty, default_bm); } // Process post for (ty, pat) in inner_tys.iter_mut().skip(pre.len() + n_uncovered_patterns).zip(post) { *ty = self.infer_pat(*pat, ty, default_bm); } TyKind::Tuple(inner_tys.len(), Substitution::from_iter(Interner, inner_tys)) .intern(Interner) } Pat::Or(pats) => { if let Some((first_pat, rest)) = pats.split_first() { let ty = self.infer_pat(*first_pat, &expected, default_bm); for pat in rest { self.infer_pat(*pat, &expected, default_bm); } ty } else { self.err_ty() } } Pat::Ref { pat, mutability } => { let mutability = lower_to_chalk_mutability(*mutability); let expectation = match expected.as_reference() { Some((inner_ty, _lifetime, exp_mut)) => { if mutability != exp_mut { // FIXME: emit type error? } inner_ty.clone() } _ => self.result.standard_types.unknown.clone(), }; let subty = self.infer_pat(*pat, &expectation, default_bm); TyKind::Ref(mutability, static_lifetime(), subty).intern(Interner) } Pat::TupleStruct { path: p, args: subpats, ellipsis } => self.infer_tuple_struct_pat( p.as_deref(), subpats, &expected, default_bm, pat, *ellipsis, ), Pat::Record { path: p, args: fields, ellipsis: _ } => { self.infer_record_pat(p.as_deref(), fields, &expected, default_bm, pat) } Pat::Path(path) => { // FIXME use correct resolver for the surrounding expression let resolver = self.resolver.clone(); self.infer_path(&resolver, path, pat.into()).unwrap_or_else(|| self.err_ty()) } Pat::Bind { mode, name: _, subpat } => { let mode = if mode == &BindingAnnotation::Unannotated { default_bm } else { BindingMode::convert(*mode) }; self.result.pat_binding_modes.insert(pat, mode); let inner_ty = match subpat { Some(subpat) => self.infer_pat(*subpat, &expected, default_bm), None => expected, }; let inner_ty = self.insert_type_vars_shallow(inner_ty); let bound_ty = match mode { BindingMode::Ref(mutability) => { TyKind::Ref(mutability, static_lifetime(), inner_ty.clone()) .intern(Interner) } BindingMode::Move => inner_ty.clone(), }; self.write_pat_ty(pat, bound_ty); return inner_ty; } Pat::Slice { prefix, slice, suffix } => { let elem_ty = match expected.kind(Interner) { TyKind::Array(st, _) | TyKind::Slice(st) => st.clone(), _ => self.err_ty(), }; for &pat_id in prefix.iter().chain(suffix.iter()) { self.infer_pat(pat_id, &elem_ty, default_bm); } if let &Some(slice_pat_id) = slice { let rest_pat_ty = match expected.kind(Interner) { TyKind::Array(_, length) => { let length = match length.data(Interner).value { ConstValue::Concrete(ConcreteConst { interned: ConstScalar::Usize(length), }) => length.checked_sub((prefix.len() + suffix.len()) as u64), _ => None, }; TyKind::Array(elem_ty.clone(), crate::consteval::usize_const(length)) } _ => TyKind::Slice(elem_ty.clone()), } .intern(Interner); self.infer_pat(slice_pat_id, &rest_pat_ty, default_bm); } match expected.kind(Interner) { TyKind::Array(_, const_) => TyKind::Array(elem_ty, const_.clone()), _ => TyKind::Slice(elem_ty), } .intern(Interner) } Pat::Wild => expected.clone(), Pat::Range { start, end } => { let start_ty = self.infer_expr(*start, &Expectation::has_type(expected.clone())); self.infer_expr(*end, &Expectation::has_type(start_ty)) } Pat::Lit(expr) => self.infer_expr(*expr, &Expectation::has_type(expected.clone())), Pat::Box { inner } => match self.resolve_boxed_box() { Some(box_adt) => { let (inner_ty, alloc_ty) = match expected.as_adt() { Some((adt, subst)) if adt == box_adt => ( subst.at(Interner, 0).assert_ty_ref(Interner).clone(), subst.as_slice(Interner).get(1).and_then(|a| a.ty(Interner).cloned()), ), _ => (self.result.standard_types.unknown.clone(), None), }; let inner_ty = self.infer_pat(*inner, &inner_ty, default_bm); let mut b = TyBuilder::adt(self.db, box_adt).push(inner_ty); if let Some(alloc_ty) = alloc_ty { b = b.push(alloc_ty); } b.fill_with_defaults(self.db, || self.table.new_type_var()).build() } None => self.err_ty(), }, Pat::ConstBlock(expr) => { self.infer_expr(*expr, &Expectation::has_type(expected.clone())) } Pat::Missing => self.err_ty(), }; // use a new type variable if we got error type here let ty = self.insert_type_vars_shallow(ty); if !self.unify(&ty, &expected) { self.result .type_mismatches .insert(pat.into(), TypeMismatch { expected, actual: ty.clone() }); } self.write_pat_ty(pat, ty.clone()); ty } } fn is_non_ref_pat(body: &hir_def::body::Body, pat: PatId) -> bool { match &body[pat] { Pat::Tuple { .. } | Pat::TupleStruct { .. } | Pat::Record { .. } | Pat::Range { .. } | Pat::Slice { .. } => true, Pat::Or(pats) => pats.iter().all(|p| is_non_ref_pat(body, *p)), // FIXME: ConstBlock/Path/Lit might actually evaluate to ref, but inference is unimplemented. Pat::Path(..) => true, Pat::ConstBlock(..) => true, Pat::Lit(expr) => !matches!(body[*expr], Expr::Literal(Literal::String(..))), Pat::Bind { mode: BindingAnnotation::Mutable | BindingAnnotation::Unannotated, subpat: Some(subpat), .. } => is_non_ref_pat(body, *subpat), Pat::Wild | Pat::Bind { .. } | Pat::Ref { .. } | Pat::Box { .. } | Pat::Missing => false, } }