//! A module with ide helpers for high-level ide features. pub mod famous_defs; pub mod generated_lints; pub mod import_assets; pub mod insert_use; pub mod merge_imports; pub mod insert_whitespace_into_node; pub mod node_ext; pub mod rust_doc; use std::{collections::VecDeque, iter}; use base_db::FileId; use hir::{ItemInNs, MacroDef, ModuleDef, Name, PathResolution, Semantics}; use itertools::Itertools; use syntax::{ ast::{self, make, HasLoopBody}, AstNode, AstToken, Direction, SyntaxElement, SyntaxKind, SyntaxToken, TokenAtOffset, WalkEvent, T, }; use crate::{defs::Definition, RootDatabase}; pub use self::famous_defs::FamousDefs; pub fn item_name(db: &RootDatabase, item: ItemInNs) -> Option { match item { ItemInNs::Types(module_def_id) => ModuleDef::from(module_def_id).name(db), ItemInNs::Values(module_def_id) => ModuleDef::from(module_def_id).name(db), ItemInNs::Macros(macro_def_id) => MacroDef::from(macro_def_id).name(db), } } /// Parses and returns the derive path at the cursor position in the given attribute, if it is a derive. /// This special case is required because the derive macro is a compiler builtin that discards the input derives. /// /// The returned path is synthesized from TokenTree tokens and as such cannot be used with the [`Semantics`]. pub fn get_path_in_derive_attr( sema: &hir::Semantics, attr: &ast::Attr, cursor: &ast::Ident, ) -> Option { let path = attr.path()?; let tt = attr.token_tree()?; if !tt.syntax().text_range().contains_range(cursor.syntax().text_range()) { return None; } let scope = sema.scope(attr.syntax()); let resolved_attr = sema.resolve_path(&path)?; let derive = FamousDefs(sema, scope.krate()).core_macros_builtin_derive()?; if PathResolution::Macro(derive) != resolved_attr { return None; } get_path_at_cursor_in_tt(cursor) } /// Parses the path the identifier is part of inside a token tree. pub fn get_path_at_cursor_in_tt(cursor: &ast::Ident) -> Option { let cursor = cursor.syntax(); let first = cursor .siblings_with_tokens(Direction::Prev) .filter_map(SyntaxElement::into_token) .take_while(|tok| tok.kind() != T!['('] && tok.kind() != T![,]) .last()?; let path_tokens = first .siblings_with_tokens(Direction::Next) .filter_map(SyntaxElement::into_token) .take_while(|tok| tok != cursor); ast::Path::parse(&path_tokens.chain(iter::once(cursor.clone())).join("")).ok() } /// Parses and resolves the path at the cursor position in the given attribute, if it is a derive. /// This special case is required because the derive macro is a compiler builtin that discards the input derives. pub fn try_resolve_derive_input( sema: &hir::Semantics, attr: &ast::Attr, cursor: &ast::Ident, ) -> Option { let path = get_path_in_derive_attr(sema, attr, cursor)?; let scope = sema.scope(attr.syntax()); // FIXME: This double resolve shouldn't be necessary // It's only here so we prefer macros over other namespaces match scope.speculative_resolve_as_mac(&path) { Some(mac) if mac.kind() == hir::MacroKind::Derive => Some(PathResolution::Macro(mac)), Some(_) => return None, None => scope .speculative_resolve(&path) .filter(|res| matches!(res, PathResolution::Def(ModuleDef::Module(_)))), } } /// Picks the token with the highest rank returned by the passed in function. pub fn pick_best_token( tokens: TokenAtOffset, f: impl Fn(SyntaxKind) -> usize, ) -> Option { tokens.max_by_key(move |t| f(t.kind())) } /// Converts the mod path struct into its ast representation. pub fn mod_path_to_ast(path: &hir::ModPath) -> ast::Path { let _p = profile::span("mod_path_to_ast"); let mut segments = Vec::new(); let mut is_abs = false; match path.kind { hir::PathKind::Plain => {} hir::PathKind::Super(0) => segments.push(make::path_segment_self()), hir::PathKind::Super(n) => segments.extend((0..n).map(|_| make::path_segment_super())), hir::PathKind::DollarCrate(_) | hir::PathKind::Crate => { segments.push(make::path_segment_crate()) } hir::PathKind::Abs => is_abs = true, } segments.extend( path.segments() .iter() .map(|segment| make::path_segment(make::name_ref(&segment.to_smol_str()))), ); make::path_from_segments(segments, is_abs) } /// Iterates all `ModuleDef`s and `Impl` blocks of the given file. pub fn visit_file_defs( sema: &Semantics, file_id: FileId, cb: &mut dyn FnMut(Definition), ) { let db = sema.db; let module = match sema.to_module_def(file_id) { Some(it) => it, None => return, }; let mut defs: VecDeque<_> = module.declarations(db).into(); while let Some(def) = defs.pop_front() { if let ModuleDef::Module(submodule) = def { if let hir::ModuleSource::Module(_) = submodule.definition_source(db).value { defs.extend(submodule.declarations(db)); submodule.impl_defs(db).into_iter().for_each(|impl_| cb(impl_.into())); } } cb(def.into()); } module.impl_defs(db).into_iter().for_each(|impl_| cb(impl_.into())); } #[derive(Clone, Copy, Debug, PartialEq, Eq)] pub struct SnippetCap { _private: (), } impl SnippetCap { pub const fn new(allow_snippets: bool) -> Option { if allow_snippets { Some(SnippetCap { _private: () }) } else { None } } } /// Calls `cb` on each expression inside `expr` that is at "tail position". /// Does not walk into `break` or `return` expressions. /// Note that modifying the tree while iterating it will cause undefined iteration which might /// potentially results in an out of bounds panic. pub fn for_each_tail_expr(expr: &ast::Expr, cb: &mut dyn FnMut(&ast::Expr)) { match expr { ast::Expr::BlockExpr(b) => { match b.modifier() { Some( ast::BlockModifier::Async(_) | ast::BlockModifier::Try(_) | ast::BlockModifier::Const(_), ) => return cb(expr), Some(ast::BlockModifier::Label(label)) => { for_each_break_expr(Some(label), b.stmt_list(), &mut |b| { cb(&ast::Expr::BreakExpr(b)) }); } Some(ast::BlockModifier::Unsafe(_)) => (), None => (), } if let Some(stmt_list) = b.stmt_list() { if let Some(e) = stmt_list.tail_expr() { for_each_tail_expr(&e, cb); } } } ast::Expr::IfExpr(if_) => { let mut if_ = if_.clone(); loop { if let Some(block) = if_.then_branch() { for_each_tail_expr(&ast::Expr::BlockExpr(block), cb); } match if_.else_branch() { Some(ast::ElseBranch::IfExpr(it)) => if_ = it, Some(ast::ElseBranch::Block(block)) => { for_each_tail_expr(&ast::Expr::BlockExpr(block), cb); break; } None => break, } } } ast::Expr::LoopExpr(l) => { for_each_break_expr(l.label(), l.loop_body().and_then(|it| it.stmt_list()), &mut |b| { cb(&ast::Expr::BreakExpr(b)) }) } ast::Expr::MatchExpr(m) => { if let Some(arms) = m.match_arm_list() { arms.arms().filter_map(|arm| arm.expr()).for_each(|e| for_each_tail_expr(&e, cb)); } } ast::Expr::ArrayExpr(_) | ast::Expr::AwaitExpr(_) | ast::Expr::BinExpr(_) | ast::Expr::BoxExpr(_) | ast::Expr::BreakExpr(_) | ast::Expr::CallExpr(_) | ast::Expr::CastExpr(_) | ast::Expr::ClosureExpr(_) | ast::Expr::ContinueExpr(_) | ast::Expr::FieldExpr(_) | ast::Expr::ForExpr(_) | ast::Expr::IndexExpr(_) | ast::Expr::Literal(_) | ast::Expr::MacroCall(_) | ast::Expr::MacroStmts(_) | ast::Expr::MethodCallExpr(_) | ast::Expr::ParenExpr(_) | ast::Expr::PathExpr(_) | ast::Expr::PrefixExpr(_) | ast::Expr::RangeExpr(_) | ast::Expr::RecordExpr(_) | ast::Expr::RefExpr(_) | ast::Expr::ReturnExpr(_) | ast::Expr::TryExpr(_) | ast::Expr::TupleExpr(_) | ast::Expr::WhileExpr(_) | ast::Expr::YieldExpr(_) => cb(expr), } } /// Calls `cb` on each break expr inside of `body` that is applicable for the given label. pub fn for_each_break_expr( label: Option, body: Option, cb: &mut dyn FnMut(ast::BreakExpr), ) { let label = label.and_then(|lbl| lbl.lifetime()); let mut depth = 0; if let Some(b) = body { let preorder = &mut b.syntax().preorder(); let ev_as_expr = |ev| match ev { WalkEvent::Enter(it) => Some(WalkEvent::Enter(ast::Expr::cast(it)?)), WalkEvent::Leave(it) => Some(WalkEvent::Leave(ast::Expr::cast(it)?)), }; let eq_label = |lt: Option| { lt.zip(label.as_ref()).map_or(false, |(lt, lbl)| lt.text() == lbl.text()) }; while let Some(node) = preorder.find_map(ev_as_expr) { match node { WalkEvent::Enter(expr) => match expr { ast::Expr::LoopExpr(_) | ast::Expr::WhileExpr(_) | ast::Expr::ForExpr(_) => { depth += 1 } ast::Expr::BlockExpr(e) if e.label().is_some() => depth += 1, ast::Expr::BreakExpr(b) if (depth == 0 && b.lifetime().is_none()) || eq_label(b.lifetime()) => { cb(b); } _ => (), }, WalkEvent::Leave(expr) => match expr { ast::Expr::LoopExpr(_) | ast::Expr::WhileExpr(_) | ast::Expr::ForExpr(_) => { depth -= 1 } ast::Expr::BlockExpr(e) if e.label().is_some() => depth -= 1, _ => (), }, } } } } /// Checks if the given lint is equal or is contained by the other lint which may or may not be a group. pub fn lint_eq_or_in_group(lint: &str, lint_is: &str) -> bool { if lint == lint_is { return true; } if let Some(group) = generated_lints::DEFAULT_LINT_GROUPS .iter() .chain(generated_lints::CLIPPY_LINT_GROUPS.iter()) .chain(generated_lints::RUSTDOC_LINT_GROUPS.iter()) .find(|&check| check.lint.label == lint_is) { group.children.contains(&lint) } else { false } } /// Parses the input token tree as comma separated plain paths. pub fn parse_tt_as_comma_sep_paths(input: ast::TokenTree) -> Option> { let r_paren = input.r_paren_token(); let tokens = input.syntax().children_with_tokens().skip(1).map_while(|it| match it.into_token() { // seeing a keyword means the attribute is unclosed so stop parsing here Some(tok) if tok.kind().is_keyword() => None, // don't include the right token tree parenthesis if it exists tok @ Some(_) if tok == r_paren => None, // only nodes that we can find are other TokenTrees, those are unexpected in this parse though None => None, Some(tok) => Some(tok), }); let input_expressions = tokens.into_iter().group_by(|tok| tok.kind() == T![,]); let paths = input_expressions .into_iter() .filter_map(|(is_sep, group)| (!is_sep).then(|| group)) .filter_map(|mut tokens| ast::Path::parse(&tokens.join("")).ok()) .collect(); Some(paths) }