//! This file is a port of only the necessary features from https://github.com/chris-morgan/anymap version 1.0.0-beta.2 for use within rust-analyzer. //! Copyright © 2014–2022 Chris Morgan. //! COPYING: https://github.com/chris-morgan/anymap/blob/master/COPYING //! Note that the license is changed from Blue Oak Model 1.0.0 or MIT or Apache-2.0 to MIT OR Apache-2.0 //! //! This implementation provides a safe and convenient store for one value of each type. //! //! Your starting point is [`Map`]. It has an example. //! //! # Cargo features //! //! This implementation has two independent features, each of which provides an implementation providing //! types `Map`, `AnyMap`, `OccupiedEntry`, `VacantEntry`, `Entry` and `RawMap`: //! //! - **std** (default, *enabled* in this build): //! an implementation using `std::collections::hash_map`, placed in the crate root //! (e.g. `anymap::AnyMap`). #![warn(missing_docs, unused_results)] use core::convert::TryInto; use core::hash::Hasher; /// A hasher designed to eke a little more speed out, given `TypeId`’s known characteristics. /// /// Specifically, this is a no-op hasher that expects to be fed a u64’s worth of /// randomly-distributed bits. It works well for `TypeId` (eliminating start-up time, so that my /// get_missing benchmark is ~30ns rather than ~900ns, and being a good deal faster after that, so /// that my insert_and_get_on_260_types benchmark is ~12μs instead of ~21.5μs), but will /// panic in debug mode and always emit zeros in release mode for any other sorts of inputs, so /// yeah, don’t use it! 😀 #[derive(Default)] pub struct TypeIdHasher { value: u64, } impl Hasher for TypeIdHasher { #[inline] fn write(&mut self, bytes: &[u8]) { // This expects to receive exactly one 64-bit value, and there’s no realistic chance of // that changing, but I don’t want to depend on something that isn’t expressly part of the // contract for safety. But I’m OK with release builds putting everything in one bucket // if it *did* change (and debug builds panicking). debug_assert_eq!(bytes.len(), 8); let _ = bytes.try_into().map(|array| self.value = u64::from_ne_bytes(array)); } #[inline] fn finish(&self) -> u64 { self.value } } use core::any::{Any, TypeId}; use core::hash::BuildHasherDefault; use core::marker::PhantomData; use ::std::collections::hash_map::{self, HashMap}; /// Raw access to the underlying `HashMap`. /// /// This alias is provided for convenience because of the ugly third generic parameter. pub type RawMap = HashMap, BuildHasherDefault>; /// A collection containing zero or one values for any given type and allowing convenient, /// type-safe access to those values. /// /// The type parameter `A` allows you to use a different value type; normally you will want /// it to be `core::any::Any` (also known as `std::any::Any`), but there are other choices: /// /// - If you want the entire map to be cloneable, use `CloneAny` instead of `Any`; with /// that, you can only add types that implement `Clone` to the map. /// - You can add on `+ Send` or `+ Send + Sync` (e.g. `Map`) to add those /// auto traits. /// /// Cumulatively, there are thus six forms of map: /// /// - [Map]<dyn [core::any::Any]>, /// also spelled [`AnyMap`] for convenience. /// - [Map]<dyn [core::any::Any] + Send> /// - [Map]<dyn [core::any::Any] + Send + Sync> /// - [Map]<dyn [CloneAny]> /// - [Map]<dyn [CloneAny] + Send> /// - [Map]<dyn [CloneAny] + Send + Sync> /// /// ## Example /// /// (Here using the [`AnyMap`] convenience alias; the first line could use /// [anymap::Map][Map]::<[core::any::Any]>::new() instead if desired.) /// /// ```rust #[doc = "let mut data = anymap::AnyMap::new();"] /// assert_eq!(data.get(), None::<&i32>); /// ``` /// /// Values containing non-static references are not permitted. #[derive(Debug)] pub struct Map { raw: RawMap, } /// The most common type of `Map`: just using `Any`; [Map]<dyn [Any]>. /// /// Why is this a separate type alias rather than a default value for `Map`? /// `Map::new()` doesn’t seem to be happy to infer that it should go with the default /// value. It’s a bit sad, really. Ah well, I guess this approach will do. pub type AnyMap = Map; impl Default for Map { #[inline] fn default() -> Map { Map::new() } } impl Map { /// Create an empty collection. #[inline] pub fn new() -> Map { Map { raw: RawMap::with_hasher(Default::default()) } } /// Returns a reference to the value stored in the collection for the type `T`, /// if it exists. #[inline] pub fn get>(&self) -> Option<&T> { self.raw.get(&TypeId::of::()).map(|any| unsafe { any.downcast_ref_unchecked::() }) } /// Gets the entry for the given type in the collection for in-place manipulation #[inline] pub fn entry>(&mut self) -> Entry<'_, A, T> { match self.raw.entry(TypeId::of::()) { hash_map::Entry::Occupied(e) => { Entry::Occupied(OccupiedEntry { inner: e, type_: PhantomData }) } hash_map::Entry::Vacant(e) => { Entry::Vacant(VacantEntry { inner: e, type_: PhantomData }) } } } } /// A view into a single occupied location in an `Map`. pub struct OccupiedEntry<'a, A: ?Sized + Downcast, V: 'a> { inner: hash_map::OccupiedEntry<'a, TypeId, Box>, type_: PhantomData, } /// A view into a single empty location in an `Map`. pub struct VacantEntry<'a, A: ?Sized + Downcast, V: 'a> { inner: hash_map::VacantEntry<'a, TypeId, Box>, type_: PhantomData, } /// A view into a single location in an `Map`, which may be vacant or occupied. pub enum Entry<'a, A: ?Sized + Downcast, V> { /// An occupied Entry Occupied(OccupiedEntry<'a, A, V>), /// A vacant Entry Vacant(VacantEntry<'a, A, V>), } impl<'a, A: ?Sized + Downcast, V: IntoBox> Entry<'a, A, V> { /// Ensures a value is in the entry by inserting the result of the default function if /// empty, and returns a mutable reference to the value in the entry. #[inline] pub fn or_insert_with V>(self, default: F) -> &'a mut V { match self { Entry::Occupied(inner) => inner.into_mut(), Entry::Vacant(inner) => inner.insert(default()), } } } impl<'a, A: ?Sized + Downcast, V: IntoBox> OccupiedEntry<'a, A, V> { /// Converts the OccupiedEntry into a mutable reference to the value in the entry /// with a lifetime bound to the collection itself #[inline] pub fn into_mut(self) -> &'a mut V { unsafe { self.inner.into_mut().downcast_mut_unchecked() } } } impl<'a, A: ?Sized + Downcast, V: IntoBox> VacantEntry<'a, A, V> { /// Sets the value of the entry with the VacantEntry's key, /// and returns a mutable reference to it #[inline] pub fn insert(self, value: V) -> &'a mut V { unsafe { self.inner.insert(value.into_box()).downcast_mut_unchecked() } } } #[cfg(test)] mod tests { use super::*; #[derive(Clone, Debug, PartialEq)] struct A(i32); #[derive(Clone, Debug, PartialEq)] struct B(i32); #[derive(Clone, Debug, PartialEq)] struct C(i32); #[derive(Clone, Debug, PartialEq)] struct D(i32); #[derive(Clone, Debug, PartialEq)] struct E(i32); #[derive(Clone, Debug, PartialEq)] struct F(i32); #[derive(Clone, Debug, PartialEq)] struct J(i32); #[test] fn test_varieties() { fn assert_send() {} fn assert_sync() {} fn assert_debug() {} assert_send::>(); assert_send::>(); assert_sync::>(); assert_debug::>(); assert_debug::>(); assert_debug::>(); assert_send::>(); assert_send::>(); assert_sync::>(); assert_debug::>(); assert_debug::>(); assert_debug::>(); } #[test] fn type_id_hasher() { use core::any::TypeId; use core::hash::Hash; fn verify_hashing_with(type_id: TypeId) { let mut hasher = TypeIdHasher::default(); type_id.hash(&mut hasher); // SAFETY: u64 is valid for all bit patterns. let _ = hasher.finish(); } // Pick a variety of types, just to demonstrate it’s all sane. Normal, zero-sized, unsized, &c. verify_hashing_with(TypeId::of::()); verify_hashing_with(TypeId::of::<()>()); verify_hashing_with(TypeId::of::()); verify_hashing_with(TypeId::of::<&str>()); verify_hashing_with(TypeId::of::>()); } } // impl some traits for dyn Any use core::fmt; #[doc(hidden)] pub trait CloneToAny { /// Clone `self` into a new `Box` object. fn clone_to_any(&self) -> Box; } impl CloneToAny for T { #[inline] fn clone_to_any(&self) -> Box { Box::new(self.clone()) } } macro_rules! impl_clone { ($t:ty) => { impl Clone for Box<$t> { #[inline] fn clone(&self) -> Box<$t> { // SAFETY: this dance is to reapply any Send/Sync marker. I’m not happy about this // approach, given that I used to do it in safe code, but then came a dodgy // future-compatibility warning where_clauses_object_safety, which is spurious for // auto traits but still super annoying (future-compatibility lints seem to mean // your bin crate needs a corresponding allow!). Although I explained my plight¹ // and it was all explained and agreed upon, no action has been taken. So I finally // caved and worked around it by doing it this way, which matches what’s done for // core::any², so it’s probably not *too* bad. // // ¹ https://github.com/rust-lang/rust/issues/51443#issuecomment-421988013 // ² https://github.com/rust-lang/rust/blob/e7825f2b690c9a0d21b6f6d84c404bb53b151b38/library/alloc/src/boxed.rs#L1613-L1616 let clone: Box = (**self).clone_to_any(); let raw: *mut dyn CloneAny = Box::into_raw(clone); unsafe { Box::from_raw(raw as *mut $t) } } } impl fmt::Debug for $t { #[inline] fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.pad(stringify!($t)) } } }; } /// Methods for downcasting from an `Any`-like trait object. /// /// This should only be implemented on trait objects for subtraits of `Any`, though you can /// implement it for other types and it’ll work fine, so long as your implementation is correct. pub trait Downcast { /// Gets the `TypeId` of `self`. fn type_id(&self) -> TypeId; // Note the bound through these downcast methods is 'static, rather than the inexpressible // concept of Self-but-as-a-trait (where Self is `dyn Trait`). This is sufficient, exceeding // TypeId’s requirements. Sure, you *can* do CloneAny.downcast_unchecked::() and the // type system won’t protect you, but that doesn’t introduce any unsafety: the method is // already unsafe because you can specify the wrong type, and if this were exposing safe // downcasting, CloneAny.downcast::() would just return an error, which is just as // correct. // // Now in theory we could also add T: ?Sized, but that doesn’t play nicely with the common // implementation, so I’m doing without it. /// Downcast from `&Any` to `&T`, without checking the type matches. /// /// # Safety /// /// The caller must ensure that `T` matches the trait object, on pain of *undefined behaviour*. unsafe fn downcast_ref_unchecked(&self) -> &T; /// Downcast from `&mut Any` to `&mut T`, without checking the type matches. /// /// # Safety /// /// The caller must ensure that `T` matches the trait object, on pain of *undefined behaviour*. unsafe fn downcast_mut_unchecked(&mut self) -> &mut T; } /// A trait for the conversion of an object into a boxed trait object. pub trait IntoBox: Any { /// Convert self into the appropriate boxed form. fn into_box(self) -> Box; } macro_rules! implement { ($any_trait:ident $(+ $auto_traits:ident)*) => { impl Downcast for dyn $any_trait $(+ $auto_traits)* { #[inline] fn type_id(&self) -> TypeId { self.type_id() } #[inline] unsafe fn downcast_ref_unchecked(&self) -> &T { &*(self as *const Self as *const T) } #[inline] unsafe fn downcast_mut_unchecked(&mut self) -> &mut T { &mut *(self as *mut Self as *mut T) } } impl IntoBox for T { #[inline] fn into_box(self) -> Box { Box::new(self) } } } } implement!(Any); implement!(Any + Send); implement!(Any + Send + Sync); /// [`Any`], but with cloning. /// /// Every type with no non-`'static` references that implements `Clone` implements `CloneAny`. /// See [`core::any`] for more details on `Any` in general. pub trait CloneAny: Any + CloneToAny {} impl CloneAny for T {} implement!(CloneAny); implement!(CloneAny + Send); implement!(CloneAny + Send + Sync); impl_clone!(dyn CloneAny); impl_clone!(dyn CloneAny + Send); impl_clone!(dyn CloneAny + Send + Sync);